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Abstract

We compare the free energies of adsorption (∆Aads) and the structural preferences of amino

acids on graphene obtained using the non-polarizable force fields — Amberff99SB-ILDN/TIP3P,

CHARMM36/modified-TIP3P, OPLS-AA/M/TIP3P, and Amber03w/TIP4P/2005. The amino

acid–graphene interactions are favorable irrespective of the force field. While the magnitudes of

∆Aads differ between the force fields, the relative free energy of adsorption across amino acids

is similar for the studied force fields. ∆Aads positively correlates with amino acid–graphene and

negatively correlates with graphene–water interaction energies. Using a combination of principal

component analysis and density-based clustering technique, we grouped the structures observed in

the graphene adsorbed state. The resulting population of clusters, and the conformation in each

cluster indicate that the structures of the amino acid in the graphene adsorbed state vary across

force fields. The differences in the conformations of amino acids are more severe in the graphene

adsorbed state compared to the bulk state for all the force fields. Our findings suggest that the

force fields studied will give qualitatively consistent relative strength of adsorption across proteins

but different structural preferences in the graphene adsorbed state.
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I Introduction

Graphene is an atom thick two-dimensional carbon nanomaterial with physical and chem-

ical properties suitable for a diverse set of applications, such as defense equipment, cosmetics,

textiles, drug delivery and energy storage.1–6 As the applications of graphene have grown, so

have the concerns regarding its biocompatibility.7–9 While unmodified graphene may be toxic,

graphene coated with proteins was found to be less harmful.10,11 Accordingly, understanding

the association of proteins and graphene is important. Detailed knowledge about the for-

mation of protein–graphene complexes can also advance bio-based applications of graphene,

such as in the development of effective biosensors, drug-delivery agents, and protein sepa-

ration processes.12–14 To enhance our ability to engineer such complexes, an understanding

and preferably an ability to predict a priori the strength of adsorption and structure of the

protein upon adsorption to graphene is essential. To this end, several studies have examined

the conformational changes of proteins adsorbed on graphene using a wide array of experi-

mental and computational techniques.15–20 The emerging picture from these studies is that

the adsorption behavior depends on the interplay of protein–water–graphene interactions.

This fine balance of interactions has made it challenging to predict the adsorbed state and

binding energy of a protein on graphene.

Developing quantitative structure-function relationships for protein–graphene interac-

tions requires extensive information on the structure and the activity of the proteins adsorbed

on graphene. While the ability of current wet-laboratory tools to provide high-resolution

structural information in interfacial regions is limited21, molecular simulations are well-suited

for such investigations22. The success of molecular simulations strongly depends on their

ability to describe the interaction details of the system appropriately. Ideally, quantum

mechanics (QM) would be the most accurate approach, however, such calculations are cur-

rently infeasible for systems with more than a few hundred atoms.23,24 Alternatively, atomic

simulations with accurate description of the potential energy of the system can capture the

protein–graphene interactions in aqueous media. A common choice for describing proteins in

protein–graphene systems is using the non-polarizable protein force fields, such as Amber25,

CHARMM26, OPLS27, and GROMOS28. Graphene is described by the Lennard-Jones (LJ)

parameters of the aromatic carbon atoms from the respective force fields.29–35 However, ma-

jority of these force fields have been developed using data sets focused on folded proteins
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in aqueous media. As a result, the reliability of these force fields to study the interfacial

behavior of proteins has been questioned.36–38 Some attempts to address this include mod-

ifying the graphene-water interactions. For example, Werder et al.,39 suggested modified

LJ parameters to reproduce water–graphene contact angle. Hughes et al., argued in favor

of incorporating the polarizability of graphite/graphene to correctly capture the interfacial

water density and orientations.37 However, there has been no study so far that has systemat-

ically investigated the differences in the protein–graphene behavior across the different force

fields. It is well-appreciated that the structural properties of proteins in bulk differ with

force fields.40–43 It is therefore possible that the thermodynamic and structural properties

of the protein–graphene interactions will differ with force fields, and the conclusions drawn

from simulations will be force field dependent. Thus, there is a pressing need to assess the

effects of force field choices on protein–graphene interactions in a systematic fashion.

In this manuscript, we study adsorption of all twenty natural amino acids on graphene

calculated with four force fields and their compatible water models. Our choice of amino

acid–graphene systems is motivated by two key reasons: (i) It is computationally feasible

to calculate precise free energies of adsorption of amino acid–graphene systems. (ii) Amino

acids are the primary building blocks of proteins, and therefore, a natural place to start. Fur-

thermore, information on amino acid–graphene systems will aid the development of coarse-

grained models for protein–graphene interactions using bottom-up approaches.19,44 Also,

amino acid–graphene interactions are themselves of interest for various applications.45,46 We

investigate the differences in the binding preferences of amino acids with the latest versions

of the commonly employed force fields, viz., Amber25,47, CHARMM26,48, and OPLS49,50 with

their compatible water models. We calculate the free energy of adsorption (∆Aads) using

extensive molecular dynamics (MD) and umbrella sampling simulations for the twenty nat-

ural amino acids. We analyze conformational preferences using dihedral distributions and

cluster analysis of the configurations of adsorbed amino acid. Our results indicate that

the relative binding strength of amino acids on graphene is qualitatively similar across the

different force fields. We find that the structures of amino acids in the graphene adsorbed

state have notable force field dependence.

