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Phase behavior and design rules for plastic colloidal
crystals of hard polyhedra via consideration of direc-
tional entropic forces†

Andrew S. Karas,a Julia Dshemuchadse,a Greg van Anders,b and Sharon C. Glotzer∗a,c,d

Plastic crystals — like liquid crystals — are mesophases that can exist between liquids and crys-
tals and possess some of the characteristic traits of each of these states of matter. Plastic crystals
exhibit translational order but orientational disorder. Here, we characterize the phase behavior in
systems of hard polyhedra that self-assemble plastic face-centered cubic (pFCC) colloidal crys-
tals. We report a first-order transition from a pFCC to a body-centered tetragonal (BCT) crystal,
a smooth crossover from pFCC to an orientationally-ordered FCC crystal, and an apparent ori-
entational glass transition wherein long-range order fails to develop from a plastic crystal upon
an increase in density. Using global order parameters and local environment descriptors, we
describe how particle shape influences the development of orientational order with increasing
density, and we provide design rules based on the arrangement of facets for engineering plastic
crystal behavior in colloidal systems.

1 Introduction
Anisotropic molecules and particles are known to exhibit two
types of thermodynamically stable mesophases between a liquid
and a crystal: the liquid crystal and the plastic crystal (PC). The
liquid crystal phase, in which particles have orientational order
but lack long-range translational order, has been thoroughly stud-
ied for many kinds of systems1–3. Much less is known about
the plastic crystal, in which particles have translational order but
lack long-range orientational order. Our understanding of plas-
tic crystals originates from observations of molecular systems.
In 1930, Pauling presented a statistical mechanics argument ex-
plaining how molecules in a crystalline phase could undergo a
transition from oscillatory motion to rotational motion as a way
to explain temperature-dependent phenomena in thermodynamic
properties4. Timmermans later coined the term ‘plastic crystal’
to describe phases formed by globular compounds that are far
easier to deform than lower-temperature phases5. These plastic
crystal phases typically have cubic symmetry, they lead to a sig-
nificantly lower entropy of melting as compared to non-globular
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compounds, and they can form within many different organic or
inorganic systems6,7. It is also possible to quench a plastic crystal
into an orientational glass wherein the system maintains a higher-
symmetry unit cell, rotational motion slows as the system vitrifies,
and long-range orientational order is absent8–11.

Entropic plastic crystals have recently been reported in sys-
tems of nanoparticles12,13 and in computer simulations of hard
particles14–20. Existing literature on Monte Carlo simulations
shows that hard particle plastic crystals are a thermodynamic
state distinct from the orientationally ordered crystal phase14,18,
that plastic crystals are typically formed by spheroidal parti-
cles14,15,18, that the existence of a plastic crystal phase lowers
the free energy barrier for crystallization from a fluid19, and that
particle orientations in the plastic crystal phase are not random
but rather some orientations are more likely to occur than oth-
ers18–21. The recent development of the theory of directional
entropic forces (DEFs)22,23 and the quantification of these forces
through the potential of mean force and torque (PMFT)24 provide
a new approach to the analysis of plastic crystal systems.

Here we describe how particle shape impacts the development
of orientational order in hard particle systems that form plastic
face-centered cubic (pFCC) crystals. We develop new techniques
that allow us to characterize the orientational coupling in ori-
entationally ordered and disordered states. We study four shapes
that all form pFCC crystals, but exhibit different plastic-crystal-to-
crystal transitions: first-order phase transitions, continuous orien-
tational order development without a thermodynamic phase tran-
sition, and an approach to an orientational glass transition where
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Fig. 1 The four shapes used in the study: Truncated Cuboctahedron
(TC), Rhombic Dodecahedron (RD), Rhombicuboctahedron (RC), and
Pseudorhombicuboctahedron (PRC). We are able to identify that some
polyhedral facets are more important than others in dictating how neigh-
bors align with respect to one another: the facets with the strongest di-
rectional entropic forces are shown in blue, and the remaining facets are
colored red.

there is no phase transition or long-range orientational order. In
particular, we compare how shape features relative to that of the
rhombicuboctahedron affect the development of orientational or-
der. Fig. 1 shows the shapes investigated and Fig. 2 shows the
phases that they form. We develop an order parameter based on
the similarity of particle orientations within a system as compared
to those of a perfect crystal. The order parameter captures the dis-
continuous change in orientational order across a first-order tran-
sition for shapes of arbitrary symmetry. We characterize the local
environments of particles by calculating the potential of mean
force and torque (PMFT)24 and orientation-orientation correla-
tions between a reference particle and its neighbors. Through
this analysis, we identify relationships between shape features
and plastic crystalline behavior. Specifically, we show that the ar-
rangement of the largest facets and the ensuing DEFs dictate how
orientational order develops. We conclude with general design
rules for engineering PC behavior in colloidal crystals.

