Entropy–Stabilized Metal Oxide Solid Solutions as CO Oxidation Catalysts with High–Temperature Stability

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Journal of Materials Chemistry A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>TA-COM-02-2018-001772.R1</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Communication</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>05-May-2018</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Chen, Hao; The University of Tennessee, Department of Chemistry Fu, Jie; Zhejiang University, Department of Chemical and Biological Engineering Zhang, Pengfei; The University of Tennessee, Department of Chemistry Peng, Honggen; Nanchang University, Department of Chemistry Abney, Carter; Oak Ridge National Laboratory, Chemical Sciences Division Jie, Kecheng; The University of Tennessee, Department of Chemistry Liu, Xiaoming; Oak Ridge National Laboratory Chi, Miaofang; Oak Ridge National Laboratory, Center for Nanophase Materials Sciences Dai, Sheng; Oak Ridge National Laboratory,</td>
</tr>
</tbody>
</table>
This work reports a new strategy toward design of a new class of supported catalysts with intrinsic high-temperature stabilities through entropy maximization. The use of Pt, Ni, Mg, Cu, Zn, and Co not only enables the active sites to be highly dispersed for high catalytic activity in CO oxidation, but also results in extreme thermal stability (900 °C) owing to the entropy-stabilized behavior inside the metal oxide to survive the harsh conditions.

Supported metal catalysts play an essential role throughout chemical industries and environmental mitigations (e.g., steam reforming to produce H₂, automotive exhaust cleaning, activation of N₂ and CH₄). A major challenge in the design of efficient metal catalysts is overcoming the cohesive energy that drives co-domain formation and sintering at elevated temperatures. This difficulty is particularly acute in the design of supported catalyst systems, especially those possessing small quantities of homogeneously dispersed precious group metals. Due to their relatively low Tammann temperature—the point at which supported metal crystallites develop liquid-like properties and exhibit an enhanced ability to migrate—sintering occurs rapidly, minimizing the surface area accessible for catalysis with commensurate reduction in activity.

Accordingly, significant effort has been devoted to designing functional catalyst systems which stabilize noble metal single atoms and nanoparticles at high temperature. For example, Joo and colleagues reported Pt nanoparticles encaged in silica shells (Pt@mSiO₂) for ethylene hydrogenation and CO oxidation. Tian et al. designed a heterstructured perovskite support for Au, displaying high activity for CO oxidation and promising sintering resistance up to 750 °C. Arnal and coworkers synthesized an Au based catalyst encapsulated in ZrO₂ hollow spheres. Following a 900 °C treatment, 100% CO conversion was achieved at 260-280 °C.

Recent work articulates the straightforward preparation of configurationally disordered and entropy-stabilized mixed metal oxides generated from earth-abundant materials. The isovalent ensemble of binary oxide precursors are selected to ensure disparate crystal structure, electronegativity, and cation coordination geometry, resulting in formation of a single-phase rocksalt structure upon equilibration above 850 °C. Critically, complementary experiments definitively proved entropy to be the predominant force, affording a fully randomized final solid solution state. As the entropic contributions to Gibbs free energy are temperature dependent, we surmised introduction of noble metals into an appropriate mixed metal oxide solid solution would afford a randomly dispersed, homogeneous system of single atoms which are entropically stabilized at elevated temperatures and course function as an exciting new high-temperature catalyst.

In this work, we report the successful preparation of an entropy-stabilized, single-phase, mixed oxide (NiMgCuZnCoOₓ) supported Pt high-temperature catalyst as shown in Scheme 1. The single-phase and entropically-driven stability of the PtNiMgCuZnCoOₓ (0.3wt% Pt) endowed the catalyst with a superior activity for CO oxidation, even after treatment at 900 °C. We expect this exciting new synthetic approach will hold great promise for development of stabilized single atom materials for diverse applications.