II Methods

We investigate the effect of force field on adsorption behavior of amino acids on graphene

sheet. Four force fields with their compatible water models are evaluated — Amberff99SB-
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ILDN47 with TIP3P51, CHARMM3648 with modified-TIP3P (mTIP3P)52, OPLS-AA/M50

with TIP3P51, and Amber03w53 with TIP4P/200554. See SI for discussion on the differ-

ences in the force fields. We characterize the adsorption behavior using the potential of

mean force (PMF) between all twenty natural amino acids and graphene calculated using

MD simulations and umbrella sampling method. Umbrella sampling55 of the resulting 80

systems performed amount to an aggregate of 84 µs of simulation. We evaluate ∆Aads and

the enthalpic components contributing to the free energy. Detailed analysis of the back-

bone dihedral distributions and conformations sampled by the amino acids in the graphene

adsorbed state are performed and compared across force fields.

A. System setup and simulation details

Amino acids were capped by acetyl (ACE) and n-methyl amide (NMA) groups at the N-

and C- termini, respectively (Fig. 1). The starting structures of all the twenty natural amino

acids were constructed with LEaP tool of Amber14.56 Histidine was modeled in its neutral

form. Potential energy of each amino acid was minimized in vacuum by steepest-descent

algorithm until the maximum force on any atom in the system was less than 10 kJ/mol/nm

or the potential energy of the system converged.

A periodic graphene sheet with a surface area of 3.2×3.4 nm2 was created using an open

source Python script57 and x 2top tool of GROMACS-4.5.5. No bonded interactions within

the sheet were considered since the positions of all graphene atoms were fixed in our simu-

lations. This mimics a defect free graphene surface58 or a nanotube with a diameter much

greater than an extended conformation of an amino acid. LJ parameters of the aromatic car-

bon atom of the force field representing the amino acids were used to describe the graphene

carbon atoms. No partial charges were assigned to the graphene carbon atoms and the

intra-graphene LJ interactions were set to zero. Geometric means were used for cross-pair

LJ parameters with OPLS force field, and Lorentz-Berthelot combination rules were used

for Amber and CHARMM force fields.

The CHARMM36 force field parameters in GROMACS format were downloaded from

the MacKerell lab’s website.59 The OPLS-AA/M parameters in CHARMM format were

downloaded from the Jorgensen lab website.60 An in-house Perl script was used to convert

OPLS-AA/M force field parameters from CHARMM to GROMACS format. Amber03w

force field parameters in GROMACS format were provided by Dr. Jeetain Mittal.53

The minimized amino acid configuration and generated graphene sheet were combined
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FIG. 1. Illustration of the system set-up in umbrella sampling simulations. The amino acid with

the capping groups and the graphene sheet (gray) are represented by ball and stick model. Water

is shown in the background (blue).

with water molecules to give the simulation system shown in Fig. 1. The system comprised

of ∼1935 water molecules. A vapor region was incorporated in our simulation system to

avoid the use of barostat with fixed atoms (graphene) that can lead to artifacts in the

simulations.61 The vapor region enabled us to maintain constant pressure (0 atm) during the

simulations. Simulations were performed in the NVT ensemble. Systems with a net non-zero

charge were neutralized using sodium or chloride counterions. All systems were subjected

to energy minimization with steepest-descent algorithm. The bonds between hydrogen and

the heavy atoms were constrained using LINCS.62 The systems were equilibrated at 300

K for 1 ns. A time step of 2 fs was used for all MD simulations. During equilibration,

velocity-rescaling thermostat63 with separate coupling groups for the amino acid, solvent

and graphene sheet were used, with time constants of 3 ps, 1 ps and 1 ps, respectively.

Final production simulations were performed at 300 K for 10 ns. We employed Nosé-Hoover

thermostat64,65 during the production runs with the same temperature coupling groups as

for the equilibration simulations. For each system, the non-bonded cutoff distances used

during parameterization of the respective force field were employed – 1.0 nm in Amber99SB-

ILDN and Amber03w force fields, 1.2 nm with force switch scheme starting at 1.0 nm for
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CHARMM36 force field, and 1.1 nm with potential switch scheme starting at 0.9 nm for

OPLS/AA/M force field. The long range electrostatic interactions were calculated using

particle mesh Ewald technique.66 Neighbor lists were updated with the Verlet scheme.67

B. PMF and ∆Aads calculations

Umbrella sampling was used to determine the PMF between the amino acids and

graphene. PMF was calculated along the distance normal to the graphene surface and

the center of mass (COM) of the amino acids (ξ). We used a force constant (k) of 8000

kJ/mol/nm2 for 0.4 nm ≤ ξ ≤ 0.8 nm and k = 4000 kJ/mol/nm2 for 0.9 nm ≤ ξ ≤ 2.0 nm.