2 Model and Methods
We study four shapes that are all known to self-assemble FCC
crystals:15 the truncated cuboctahedron (TC), rhombic dodec-
ahedron (RD), rhombicuboctahedron (RC), and pseudorhom-
bicuboctahedron (PRC; also known as the elongated square gy-
robicupola). Particle shapes are depicted in Fig. 1 with the most
impactful facets – from a DEF standpoint – colored blue. How
the shapes differ from the RC is found to be important in deter-
mining the behavior of these systems. The RC is a shape with 26
facets, 12 of which are square facets that align with the nearest-
neighbor directions of the FCC crystal (i.e., the coordination ge-
ometry). The TC has the same number of facets and their normal
vectors point in the same direction as those of the RC, but the
larger facets of the TC — six octagonal and eight hexagonal ones
— do not align with the FCC coordination geometry. The RD is the
Voronoi particle of FCC, and thus tiles space. All 12 facets of the
RD align with the FCC environment. Lastly, the PRC has the same
types of facets as the RC, but they are arranged differently, re-
sulting in a reduced, tetragonal symmetry. One can construct the
PRC from the RC by taking a square cupola portion of the RC and
rotating it by 45°. While the RC has a set of 12 square facets that
align with FCC coordination geometry, only eight square facets of
PRC can align at a given time.

We use several techniques to investigate the behavior of plastic
crystals and their phase transitions. We perform all simulations
with the hard particle Monte Carlo (HPMC) package of HOOMD-
blue25–27. We compute the equation of state as the primary in-
dicator of phase behavior. Systems with N = 864 particles were
simulated in a “floppy-box” NVT ensemble, where the volume is
kept constant while allowing for box shearing and changes in box
aspect ratios28. We compute pressure via the scale distribution
function (SDF) in HPMC27. We present data using the reduced
pressure p∗ = β pv0 where β = (kBT )−1 and v0 is particle volume.
For all shapes, v0 is set to 1.0 such that system density is equiva-
lent to packing fraction. For simulation trajectories used when
calculating local environment descriptors, we use system sizes
N = 2048. For the TC and RC, we run additional simulations with
system sizes between N = 256 and N = 16384 in order (i) to show
system-size dependent changes indicating a first-order transition
for the TC and (ii) to show that there is no system-size depen-
dence on the bulk modulus for the RC. For the TC, we additionally
validate the first-order transition through NPT simulations for sys-
tems of N = 2048 to test for the presence of hysteresis. Data were
collected by both compressing the system from a pFCC crystal and
expanding the system from a dense crystal. For expansion simula-
tions, we initialize particles in orientationally ordered structures
that result from compression of the plastic crystal; an FCC lattice
for RC and RD, and a BCT lattice for TC and PRC.

We quantify global orientational order by measuring the orien-
tation of particles relative to global reference orientations. If we
represent particle orientations as quaternions, the difference in
orientation between a particle described by an orientation q0 to a
reference orientation qre f is given by

Qnet = q†
refq0 = exp(

i
2

θ n̂ ·~σ) = cos(
θ

2
)+ in̂ ·~σ sin(

θ

2
) , (1)

where we use Pauli matrices ~σ to give an explicit representation of
the rotation of an angle θ in a plane perpendicular to n̂. The trace
of 1

2 Tr(Qnet) is a global rotational invariant with values between
−1 and 1.

To construct the order parameter, we first select a set of qref

from a set of j quaternions corresponding to orientations found
in the dense, orientationally ordered crystal ( j = 1 for RD and
RC, and j = 2 for TC and PRC). Next, we determine the average
Tr(Qnet) for a randomly oriented particle, which we denote by
Ψr, by integrating over the group manifold of SO(3) modulo the
particle’s point group symmetry Γ,

Ψr =
1
2

∫
SO(3)/Γ

dqmax
j

Tr(q†
ref, j,q). (2)

For simplicity, we compute Ψr via Monte Carlo integration by
sampling 500,000 random quaternions. We compare Ψr against
the quantity

Ψs =
1

2N

N

∑
i

max
j

Tr(q†
ref, j,qi) , (3)

which we measure when simulating dense systems of shapes.
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Fig. 2 Representative images of different phases studied in this work, with particles colored based on their orientation. (A–D) The high-density phase
for each shape. (A) TC form BCT crystals upon compression of the pFCC. (B & C) RD and RC maintain FCC order, but they develop strong orientational
order and exist in this ordered FCC (oFCC) at high density. (D) PRC can pack in a BCT crystal, however this phase is not readily accessible via self-
assembly. (E) An example of the plastic crystal formed by TC. Note that some orientations are more prevalent than others, but long-range orientational
order does not exist. (F) Compression of the PRC leads to an apparent orientational glass with FCC order wherein particles have one of six distinct
orientations. Unlike in a plastic crystal, particles cannot readily change their orientation.

From this, we construct an orientational order parameter (OOP):

Θ =
Ψs −Ψr

1−Ψr
. (4)

For a crystal with perfect global orientational order, Θ = 1 since
for each particle, q will be one of the qref, j and so Ψs = 1 by con-
struction. For a crystal with random orientations, Θ = 0.