Scheme 1. Scheme of the formation of 0.3wt%PtNiMgCuZnCoOₓ entropy-stabilized metal oxide solid solution.
Initially, the calcination temperatures of NiMgCuZnCoO were investigated at 800, 900, and 1000 °C to obtain the single entropy-stabilized phase. X-ray diffraction (XRD) patterns showing the phase evolution are depicted in Figure 1a. The five oxides were completely converted to a single phase when the calcination temperature was higher than 900 °C and there was no additional peak. Five peaks attributed to the (111), (200), (220), (311), and (222) planes of the entropy–stabilized oxide NiMgCuZnCoO were observed. From XRD shown in this and reported work13, 15, we knew that the NiMgCuZnCoO\textsubscript{x} exhibited cubic rocksalt structure. Multiphases, rock salt, tenorite, and other crystal structures were observed in the sample calcinated at 800 °C.13, 15 The entropy–stabilized phase can be formed at the calcination temperature higher than 900 °C. The TPR results (Figure S1) showed that the five metals formed the single phase and only one reduced peak for NiMgCuZnCoO\textsubscript{x} and 0.3wt%PtNiMgCuZnCoO\textsubscript{x} was detected. However, the total BET surface area (S\textsubscript{BET}) for the sample calcinated at 900 °C was only 2 m2/g, probably due to the restructuring and growth of the crystalline phase. Then we used co–precipitation with cetyltrimethyl ammonium bromide and ammonium hydroxide to improve the synthesis method, and obtained anSBET of 28 m2/g for the entropy–stabilized metal oxide, which also exhibited a single phase in Figure 1b.

The catalytic oxidation of CO to CO\textsubscript{2} is one of the most widely studied surface reactions, and the catalysts reported were roughly of two types: noble metal based (Pt, Pd, Au)15–18 and metal oxide based (Cu, Co, Ce)19–21. We then evaluated the catalytic activity for the oxidation of CO over the entropy–stabilized metal oxide in fixed-bed reactor at different temperature, which not only represents the activity of active sites, but also means the high–temperature stability for this material owing to its significance for pollution control and fuel cells22. As seen in Figure 1c, within a retention reaction time of less than 1 s, a CO conversion of 50% was achieved at 256 °C, and the complete conversion was achieved at 305 °C over both the catalysts calcinated at 900 °C by physical mixture and co–precipitation method. The catalyst calcinated at 1000 °C exhibited worse activity than those calcinated at 900 °C, and the conversions were 60% at 300 °C and 89% at 400 °C, respectively. We also evaluated the catalytic activities over the catalysts including NiCuZnCoO\textsubscript{x} (mix), NiMgCuZnO\textsubscript{x} (mix), NiMgZnCo (mix), NiMgCuZnO\textsubscript{x} (mix) and MgCuZnCo (mix) indicating that this single entropy–stabilized phase might be destroyed when individual components were removed13.

![Figure 1](https://example.com/figure1.png)

Figure 1. (a) X–ray diffraction patterns for NiMgCuZnCoO\textsubscript{x}; (b) Nitrogen adsorption–desorption isotherms of NiMgCuZnCoO\textsubscript{x}, synthesized by physical mixture and co–precipitation method. (c) CO oxidation activity of NiMgCuZnCoO\textsubscript{x}, synthesized by physical mixture and co–precipitation method. Reaction condition: a catalyst loading of 20 mg, a flow rate of 12.5 mL/min, and 1 vol % CO balance in air.

Although NiMgCuZnCoO\textsubscript{x} exhibited considerable activity for the CO oxidation, there is a need for the conversion of CO in low temperature. Pt was known for the high activity for CO oxidation, and it was introduced into the catalyst to form entropy–stabilized metal oxide solid solution. After the introduction of Pt during the synthesis, only five peaks attributed to the entropy–stabilized oxide...
were observed both for as-synthesized and reduced PtNiMgCuZnCoOx, without the Pt peak, shown in the XRD results in Figure 2. The particles are large and thick due to the high-temperature calcination. The lack of a Pt or PtOx peak suggests the Pt atoms were highly dispersed in the entropy-stabilized oxide, and no sintering of Pt occurred even after calcinated at 900 °C. The entropy-stabilized oxide was maintained, and no Pt atom was aggregated after the H2 reduction at 300 °C for 2 h.

Further characterizations of the single-phase were conducted using high resolution transmission electron microscopy (HRTEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF–STEM) and energy-dispersive x-ray spectroscopy (EDS) to determine the crystal lattice and elementary composition of the entropy-stabilized metal oxide solution. The results are shown in Figures 3 and S2~3. The particles are large and thick as shown in Figure S2 due to the high temperature treatment. The EDS signals for the Kα emission energies of Ni, Mg, Cu, Zn, and Co in Figure S3 suggest that all the magnifications revealed a chemically and structurally homogeneous material, and the areal distribution of colors was random and free from clustering. In Figure 3, the TEM and HAADF–STEM images of reduced 0.3wt%PtNiMgCuZnCoOx shows that the crystal lattice was single, meaning that the Pt atoms were dissolved into the entropy-stabilized metal oxide. Thus, it can be concluded that the cations were uniformly dispersed. As shown in Figure 3, marked atoms might be the Pt single atom as they were slightly brighter than the surrounding atoms. Corresponding intensity profiles can be seen, and the dashed boxes shown in image indicate locations where the intensity profiles were obtained. An obvious intensity increase close to the surface indicates the existence of the Pt single atom.