Spacing of 0.05 nm for 0.4 nm < ξ < 0.8 and 0.1 nm for 0.9 nm < ξ < 2.0 nm between

windows provided good overlap between the distribution of neighboring windows. Weighted

histogram analysis method was used for constructing the PMF from the distributions of ξ

in each window.68

For each window, amino acid was placed at the reference ξ value and simulations were

performed for 10 ns each. ξ values were saved every 1 ps generating 10000 data points for

analysis in each umbrella sampling window. Simulations of every system were performed five

times with different starting velocities to estimate the error bars. The reported averages and

error bars were obtained by Bayesian bootstrapping method discussed in Hub et al.69 In total,

we generated 100 bootstrapped histograms to construct 100 PMFs using the five independent

runs as sample data. To check for system size effects, we performed umbrella sampling

simulations of Gly with Amber99SB-ILDN/TIP3P in a box of volume 4.26×4.18×12 nm3

with 4462 water molecules. No system size effects were observed (SI Fig. S1).

∆Aads was calculated by integrating the PMFs obtained from umbrella sampling. We

defined the adsorbed state using the cumulative distribution function (CDF) of ξ obtained

in the unbiased simulations. Specifically, the adsorbed state contains all the configurations

with ξ up to CDF of <= 0.95. Other definitions depending on the mean force and a hard

cutoff of ξ = 0.5 nm were also tested. We found that the estimated ∆Aads to be statisti-

cally similar in all the definitions. The simulation set up and parameters in the unbiased

simulations are the same as those described in the previous section. Further details of the

∆Aads calculations and unbiased simulations are provided in the SI. Enthalpic contributions

to ∆Aads were calculated using unbiased simulations of amino acid–graphene–water systems.

The configurations obtained from the unbiased simulations were used to calculate the dihe-

dral distributions and for the cluster analysis of the configurations sampled by the amino
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acids in the graphene adsorbed state. Additionally, simulations of amino acids in bulk water

(i.e., with no graphene sheet present) were performed to compare bulk and adsorbed states.

III Results and Discussion

A. PMF profiles of twenty amino acids with four force fields

Fig. 2 shows PMF (W(ξ)) profiles obtained with the tested force fields for all twenty

amino acids. The amino acid–graphene interactions are favorable irrespective of amino acid

and force field. The qualitative nature of PMFs is similar for all amino acids across the force

fields studied here, and are consistent with previous studies.18,70–75 To compare differences

in the PMFs, we categorize local features of the PMF profile into i) the largest value of ξ at

which amino acid–graphene interactions are favorable (ξ∗), ii) gradient of PMF with respect

to ξ (∇W(ξ)), and iii) magnitude and curvature of PMF near the local and global minima.

These characteristics are highlighted in Fig. 2(c) for Val.

The three local features of the PMF profiles vary with both amino acids and force fields.

A barrier is observed between ∼0.8 nm< ξ <1.0 nm for several amino acids in case of

Amber03w/TIP4P/2005. This contrasts with the other force fields that do not show such a

feature. To probe the origins of this barrier we calculated the PMF of Val and Phe by replac-

ing the water model with TIP3P. We used both Amber03w/TIP3P and Amber03*/TIP3P

since the latter are a compatible pair (Fig. S2). Interestingly, we found that the barrier-like

feature disappeared when the water model was replaced to TIP3P.

The differences in ξ∗ are negligible between the force fields for all amino acids. Interest-

ingly, there are noteworthy differences in ξ∗ values across amino acids for any given force

field. For example, the smallest amino acid Gly has a higher ξ∗ value than some of the

non-polar amino acids with larger side chains. With Gly, the higher ξ∗ is possible only if

it maintains an extended conformation. The ξ∗ value is highest for Trp, Phe, Tyr, and

Arg, suggesting peptides containing these amino acids can have favorable interactions with

graphene at larger distances than other amino acids, if we ignore peptide sequence and

structural effects.

For 0.6 nm< ξ <0.8 nm region, the PMFs for all force fields are similar except that

OPLS-AA/M/TIP3P gives slightly lower values of the PMF. Differences in ∇W(ξ) in the

0.6 nm< ξ <0.8 nm region across amino acids exist for all force fields. In case of some

amino acids such as Val, Ile, Pro, Gln Arg, and Lys, ∇W(ξ) is positive indicating that these

amino acids are strongly attracted to graphene. In other cases, ∇W(ξ) is zero or moderately
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(e) Ile (f) Met (g) Trp (h) Phe
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FIG. 2. PMF (W(ξ)) between amino acid and graphene at 300 K. Color code: Blue:

Amberff99SB-ILDN/TIP3P, Green: CHARMM36/mTIP3P, Red: OPLS-AA/M/TIP3P, Black:

Amber03w/TIP4P/2005. ξ is the normal distance between center of mass of the amino acid and

graphene surface. Bootstrapped average profiles are shown. The error bars indicate standard er-

rors on the average of the bootstrapped PMFs. Inset of each panel shows the chemical structure

of the amino acid. The terminal capping groups are not shown for clarity. Density of the water

oxygen (ρ) along ξ normalized by the average bulk (ρbulk) density of the respective water model

is shown in Panel (d). The arrows in Panel (c) represent the three features described in the main

text. All PMFs are shifted to be equal to zero at ξ = 1.8 nm. Marvin sketch76 was used to draw

the chemical structures.
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negative with respect to ξ until ξ ∼0.6 nm. The 0.6 nm distance coincides with the location

of the second peak of the water density (second water layer) along ξ (Fig. 2d). Penna et al.77

suggested that the favorable interactions between the second layer of water and amino acids

led to longer residence time of the amino acids at distances between 0.45-0.75 nm in studying

graphite binding peptide adsorption on graphite. It is possible that a similar phenomenon

results in the zero or moderately negative slopes in ∇W(ξ) around 0.6 nm observed here.