We use this measure to define how similar, on average, particle
orientations within a system are to those of a perfect, dense crys-
tal. This order parameter shares similarities with the frequently
used cubatic order parameter14,18,29,30, but it differs in a few key
respects. Most notably, it does not require that the particles have
cubic symmetry. In addition, this order parameter does not com-
pare the orientation of all particles against a single, global ori-
entation, an essential feature when investigating structures with
multiple orientations in their ordered state, such as the BCT struc-
tures of TC and PRC.

We calculate the PMFT to show how the local particle environ-
ments depend on particle shape and system density. The PMFT,
which we compute with the freud software toolbox31, uses a
three-dimensional probability distribution function to determine
the free energy associated with a neighboring particle in some po-
sition relative to a fixed orientation for a reference particle. Thus,
when particles freely rotate among all orientations with an equal
probability, there are no preferred locations for neighboring par-
ticles relative to the freely rotating reference particle. Isotropic
free energy isosurfaces in the PMFT result from such free rota-
tions. When particles adopt preferred relative orientations, e.g.,
facet-to-facet, an anisotropic PMFT results, revealing the distribu-
tion of DEFs23,24.

To further describe the orientational order present in the parti-
cles’ local environments, we calculate the relative misorientation
of neighboring particles to provide a one-dimensional represen-

tation of orientation-orientation coupling for nearest neighbors.
We compute the minimum angle required to rotate a particle into
an orientation identical to each of its neighbors, and we represent
this information as a histogram. The angle separating two orien-
tations is extracted as shown in Eqn. 1; in this process, we account
for equivalent orientations based on the point group symmetry of
the shapes. By measuring this orientation-orientation coupling,
we can identify when neighboring particles tend to align with
parallel orientations, when they take on orientations that span
specific angles, or when they appear to adopt random orienta-
tions with respect to one another.

3 Results

3.1 First-Order Transition

The truncated cuboctahedron (TC) shows a first-order transition
from a plastic crystal to a crystal. First-order transitions upon
compression of the plastic crystalline phase have been reported
for other shapes16,18. An apparent hallmark of these transitions
is a change in orientational order that coincides with a change
in translational order. Here, compression of the TC’s pFCC crys-
tal leads to the formation of a BCT structure with two preferred
particle orientations in the unit cell. The preferred orientation
of the crystal directly determines the unique axis of the simula-
tion box as it undergoes tetragonal symmetry breaking. In the
limit of infinite pressure, we expect a denser packing of TC in a
single-particle, monoclinic unit cell32.

The equation of state reveals that the pFCC-to-BCT crystal tran-
sition is first order. In NPT simulations (the inset in Fig. 3A), hys-
teresis is observed when comparing data obtained upon compres-
sion and expansion. For NVT simulations, two-phase coexistence
and a Mayer-Wood loop33,34 are observed at the transition from
the pFCC to BCT crystal. In the Supplementary Information, we
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Fig. 3 Phase behavior of the truncated cuboctahedron (TC): first-order phase transition from plastic crystal to crystal. (A) The equation of state shows
a Mayer-Wood loop in the NVT ensemble (main plot) and hysteresis between the pFCC crystal and the BCT crystal in the NPT ensemble (inset).
Both of these features indicate a first-order transition. (B) The orientational order parameter displays a mild increase within the pFCC phase and is
significantly higher in the BCT phase; it also exhibits hysteresis in the NPT ensemble (inset). (C) PMFTs at three state points: as the density increases
in the plastic crystal phase (φ = 0.550 & φ = 0.675), the strength of the DEFs increases, but the basic shape persists and the −1kBT isosurface remains
connected. After the transition to a BCT phase (φ = 0.725), the DEF sites at the hexagonal facets split into three unique minima (see dashed-line box),
and the −1kBT isosurface does not connect across the different wells. (D) The plot of the orientation-orientation coupling as a function of density shows
the development of two peaks. In the BCT crystal, neighboring particles either have similar orientations (separated by < 20°, marked with red diagonal
lines in the background) or they exhibit a misalignment close to 60° (marked with blue horizontal lines in the background). This trend develops in the
pFCC phase and strengthens after the transition to the BCT crystal. System sizes N = 864 are used for primary plots in (A) & (B), and system sizes
N = 2048 are used for (C) & (D) along with the insets in (A) & (B).

include a figure that shows the magnitude of the Mayer-Wood
loop decreasing with system size and local density comparisons
showing the pFCC and BCT phases in coexistence. Further evi-
dence for the first-order nature of the phase transition between
pFCC and BCT is given by the observed discontinuity in the first
derivative of the OOP with respect to density, showing a clear
jump in value between the pFCC and BCT crystal phases. This re-
sponse in the OOP occurs because of the spontaneous change in
the distribution of orientations as the cubic symmetry is broken.
Once the system exhibits tetragonal symmetry, the individual par-
ticles preferentially adopt just two orientations.

The PMFT likewise displays discontinuous behavior across the
transition. The dotted boxes in Fig. 3C highlight a change in the
shape of the strongest DEF sites across the phase transition. For
the TC, the DEF site opposite each hexagonal facet is connected
as one continuous isosurface for the pFCC crystal, but it separates
into three distinct isosurfaces in the BCT crystal. Within the pFCC
phase, increasing the density strengthens the DEFs, but it does
not significantly change their shape. The PMFT also reveals that
the six octagonal and eight hexagonal facets most frequently align
with neighboring particles. These 14 DEF sites do not align with
the 12 coordinating neighbors found with FCC positional order.