Subsequently, the low-temperature catalytic activities of the as-synthesized and reduced 0.3wt%PtNiMgCuZnCoOx samples for CO oxidation were evaluated. As shown in Figure 4, the 0.3wt%PtNiMgCuZnCoOx sample exhibited much better activity for the oxidation of CO compared to the NiMgCuZnCoOx sample. The reduced 0.3wt%PtNiMgCuZnCoOx sample became active at 60 °C. The CO was completely converted at 155 °C over the reduced 0.3wt%PtNiMgCuZnCoOx and at 245 °C over the as-synthesized 0.3wt%PtNiMgCuZnCoOx, both lower than the temperature of complete conversion over NiMgCuZnCoOx (305 °C), indicating that the Pt and PtOx played an important role in the CO oxidation. Several Pt single atom–based catalysts have been recently reported for the oxidation of CO to CO2 and the atomically dispersed ionic Pt2+ is usually considered as the active site for the CO oxidation because the Pt0 has an inhibiting effect on CO oxidation at low temperatures due to the competitive adsorption between Pt0 and CO. It was also reported that thermal treatment at high temperature led to strong Pt–O–M bond formation. Thus, we proposed that the Pt atom in this work existed as Pt–O–M or O–Pt–O–M (M: Ni, Mg, Cu, Zn, Co) atomically dispersed Pt. The reduction by H2 was to reduce the O–Pt–O–M (Pt4+) to Pt–O–M (Pt2+) and improve the activity of catalyst. The main active site was Pt2+ (Pt–O–M) in 0.3wt%PtNiMgCuZnCoOx entropy-stabilized oxide, and a part of Pt atoms formed Pt–O phase. Survey scans of the reduced 0.3wt%PtNiMgCuZnCoOx by X-ray photoelectron spectroscopy (XPS) are shown in Figure S4. There is no evidence of Pt related signals for the Pt 4d, Pt 4f or Pt 3p3/2, possible due to the formation of Pt-based NiMgCuZnCo metal oxide solid solutions with Pt species staying in the bulk. The reduced 0.3wt%PtNiMgCuZnCoOx showed high stability during the catalytic oxidation of CO to CO2 at 135 °C for at least 40 h reaction time without loss of its catalytic activity.
The reaction rate constants (k) and apparent activation energy (Ea) were calculated according to CO conversions at different temperatures over NiMgCuZnCoOx, as–synthesized 0.3 wt% PtNiMgCuZnCoOx and reduced 0.3 wt% PtNiMgCuZnCoOx. The calculation method and experimental data were shown in Figure S7 and Table S1. The calculated Ea of CO oxidation over 0.3 wt% PtNiMgCuZnCoOx (63~136 °C) were 91.5, 57.2 and 54.8 kJ mol\(^{-1}\), respectively. Thus, the low Ea indicates that the atomically dispersed Pt in 0.3 wt% PtNiMgCuZnCoOx was indeed active for CO oxidation but also results in extreme thermal stability owing to the entropy–stabilized behavior inside the metal oxide solution to survive the harsh conditions. The catalyst showed good reusability for at least 40 h without any reduction in the catalytic activity.

Conclusions
In summary, a simple, low–cost, and easy–magnifying synthesis approach for entropy–stabilized metal oxide solid solutions were developed. The synthesized entropy–stabilized metal oxide solid solution NiMgCuZnCoOx can act both as a CO oxidation catalyst and as an excellent support to stabilize highly dispersed even single atomically dispersed platinum species, even at temperatures up to 900 °C. The use of Pt, Ni, Mg, Cu, Zn, and Co not only enables the active sites to be highly dispersed for high catalytic activity in CO oxidation but also results in extreme thermal stability owing to the entropy–stabilized behavior inside the metal oxide solution to survive the harsh conditions. The catalyst showed good reusability for at least 40 h without any reduction in the catalytic activity.

Conflicts of interest
There are no conflicts to declare.

ACKNOWLEDGMENT
SD was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy. Electron microscopy work was supported by the U.S. DOE, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division (MC, XL), and was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory.

Notes and references
TOC Graphic:

Entropy–Stabilized Metal Oxide Solid Solutions as CO Oxidation Catalysts with High–Temperature Stability.