In most cases, the PMFs obtained with OPLS-AA/M/TIP3P and the two Amber force

fields in the ξ <0.6 nm region are statistically similar. The net amino acid–graphene interac-

tions are comparatively less favorable with CHARMM36/mTIP3P. Despite the same bonded

(excluding torsional) and LJ parameters of amino acid and graphene in Amberff99SB-

ILDN/TIP3P and Amber03w/TIP4P/2005, the PMF for ξ <0.6 nm is lower in magnitude

with the latter for Val, Leu, Ile, Met, Trp, Phe, Asn, Lys, and His. Similarly, graphene

in OPLS-AA/M/TIP3P and CHARMM36/mTIP3P has the same LJ parameters. Yet, the

PMF obtained with CHARMM36/mTIP3P for ξ <0.6 nm is lower in magnitude than OPLS-

AA/M/TIP3P. Another difference observed in the PMFs relate to observation of double

wells in certain cases. In general, Amber03w/TIP4P/2005 has higher tendency of resulting

in double wells. As expected, for any given force field, PMFs across the various amino acids

show differences.

B. Free energy of adsorption of amino acids

PMF was integrated to calculate the free energy of adsorption, ∆Aads (Fig. 3). The

adsorbed state was defined using the CDF of ξ obtained in the unbiased simulations. All

the configurations with ξ up to a CDF of <= 0.95 are considered to be in adsorbed state.

Details of ∆Aads calculations, and the values and standard errors of ∆Aads are provided

in the SI. Consistent with the PMF results, ∆Aads is similar between the two Amber force

fields and OPLS-AA/M/TIP3P. CHARMM36/mTIP3P results in relatively higher ∆Aads

values for all the amino acids. We also compare the ∆Aads values calculated here with those

reported by Hughes and Walsh70. They used CHARMM22*78 for amino acid, polarizable

force field, GRAPPA for graphene37,79 and mTIP3P for water. The resulting ∆Aads values

suggest less favorable amino acid–graphene interactions compared to CHARMM36/mTIP3P.

Poblete et al.,72,75 recently compared the performance of CHARMM36/TIP3P (not mTIP3P)

and GRAPPA in predicting equilibrium binding constants of small molecules with diverse

functional groups. They found that the agreement between simulation and experimental
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data was stronger for CHARMM36/TIP3P compared to GRAPPA. This indicates that more

rigorous parameterization is required for incorporating polarization effects in graphene.
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FIG. 3. (a) ∆Aads of amino acids obtained with Amberff99SB-ILDN/TIP3P (blue), OPLS-

AA/M/TIP3P (red), CHARMM36/mTIP3P (green), and Amber03w/TIP4P/2005 (black) is

shown. In each case, the averages and standard errors on the average obtained using the boot-

strapped PMFs are shown. ∆Aads of each amino acid on graphene reported by Hughes and Walsh70

using GRAPPA and CHARMM22*/mTIP3P is shown.78 (b) ∆Aads of amino acids relative to that

of glycine. The amino acids on the x-axis are arranged according to their side chain chemistry:

non-polar (Gly, Ala, Val, Leu, Ile, Met), aromatic (Trp, Phe, Tyr), polar (Pro, Ser, Thr, Cys, Asn,

Gln), and charged (Asp, Glu, Arg, Lys, His).

The force fields show quantitative differences in the estimates of ∆Aads. The relative

strength of binding between different amino acids is similar for the two Amber force fields

and OPLS-AA/M/TIP3P. This becomes evident when we compare ∆Aads across different

amino acids relative to Gly (Fig. 3b). Such similarity in the trends indicates an inherent

convergence of the force fields in describing the interactions of each amino acid with its

surrounding environment. Nevertheless, the possibility of propagation of the minor variances

in ∆Aads between force fields into major differences in describing the interactions of proteins

with graphene cannot be disregarded. This is true especially because ∆Aads of larger proteins

is generally not the simple sum of the ∆Aads of individual amino acids.70,80

The free energies of adsorption of amino acids on graphene are not reported by wet-

laboratory experiments to date for validating any of the studied force fields. Indirect vali-

dations can be performed by comparing the binding preferences of amino acids on graphene

with the corresponding observations from ab initio, simulations, and wet-laboratory studies.45,71,81–85
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The binding preferences of the amino acids on graphene estimated in our study and that

reported in the literature are summarized in Fig. 4.
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FIG. 4. Interaction energy (∆Eads)/enthalpy (∆Hads)/free energy of adsorption (∆Aads) reported

in the literature and obtained in our study. In panel (a) ∆Aads calculated with Amberff99SB-