The orientation-orientation coupling reveals changes in the lo-
cal particle environments across the phase transition. Fig. 3D
shows histograms of the minimum angle of misorientation be-
tween neighboring particles as a function of density. At low densi-
ties (e.g., φ ∼ 0.50), neighboring misorientations in plastic crystals
follow a random distribution. Because of the particles’ rotational
symmetry, relative random orientations do not lead to a normal
distribution, but rather to a ‘sharkfin’-shaped distribution35. The
sharkfin shape arises because there are more paths to rotate a
particle to a symmetrically equivalent orientation for higher mis-
orientation angles. In the BCT phase, one peak develops for small
angles corresponding to neighboring particles aligning (marked
in Fig. 3D with red diagonal hatch lines) and a second peak devel-
ops around a larger angle corresponding to particles misaligned
in a specific manner (marked with blue horizontal hatch lines).
These two peaks begin to develop with increasing density in the
pFCC phase, indicating that the local environment in the pFCC
adopts features resembling the BCT phase before any long-range,
system-wide symmetry breaking occurs.
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Fig. 4 Phase behavior of the rhombic dodecahedron (RD): gradual order development. (A) The equation of state shows no distinct features of a
phase transition or dependence on the initial state. (B) The global orientational order parameter begins with a value above zero and shows a rapid
rise between densities of φ = 0.50 and φ = 0.65 before it begins to converge to 1.0 more slowly. (C) At all densities, the strongest DEFs are located at
the 12 facets of the RD. The relative spread of the −1.0kBT isosurface decreases with increasing density while the strength of the primary DEF sites
increases. (D) Increasing the density of the system results in increasing the likelihood of particles to have progressively similar orientations (region with
red diagonal hatch lines), as the likelihood of a large misalignments shows a monotonic decrease (region with blue horizontal hatch lines). System
sizes N = 864 are used for primary plots in (A) & (B), and system sizes N = 2048 are used for (C) & (D).

3.2 Gradual Order Development

The rhombic dodecahedron (RD, see Fig. 4) and the rhom-
bicuboctahedron (RC, see Fig. 5) both show a gradual develop-
ment of orientational order upon compression of the PC and do
not exhibit a sharp thermodynamic transition to a crystal. When
in an ordered FCC (oFCC) crystal, both shapes adopt a single ori-
entation, but the development of orientational order is different
because of the larger number of facets on the RC (18 square and
8 triangular facets) as compared to the RD (12 identical, rhom-
bic facets). The equations of state for both shapes lack the sig-
nature of a first-order transition between PC and crystal phases:
they show no hysteresis or coexistence between orientationally
ordered and disordered phases. We also found no dependence
on system size for the equation of state (see SI), indicating that
there is no critical length scale and that the development of ori-
entational order is not a second-order phase transition36. For the
RD, we note that long-range orientational order develops well be-
fore the system is expected to pack at φ = 0.8037.

While neither shape produces a plastic crystal phase that is
thermodynamically distinct from the crystal; we observe that RD
and RC systems show plastic crystalline behavior up to densities
of approximately φ ≤ 0.63 and φ ≤ 0.70, respectively; these val-
ues are approximate because we cannot define a clear transition
point; however, we observe notable differences in behavior above
and below these densities. The global orientational order (shown

in Figs. 4B & 5B) distinguishes plastic crystal from crystal behav-
ior. At densities low enough to observe plastic crystal behavior,
the OOP increases rapidly with density. After the change from
plastic crystal to crystal behavior, the slope decreases as the order
parameter tends towards 1.0, i.e., the perfectly ordered value.

The PMFT and orientation-orientation coupling also show char-
acteristics of plastic crystal behavior at intermediate densities.
When the system exhibits PC behavior, the PMFT is only weakly
anisotropic (see Figs. 4C & 5C). At the lowest densities, iso-
surfaces corresponding to DEFs of −1kBT are continuously con-
nected across all facets, indicating that particle alignments other
than facet-to-facet are not strongly penalized and changes in par-
ticle orientation are relatively easy. As the density increases, the
12 DEF sites congruent with FCC’s coordination environment be-
come increasingly stronger as compared to other arrangements.
When this disparity in DEF strength is large enough, PC behav-
ior ceases. The orientation-orientation coupling offers a clearer
guideline as to when strong orientational order develops. The
strongest feature of Figs. 4D and 5D is that it becomes increas-
ingly likely for particles to align in parallel as the density in-
creases. Connected with this development is the decreasing prob-
ability of non-aligning orientation pairs. To distinguish plastic
crystal behavior from crystal behavior in these systems, one can
use the density at which the probability of finding intermediate
misorientations between particles goes to zero.
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Fig. 5 Phase behavior of the rhombicuboctahedron (RC): gradual order development. (A) The equation of state lacks the signature of a first-order
transition, although it flattens considerably around a density of φ = 0.70. (B) The global orientational order parameter does not increase for densities
φ < 0.60, but then begins to display a steady rise. (C) The location of the strongest DEF sites remains the same across all densities, although the
spread of the −1.0kBT isosurface is drastically reduced at high densities. (D) With increasing density, neighboring particles become more likely to
adopt equivalent orientations (region with red diagonal hatch lines). For densities φ ≤ 0.70, large misalignments between neighboring particles (e.g.,
separation angles of ∼ 55°; marked with blue horizontal hatch lines) occur more frequently than in a random distribution of orientations. System sizes
N = 864 are used for primary plots in (A) & (B), and system sizes N = 2048 are used for (C) & (D) along with the inset in (A).