ILDN is used for sorting the amino acids on the x-axis. In panel (b), the amino acids are arranged

according to KD hydrophobic scale values86. Color code of ∆Aads is same as in Fig. 3. ∆Eads or

∆Hads calculated using unbiased MD simulations with various force fields reported in Camden et

al.,81 (298 K) (gray, square points), Welch et al.,71 (298 K) (gray, circle points), Dragneva et al.,87

(310 K) (orange), and Pandey et al.,44 (300 K) (cyan) are shown. Standard errors on ∆Eads are

not reported in Dragneva et al.87 and Pandey et al.44. In Camden et al.81, the amino acids are

capped with glycine.

Trp, Arg, Tyr, and Phe are among the most favorable amino acids that interact with

graphene according to all the non-polarizable force fields. These amino acids were identified

as the strongest binders by Pandey et al.44 using Amber99SB/TIP3P and Dragneva et al.87

(except Phe) using Amber03/TIP3P. Both studies used ∆Eads to assess amino acid–graphene

interaction strength. This agreement between the trend of ∆Eads with amino acid reported

by Pandey et al.,44 and our ∆Aads results point to the role of direct interactions between

amino acids and graphene in adsorption and is discussed in Section III C.

Berry and coworkers71,81 reported the ∆Hads and ∆Gads (Gibbs free energy of adsorption)

for all twenty amino acids adsorbing on trilayer graphite surface. The amino acids were

capped with Gly residues on both N- and C- termini (zwitterionic form), compared to the

ACE and NMA groups used in our study. Non-polarizable force field (TEAM) based on

automated assignment of force field parameters from fragments of molecules was used. The
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partial charges of water reported by the authors are similar to that of SPC/E88. Despite this

different approach, the ∆Hads
81 indicates Arg and Trp to be among the strongest binders.

The other strong binders include Asn, Lys, Gln, and Gly. The ∆Gads values reported by

Welch et al.,71 and ∆Aads obtained in our study are statistically similar.

∆Aads obtained with GRAPPA indicate Gly, Trp, Gln and Arg as most favorable graphene

binders. This contrasts the results from non-polarizable force fields where Gly and Gln

are not strong binders. In addition, according to GRAPPA the interaction between Phe–

graphene is less favorable than Gly–graphene unlike non-polarizable force fields. Ile, Pro,

and Lys are found to form weak amino acid–graphene complexes with GRAPPA consistent

with our results. While there is no direct experimental data, the relative affinity of different

aromatic amino acids was reported in Mallineni et al.84. In their cyclic voltammetry and

photoluminescence experiments, all the aromatic amino acids were found to strongly interact

with graphene. Similarly, several density functional theory based studies found that aromatic

amino acids and Arg strongly bind with graphene compared to Gly, Val, and Asp.82,83,85

These reported trends in relative binding strength of amino acids are consistent with those

observed using the non-polarizable force fields.

Does size and/or chemistry of the amino acid dictate the trends observed in ∆Aads? To

analyze this, we compared the variation of ∆Aads/∆Eads/∆Hads with different hydrophobic

scales, and molecular weights of the amino acids. Fig. 4b shows the resulting changes in

∆Aads/∆Hads with the widely used Kyte-Doolittle (KD) hydrophobic scale.86 KD scale is

based on the free energy of transfer of the amino acid between liquid–water and water–vapor

phase, and surface exposure of residues in crystal structures.86 The hydrophobic nature of

the amino acids decreases from Ile to Arg in the plot. Except for the ∆Hads calculated with

TEAM force field, the correlations between ∆Aads/∆Eads with other force fields and KD scale

are negligible. Similarly, no correlations are observed with the atomic hydrophobic scale89

(see Fig. S4). ∆Aads calculated in this study moderately correlates with the molecular

weight of the amino acids. At first glance, these observations indicate that the size of amino

acids has more impact on the formation of amino acid–graphene complex than the amino

acid chemistry. To further elucidate the origins in the differences in ∆Aads, we probe the

enthalpic contributions to ∆Aads.
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C. Correlations between ∆Aads and components of potential energy

We breakdown the enthalpic contributions to ∆Aads in terms of the interaction energy

between amino acid, graphene and water. Specifically, we calculate interaction energy (E)

as the sum of LJ and electrostatic interactions between amino acid and graphene, graphene

and water, water and water, amino acid and water, and intramolecular interaction energy

of the amino acid. For the remainder of the discussion we focus primarily on amino acid–

graphene (∆Eads,AG) and graphene–water interaction energy (∆Eads,GW ). The ∆ refers to

the difference in the adsorbed and bulk states and is computed as the difference in E be-

tween the systems with amino acid adsorbed on graphene and amino acid in bulk (i.e.

∆E = Eads − Ebulk). We used unbiased simulations and the window with ξ = 2.0 nm of

the umbrella sampling simulations to calculate Eads and Ebulk, respectively. The reported

averages and error bars are the means and the standard errors obtained by using Bayesian

bootstrapping90,91 technique on the ∆E obtained from five independent runs.
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FIG. 5. Correlations between free energy of adsorption and (a) change in amino acid–graphene

interaction energies, ∆Eads,AG, and (b) change in graphene–water interaction energies, ∆Eads,GW .

Fig. 5 shows the change in ∆Aads with ∆Eads,AG and ∆Eads,GW calculated with the

four force fields. ∆Aads has a strong positive correlation with ∆Eads,AG and a moderate

negative correlation with ∆Eads,GW . None of the other potential energy components display

a correlation with ∆Aads (SI Fig. S5). The strong correlation between ∆Aads and ∆Eads,AG

observed here is also consistent with the observations of Zerze et al.92. They found that the

protein–surface interactions predominantly dictate the behavior of the protein (Trp-Cage

and GB1 hairpin) on the surface compared to the hydrophobicity of the surface93. This

correlation between ∆Eads,AG and ∆Aads explains the correlation observed between ∆Aads
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and molecular weight of the amino acid. These observations suggest that the intermolecular

interactions of the exposed residues to graphene can be used as a zeroth-order approximation

to predict the binding affinities of proteins to graphene.

D. Differences in conformations of amino acids with force fields

It is well known that the conformational preferences of proteins in bulk are different

among the widely employed force fields.40–43,94,95 A well-appreciated problem with the ear-

lier versions of Amber, CHARMM, and OPLS is a bias in the structure towards either α-helix

or β-sheets.95–98 Therefore, these force fields have been revised with updated torsional pa-

rameters based on quantum simulations and experimental data (details are provided in SI

Section 2). The revision protocols primarily differ in the reference backbone space used for

scanning the side chain dihedral space, and the weight factors used to minimize the potential

energies determined by molecular and quantum mechanics simulations.47,50,99 The backbone

dihedral angle parameters (Fourier coefficients and angles) of all amino acids other than

Gly and Pro are generally determined by using the φ-ψ space of alanine dipeptide. For

this reason, the φ-ψ distributions of all amino acids except Gly and Pro resemble Ala φ-ψ

distributions, and are referred to as Ala-like amino acids. The Gly and Pro parameters are

optimized separately because of their unique side chains – Gly has no Cβ and Pro side chain

is bonded to the backbone. It is therefore, pertinent to investigate the differences in confor-

mations of adsorbed amino acids and to enquire whether they are simply a manifestation

of the differences in bulk water. To this end, we calculated the backbone dihedral angle

distributions of each amino acid sampled with different force fields in bulk water and in the

graphene adsorbed state.

1. Conformations of amino acids in bulk

Fig. 6a shows the sampled φ-ψ space for Val, Thr, Gln, Phe, and Lys in bulk water with

the four force fields. We focus on these five amino acids to facilitate the discussion. The

sampled φ-ψ space for all the amino acids in bulk water with the four force fields are given

in SI Fig. S6. For the purpose of the discussion, we follow the nomenclature of φ-ψ space

proposed by Hollingsworth and Karplus.100 The distributions can be compared across the

amino acids and across the different force fields using two features – (i) the regions of the

φ-ψ space sampled, and (ii) the population of the conformations in these regions. When

comparing across amino acids, the φ-ψ space sampled is similar for all Ala-like amino acids

however, the population of the conformations sampled in these regions differ with amino
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acid since it depends on the side chain (each column in Figs. 6a and S6).
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FIG. 6. The distribution of the backbone torsional parameters (φ-ψ) obtained for Val, Thr, Gln,

Phe, and Lys in (a) bulk water and (b) graphene adsorbed state with different force fields. The

background contours (shown in gray) represent the sterically allowed Ramachandran angles.101

The classification of the φ-ψ space proposed by Hollingsworth and Karplus100 is shown for Val in

Amberff99SB-ILDN/TIP3P. Cool to warm colors in the heat map indicate high to low probabilities.

We used Poblete et al.,75 nomenclature for referring to the new regions explored in the graphene

adsorbed state by amino acids (Val with Amber03w/TIP4P/2005 in (b)).

The conformations of each amino acid including Gly and Pro varies with force fields (each

row in Figs. 6 and S6). The regions of φ-ψ space sampled with Amberff99SB-ILDN/TIP3P

and Amber03w/TIP4P/2005 are similar for each amino acid. However, differences in the

probabilities of the conformations can be observed — while the former does not show a

preference for any particular region, the latter shows enhanced probability in either α-helical

or β-sheet region in case of most amino acids. A major deviation in the regions of φ-ψ

space sampled is observed for Val, where Amber03w/TIP4P/2005 has much lower sampling

near the α-helix and δ-region compared to the other amino acids. This is consistent with
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previous observations98. Such a contrast between Val and other amino acids is not observed

for the other force fields. The differences in the φ-ψ distributions are higher between the

Amber-based force fields and the other two force fields. The sampling near α-helical region

with CHARMM36/mTIP3P is narrower compared to other three force fields. This narrower

distribution agrees well with the φ-ψ distributions of residues in protein crystal structures100.