While there are similarities in the transition behavior for these
two shapes, the additional facets in RC lead to plastic crystal be-
havior occurring over a wider range of densities as compared to
RD. In the Supplementary Information, we show the probability
of particles adopting specific orientations as a function of density.
For both RD and RC, the probability of particles adopting particle
orientations corresponding to the oFCC structure monotonically
increases with density. However, with RC there are additional ori-
entations that particles adopt at intermediate densities between
the fluid and oFCC that occur more frequently than in a random
distribution. In contrast, no such trend exists with RD. In a sys-
tem of RC, the transition from plastic crystal to crystal behavior
occurs as the probability of finding these additional orientations
rapidly decreases.

Understanding the additional preferential orientations arising
when RC displays plastic crystal behavior explains some addi-
tional discrepancies between RD and RC in Figs. 4 and 5. The
RC equation of state shows a distinctive near-flattening between
the densities 0.675 < φ < 0.725 (i.e., the inset region of Fig. 5A).
In this density range, additional preferred orientations vanish
from the equilibrium system. In the OOP, the additional orien-
tations suppress the value of the calculated order parameter. In
Fig. 5B, the value of the OOP remains zero up to a density of
φ ∼ 0.60. The trend also affects the local environment in the
orientation-orientation coupling: when RC exhibits plastic crys-

tal behavior, the probability of finding high-angle misalignments
between neighbors is greater than that of a random distribution
of orientations (marked with blue horizontal hatch lines in Fig.
5D).

3.3 Orientational Glassy Behavior

Systems of pseudorhombicuboctahedra (PRC) form a pFCC crys-
tal that fails, upon further compression, to form a crystal.
Through high-pressure simulations with small numbers of par-
ticles to probe packing behavior, we found that PRC densely pack
in a BCT crystal where the two-particle unit cell contains particles
with two orientations. However, upon compression PRC do not
spontaneously undergo tetragonal symmetry breaking where two
orientations are preferred over all others. The equation of state
(shown in Fig. 6A) reflects this behavior and shows hysteresis for
densities φ > 0.72. When the system is expanded from an initially
dense packing, the BCT structure is stable at high densities and
begins to transition to FCC around a density φ ∼ 0.73. For systems
initialized in a pFCC crystal and compressed to higher densities,
no phase transition occurs and higher pressures are observed as
compared to the BCT-initialized systems. These systems of PRC
at high densities with FCC positional order show behavior in line
with the approach to an orientational glass8,10: particles adopt
one of a few distinct orientations and rotational dynamics slow
down.
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Fig. 6 Phase behavior of the pseudorhombicuboctahedron (PRC): orientationally glassy behavior. (A) PRC melt to a pFCC crystal when initialized in
the BCT structure and relaxed to lower densities. However, no phase transition occurs when PRC are initialized in a plastic crystal and compressed;
FCC translational order persists and particles adopt six orientations in a non-periodic manner. In the BCT structure, particles preferentially adopt two
orientations. (B) As the density of the plastic crystal increases, the global orientational order parameter goes below zero because particles increasingly
adopt one of six separate orientations. In the BCT crystal, the global order is near one because the particles predominantly have just one of two
orientations. (C) PMFT for pFCC at φ = 0.550 and φ = 0.675 and for BCT at φ = 0.725. At the lowest densities, the PMFT is highly isotropic. At a
density φ = 0.675, 24 distinct DEF sites develop, but the −1kBT isosurface is still relatively isotropic. For the BCT phase at φ = 0.725, the connectivity
of this −1kBT isosurface disappears. (D) Upon compression, three distinct peaks develop in the orientation-orientation coupling. The largest peak
corresponds to an ∼ 90° misalignment in these cases (marked with checkered yellow hatch lines). When the system is initialized in a BCT structure
with two types of orientations, the highest peaks correspond to aligning orientations (marked with red diagonal hatch lines) of ∼ 45° misalignments
(marked with blue horizontal hatch lines). System sizes N = 864 are used for primary plots in (A) & (B), and system sizes N = 2048 are used for (C) &
(D) along with the inset in (A).

The global orientational order of PRC shows a distinctive be-
havior that is dictated by the particle shape and the apparent
transition to an orientational glass. In Fig. 6B, the primary result
to note is that global order does not develop upon compression
of the system. Instead, the OOP becomes negative at densities
φ > 0.62. We rationalize this behavior by inspecting the orienta-
tions that appear in the BCT packing. The unit cell of the BCT
packing contains two particles in an alternating arrangement that
are separated by a 45° rotation. The BCT packing can break cubic
symmetry along three separate directions, resulting in six distinct
orientations. When compressing the system, particles will pref-
erentially adopt one of these six orientations (as can be seen in
Fig. 2F). Based on how the order parameter is defined in Eqn. 4,
the preference towards these six orientations away from a more
random distribution leads to a negative value.

Calculation of the misorientations between neighbors in Fig.
6D further clarifies the above description of the behavior of the six
orientations. In BCT packing, most neighboring particles have ori-
entations separated by less than 20° (i.e., approximately aligned
in parallel) or ∼ 45° (i.e., alternating orientations compatible with
the BCT structure). In the higher-density structures that retain

cubic translational symmetry, neighboring particles are approx-
imately four times more likely to be misaligned by ∼ 90° than
they are to align or adopt the alternating orientation.

The difference in behavior between PRC and RC is clearly il-
lustrated by the PMFTs in Fig. 6C. Both shapes have the same
numbers and types of facets; however, PRC has a lower point
symmetry. One can construct the location of the 24 DEF sites in
PRC by duplicating the PMFT of RC and applying a 45° rotation.
The PMFT helps us to understand the apparent approach toward
an orientational glass: the lower symmetry of PRC leads to many
distinct orientations that are comparable from a DEF perspective.
By having so many configurations with degenerate free energies,
the system is unable to undergo a long-range symmetry breaking
wherein particles preferentially adopt one of two orientations as
required to transition to a BCT crystal.

4 Discussion
Our analysis of plastic crystal behavior as exhibited by four dif-
ferent systems of hard polyhedra shows that while orientations
unsurprisingly become less random with increasing density in all
cases, the specifics of order development depend on shape. By
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comparing our results for the TC, RD and PRC to the behavior
shown by RC, we can connect how specific features of particle
shape affect phase behavior.

When measuring the global orientational order for systems
with arbitrary symmetry, a comparison against the orienta-
tion(s) that appear in the denser, orientationally ordered phase
is paramount. When a system gradually develops orientational
order, measures of global orientational order also increase grad-
ually as the particles progressively adopt the ordered orientation.
In these cases, the transition away from PC behavior can roughly
be defined by the flattening of the measure of global orientational
order with respect to density (see Figs. 4B & 5B) as it subsequently
approaches 1.0, i.e., the fully ordered state. When the plastic
crystal is a distinct thermodynamic phase, global measures of ori-
entational order will exhibit a jump at the transition as global
symmetry is broken.

Descriptors of the local environment appear to be effective at
distinguishing whether or not orientational order develops. We
characterized local environments via the PMFT and by comput-
ing orientation-orientation coupling between neighboring parti-
cles based on relative angles of separation. These two descrip-
tors capture information about orientational order development,
but express it in slightly different ways. In terms of the PMFT
(which expresses the effective free energy of different pair con-
figurations), the loss of plastic crystal behavior occurs when the
PMFT shows high free energies between the primary DEF sites.
The orientation-orientation coupling leads to a similar conclu-
sion: the loss of plastic crystal behavior and development of long-
range orientational order corresponds to densities where the mis-
orientation angle probability for intermediate configurations van-
ishes.

This work can be seen as an extension of previously identified
rules for the orientational order in two-dimensional systems of
hard polygons21. Polygons that possess the same symmetry as
the two-dimensional lattice into which they crystallize are found
not to display a distinct plastic crystal phase. On the other hand,
shapes that share a subset of symmetry elements with their lattice
will exhibit a plastic crystal with preferred polygon orientations.
These exact rules do not hold in three dimensions because parti-
cle symmetry does not dictate faceting – and thus DEFs – in the
same way (e.g., RC and TC have identical symmetry, but due to
different faceting, their PMFTs show 12 and 14 DEF sites, respec-
tively). Instead, one must compare the alignment of a shape’s
largest facets to its crystal environment to arrive at similar rules.

TC provides an example where the DEFs set by the facets do
not align with the coordination geometry set by the translational
order of the plastic crystal. When in the pFCC phase, shapes such
as TC must inherently have equivalent facets pointing in different
directions while maintaining the cubic symmetry. These systems
can show a few distinct, preferred orientations within the plas-
tic crystal; for TC there are three such orientations. As the den-
sity increases and systems are driven toward configurations that
pack more effectively, the TC particles break the cubic symmetry
and preferentially adopt two orientations associated with the BCT
crystal.

When DEFs do align with the crystal coordination, order devel-

ops gradually without a distinct phase transition. In these cases,
it is possible for each individual particle to adopt an orientation
wherein a facet is turned in the direction of each neighbor. For
the case of FCC crystal structures with a cuboctahedron-shaped
coordination polyhedron, the shape must have large facets char-
acteristic of the rhombic dodecahedron (the dual of the cubocta-
hedron). For lower-density crystals, it is unlikely for long-range
orientational order to exist because there are still many other ori-
entations that are accessible. As the density increases, more and
more particles adopt the orientation that maximizes alignment of
the largest facets on neighboring particles, and long-range order
develops as a result. Comparison of RD and RC shows that de-
creasing the relative size of the coordination-aligned facets will
delay the development of long-range orientational order.