In addition, CHARMM36/mTIP3P shows sampling in α
′

and δ
′

regions which are sparsely,

if at all, sampled in other force fields for most amino acids. The OPLS-AA/M/TIP3P shares

several similarities in its φ-ψ distributions with Amber-based and CHARMM36/mTIP3P

force fields. A notable difference is that the bridge regions (ζ, γ) between the α-helical

and β-sheets are sampled more in OPLS-AA/M/TIP3P compared to the other force fields.

The overall differences across force fields are qualitatively consistent with those reported

by Vitalini et al.98 using µs long simulations. This suggests that our simulations have

successfully sampled the key conformational features.

2. Conformations of amino acids in graphene adsorbed state

How do the differences in the dihedral distributions across the force fields observed in bulk

water manifest in the distribution of amino acid conformations in the graphene adsorbed

state? The φ-ψ distributions of the Ala-like amino acids in graphene adsorbed state are

shown in Fig. 6b for selected amino acids and Fig. S7 for all amino acids. The φ-ψ

distributions of all amino acids in graphene adsorbed state differ from their distributions in

bulk water.

In each scenario, the graphene sheet altered φ-ψ distributions by affecting the ratio of the

low to high energy conformations observed in bulk water. Broadly one could classify two

types of changes: (i) change in the populations of already favored (sampled) conformations

(ii) sampling of new regions that were not sampled in bulk water. Across all force fields for

most amino acids, there is a decrease in β-sheet, regions vicinal to α-helix (i.e., δ-region),

and the PII region. Consistent increase in the sampling of β-planar, and α-planar regions

is observed, which are regions not sampled in bulk water. However, there are differences

across amino acids for a given force field. That is, the specific regions with increased or

decreased sampling are dependent on the nature of the amino acid. For example, while the

α-planar region is sampled more for Thr when adsorbed to graphene, the bridge regions

show increased sampling in case of Gln for Amberff99SB-ILDN/TIP3P.

Consistent with previous studies37,75, we observe conformational preference towards α-
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planar and β-planar structure upon adsorption to graphene. Ala samples α-planar configu-

rations in both Amber-based force fields and CHARMM36/mTIP3P. This region is relatively

less sampled in case of OPLS-AA/M/TIP3P. Poblete et al.75 attributed these configurations

to the stabilization of graphene–amino acid interactions through amide-π bonds. Poblete

et al.75 and our results indicate that the non-polarizable description of graphene in Amber-

based and CHARMM36/mTIP3P force fields appear to capture the amide-π bond features.
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FIG. 7. Variation of the JS distance between the backbone dihedral angles estimated with different

pairs of force fields. (a) Amberff99SB-ILDN/TIP3P & CHARMM36/mTIP3P, (b) Amberff99SB-

ILDN/TIP3P & OPLS-AA/M, (c) Amberff99SB-ILDN/TIP3P & Amber03w/TIP4P/2005, (d)

CHARMM36/mTIP3P & OPLS-AA/M, (e) CHARMM36/mTIP3P & Amber03w/TIP4P/2005,

and (f) OPLS-AA/M/TIP3P & Amber03w/TIP4P/2005. The x- and y-axis refer to the JS distance

between the φ-ψ distributions of the indicated force fields in bulk and adsorbed states, respectively.

If JS distance is 0, the φ-ψ distributions obtained with the indicated force fields are identical. The

solid line in each plot is the y=x line.

Another noteworthy observation is that in several cases the changes in the φ-ψ distribution

upon adsorption to graphene appear to be subtly influenced by the distributions in bulk

state. For instance, consider the φ-ψ distributions of Gln. In case of CHARMM36/mTIP3P,

Gln samples a narrow region (diagonal) in α-helix and surrounding regions. In the graphene

adsorbed state, Gln maintains this narrow diagonal feature in this region while sampling
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more towards the bridge region. Similarly, with Amber03w/TIP4P/2005, Gln samples α-

helix and δ-region in bulk state. In the adsorbed state Gln continues to sample these

regions while also sampling the bridge regions. This suggests that the bulk behavior has

some influence on the φ-ψ distributions of the adsorbed state. We hypothesize that the

force fields have different barriers (free energy landscapes) in the φ-ψ space in bulk state,

and when adsorbed to graphene some of these barriers are overcome in case of few amino

acids in different force fields. Again considering the example of Gln, this would indicate

that Gln is unable to overcome the barriers for Gln to escape the α-surrounding region in

CHARMM36/mTIP3P in the adsorbed state, while barriers within the α-surrounding region

are low for Amber03w/TIP4P/2005, thus enabling Gln to sample those configurations in the

adsorbed state. We further quantify the differences in bulk and adsorbed states using Jensen-

Shannon (JS) distance between the φ-ψ distributions (see Fig. S8)102–105. JS distance is an

information theory based metric that is used to measure the distance between distributions

of a random variable. Its value is bounded between 0 and 1, where 0 implies that the

two distributions are identical. The values for most amino acids lie between 0.3 and 0.8

indicating that the distributions in the adsorbed state are different from those in bulk for

all force fields.