The final case studied possesses a subtle tweak to the facet
symmetry because of the gyrated nature of the PRC. While the
RC contains a single, symmetrically distinct orientation that max-
imizes facet-to-facet alignment of neighbors in an FCC environ-
ment, systems of PRC become orientationally frustrated upon an
increase in density, and the resulting configuration contains six
orientations compared with the expected two in an ideal BCT
structure. Long-range order fails to develop because there are
too many distinct particle arrangements that are all entropically
very similar. Instead, entropy favors orientational degeneracy at
the lower densities, and once the density is high enough where
packing arguments would favor the orientationally ordered BCT
over a disordered FCC arrangement, rotational dynamics have
slowed down to where order cannot develop anymore. A simi-
lar argument has been made related to the Voronoi particle of the
lonsdaleite (hexagonal diamond) structure type38.

5 Conclusion
In this work, we investigated four systems of hard polyhedra
that exhibit the characteristic behavior of plastic crystals: trans-
lational order, but orientational disorder. The behavior in these
systems was studied through equations of state, global order mea-
sures, and local environment measures. We showed that orienta-
tional order can develop with increasing density in three ways.
A plastic crystal can undergo a first-order phase transition when
long-range orientational order develops along with a concomitant
change to the translational order. Plastic crystals can undergo
other transitions that are not distinct, thermodynamic transitions.
They can gradually develop long-range orientational order with-
out a change in translational order, or they can rotationally vitrify,
wherein translational order does not change and particles become
stuck in a few distinct but random orientations.

The behavior of these systems can most readily be understood
through the lens of the theory of directional entropic forces22–24.
When plastic behavior occurs in a system of hard particles, DEFs
will show some preferences, but the entropic forces are not too
strongly anisotropic. If DEFs align with a crystal’s coordination
geometry, order can be expected to gradually develop. If the DEFs
show there to be many equivalent arrangements, the system will
likely fail to develop long-range orientation order. Otherwise, the
misalignment between a particle’s DEFs and the crystal’s coor-
dination geometry will result in first-order transitions. Figure 7

8 | 1–10Journal Name, [year], [vol.],

Page 8 of 10Soft Matter



Fig. 7 Summary of the design rules established in this work. The alignment between the directional entropic forces (which are set by particle shape)
and the coordination geometry (which is set by the structure) dictates the freezing transition when a plastic crystal is compressed. First-order transitions,
gradual order development, and orientational glassy behavior are all possible with the compression of a plastic crystal.

summarizes the the different plastic crystal transitions that result
from the possible relationships between DEFs and coordination
geometry.

Our findings can be used toward more general design of plas-
tic crystal properties in anisotropic colloidal systems. If the facets
of a particle are not congruent with the local environment in a
plastic crystal, then a first-order transition (and the hysteretic be-
havior that comes with it) can be expected upon changing the
density (or pressure) of a system. If one desires to achieve a more
continuous control over the orientational order, then a building
block with facets that do align with a crystalline environment will
be necessary. The relative size of the coordination-aligned facets
presents a design knob with these cases of gradual order devel-
opment: plastic crystal behavior can be accentuated and allowed
to occur over a wider range of pressures or densities by using
smaller facets. Lastly, while small tweaks to particle shape can
change the lattice for a densest packing, an actual phase tran-
sition can be inaccessible because of degeneracy in the ensuing
DEFs of the lower-symmetry shape.

6 Acknowledgments
We thank E.S. Harper, C.X. Du, and R.K. Cersonsky for fruitful dis-
cussions. This material is based upon work supported in part by
the U.S. Army Research Office under Grant Award No. W911NF-
10-1-0518 and also by a Simons Investigator award from the Si-
mons Foundation to Sharon Glotzer. J.D. acknowledges support
through the Early Postdoc Mobility Fellowship from the Swiss Na-
tional Science Foundation, grant number P2EZP2_152128. This
research was supported in part through computational resources
and services supported by Advanced Research Computing at the
University of Michigan, Ann Arbor, and it used the Extreme Sci-
ence and Engineering Discovery Environment39 (XSEDE), which
is supported by National Science Foundation grant number ACI-
1053575; XSEDE award DMR 140129.

Notes and references
1 D. Frenkel, Computer Physics Communications, 1987, 44, 243–

253.
2 F. M. van der Kooij and H. N. W. Lekkerkerker, The Journal of

Physical Chemistry B, 1998, 102, 7829–7832.
3 H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang and T. Kajiyama,

Nature Materials, 2002, 1, 64–68.

4 L. Pauling, Physical Review, 1930, 36, 430.
5 J. Timmermans, J. Chim. Phys., 1938, 35, 331–344.
6 J. Timmermans, Journal of Physics and Chemistry of Solids,

1961, 18, 1–8.
7 The Plastically Crystalline State, ed. J. N. Sherwood, John Wi-

ley & Sons, Ltd., 1979.
8 H. Suga and S. Seki, Journal of Non-Crystalline Solids, 1974,

16, 171–194.
9 R. Brand, P. Lunkenheimer and A. Loidl, Journal of Chemical

Physics, 2002, 116, 10386–10401.
10 C. Talón, M. A. Ramos and S. Vieira, Physical Review B, 2002,

66, 1–4.
11 O. Yamamuro, H. Yamasaki, Y. Madokoro, I. Tsukushi and

T. Matsuo, Journal of Physics: Condensed Matter, 2003, 15,
5439–5450.

12 J.-M. Meijer, A. Pal, S. Ouhajji, H. N. W. Lekkerkerker, A. P.
Philipse and A. V. Petukhov, Nature Communications, 2017, 8,
14352.

13 H. R. Vutukuri, A. Imhof and A. Van Blaaderen, Angewandte
Chemie - International Edition, 2014, 53, 13830–13834.

14 U. Agarwal and F. A. Escobedo, Nature Materials, 2011, 10,
230–5.

15 P. F. Damasceno, M. Engel and S. C. Glotzer, Science (New
York, N.Y.), 2012, 337, 453–7.

16 R. Ni, A. P. Gantapara, J. de Graaf, R. van Roij and M. Dijkstra,
Soft Matter, 2012, 8, 8826.

17 A. P. Gantapara, J. de Graaf, R. van Roij and M. Dijkstra, Phys-
ical Review Letters, 2013, 111, 015501.

18 A. P. Gantapara, J. de Graaf, R. van Roij and M. Dijkstra, The
Journal of Chemical Physics, 2015, 142, 054904.

19 A. K. Sharma, V. Thapar and F. A. Escobedo, Soft Matter,
2018, 14, 1996–2005.

20 M. Burian, C. Karner, M. Yarema, W. Heiss, H. Amenitsch,
C. Dellago and R. T. Lechner, Advanced Materials, 2018,
1802078.

21 W. Shen, J. Antonaglia, J. A. Anderson, M. Engel, G. van An-
ders and S. C. Glotzer, Soft Matter, 2019, 15, 2571–2579..

22 P. F. Damasceno, M. Engel and S. C. Glotzer, ACS Nano, 2012,
6, 609–14.

23 G. van Anders, N. K. Ahmed, R. Smith, M. Engel and S. C.

Journal Name, [year], [vol.],1–10 | 9

Page 9 of 10 Soft Matter



Glotzer, ACS Nano, 2014, 8, 931–40.
24 G. van Anders, D. Klotsa, N. K. Ahmed, M. Engel and S. C.

Glotzer, Proceedings of the National Academy of Sciences, 2014,
111, E4812–E4821.

25 J. A. Anderson, C. D. Lorenz and A. Travesset, Journal of Com-
putational Physics, 2008, 227, 5342–5359.

26 J. Glaser, T. D. Nguyen, J. A. Anderson, P. Liu, F. Spiga, J. A.
Millan, D. C. Morse and S. C. Glotzer, Computer Physics Com-
munications, 2015, 192, 97–107.

27 J. A. Anderson, M. E. Irrgang and S. C. Glotzer, Computer
Physics Communications, 2016, 204, 21–30.

28 L. Filion, M. Marechal, B. van Oorschot, D. Pelt, F. Smallen-
burg and M. Dijkstra, Phys. Rev. Lett., 2009, 103, 188302.

29 J. A. C. Veerman and D. Frenkel, Phys. Rev. A, 1992, 45, 5632–
5648.

30 P. D. Duncan, M. Dennison, A. J. Masters and M. R. Wilson,
Phys. Rev. E, 2009, 79, 031702.

31 E. S. Harper, M. Spellings, J. Anderson and S. C. Glotzer, Zen-
odo. https://doi.org/10.5281/zenodo.166564, 2016.

32 E. R. Chen, D. Klotsa, M. Engel, P. F. Damasceno and S. C.
Glotzer, Phys. Rev. X, 2014, 4, 011024.

33 J. E. Mayer and W. W. Wood, The Journal of Chemical Physics,
1965, 42, 4268–4274.

34 J. A. Anderson, J. Antonaglia, J. A. Millan, M. Engel and S. C.
Glotzer, Phys. Rev. X, 2017, 7, 021001.

35 J. K. Mason and C. A. Schuh, Acta Materialia, 2009, 57, 4186–
4197.

36 N. Goldenfeld, Lectures On Phase Transitions And The Renor-
malization Group (Frontiers in Physics), Addison-Wesley, 1992.

37 R. K. Cersonsky, G. van Anders, P. M. Dodd and S. C. Glotzer,
Proceedings of the National Academy of Sciences, 2018, 115,
1439–1444.

38 B. A. Schultz, P. F. Damasceno, M. Engel and S. C. Glotzer,
ACS Nano, 2015, 9, 2336–2344.

39 J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither,
A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. Peter-
son, R. Roskies, J. Scott and N. Wilkins-Diehr, Computing in
Science Engineering, 2014, 16, 62–74.

10 | 1–10Journal Name, [year], [vol.],

Page 10 of 10Soft Matter