Are the differences observed across various force fields in the graphene adsorbed state

primarily an effect of the differences in bulk state? To answer this, we calculated the JS

distance between the φ-ψ distributions between force fields in bulk water and graphene

adsorbed state. In Fig. 7 (also see SI Fig. S9) we plot the correlations between these for

various pairs of force fields. There is moderate linear trend in the JS distance observed

in bulk and adsorbed state between few force field pairs. This suggests that the observed

conformational differences in graphene adsorbed state are partly a result of the differences

in the bulk state. Amino acids deviating from y=x line in Fig. 7 indicate the degree

of differences in the φ-ψ distributions across the indicated force fields between the bulk

and adsorbed states. The points above the y=x line indicate that the differences in φ-ψ

distributions between the two force fields for the adsorbed state are larger than those in

bulk state for those amino acids. In most cases, majority of the amino acids are above

the y=x line implying that we might observe greater force field dependence when studying

protein behavior on graphene surfaces than in bulk.
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3. Orientational preferences of graphene adsorbed amino acids

To elaborate further on the conformations of amino acids when adsorbed to graphene

beyond φ-ψ distributions, we use cluster analysis106–108 that is typically used in unsupervised

machine learning. We use the heavy atom of amino acid–graphene distances, backbone

dihedral angles, and intramolecular interaction energy of amino acid as the raw data to

perform cluster analysis. We eliminate linear correlations in the data by projecting the data

along the top principal component vectors, which are identified using principal component

analysis. For identifying clusters in the projected data, we employ accelerated hierarchical

density-based spatial clustering of applications with noise (HDBSCAN*) algorithm106,107.

We preserve the relative orientation of the atoms within the amino acid with respect to

graphene by maintaining the net rotational and translational variance around the vector

normal to graphene. This approach enables us to identify the most prominent conformations

sampled in the simulations. Further methodological details are provided in SI. The clusters

identified are projected onto φ-ψ-d subspace, where d is the distance between center of mass

of side chain and graphene. We do so to facilitate the comparison of conformations sampled

across different force fields. However, we caution the readers that clusters identified as

similar in this subspace could have differences in other dimensions.

Results from cluster analysis are shown in Fig. 8 and 9 for Val and Trp, respectively.

Results for the remaining amino acids are shown in SI. In the case of Val, the distance

between the side chain center of mass and graphene (d) sampled in the prominent clusters is

similar for the two Amber-based force fields and OPLS-AA/M/TIP3P. Few conformations

that contribute to ∼2% (cluster 7 and 9) of the total structures that have the side chain

at d > ∼0.7-0.8 nm are observed in CHARMM36/mTIP3P. Such structures are not found

with other force fields.

In the largest cluster (cluster 0) of adsorbed Val for Amber03w/TIP4P/2005 (Fig. 8), the

backbone is parallel to the graphene surface and the side chain is oriented towards water.

This conformation displays β-planar nature. In the next largest cluster (cluster 1), φ-ψ

angles are close to the PII region and the sidechain is oriented parallel to the surface. In

cluster 1, the C-terminus fluctuates to and fro from the surface. Cluster 2 shares the φ-ψ

space with cluster 0 and 1, and has more variance in its conformation relative to graphene

surface. In contrast to cluster 1, the N-terminus position fluctuates from the surface in
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FIG. 8. The clusters of Val in the φ-ψ-d subspace obtained with the four force fields. d is the

z-distance between the center of mass of side chain and the graphene surface. Each color in each

plot represents a different cluster. The cluster labels are shown in the legend below each plot.

The numbers next to each color in the legend indicate the fraction of total structures in that

cluster. Note that the sum of the fractions is not one because the points identified as noise are not

shown. The superimposed structures (every 10 frames) obtained by performing a 2D rotational

and translational fit along the plane of the graphene surface (represented by lines) from the top

four clusters are shown for each force field. A 3D fit would make the structures look more similar

but we would loose information on the orientation of the amino acid with respect to graphene (Fig.

S10). Cluster numbers are included alongside each snapshot. Carbon, nitrogen, oxygen are colored

as brown, blue, and red, respectively in the structures. Hydrogen atoms and water are not shown

for visual clarity. The PMF profiles of Val for ξ <0.65 obtained with the four force fields is also

shown.

cluster 2. Clusters 0, 1 and 2 contain ∼88% of the total structures and collectively indicate

that Val is stabilized on graphene by having at least one amide bond parallel to the graphene

surface in Amber03w/TIP4P/2005.

In the largest cluster (cluster 0) in Amberff99SB-ILDN/TIP3P which comprises ∼31%

of the total structures, the sidechain of Val orients towards water and the backbone aligns

with the surface, similar to that in case of cluster 0 of Amber03w/TIP4P/2005. How-
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ever, the difference in clusters 0 of the two force fields lies in the φ-ψ region sampled.

In Amber03w/TIP4P/2005, the region corresponds to β-planar while in Amberff99SB-

ILDN/TIP3P the region sampled is PII . Clusters 1 and 2 which have ∼30% of the structures

correspond to clusters 2 and 1 (respectively) in Amber03w/TIP4P/2005 which comprise

∼47% of the structures. Cluster 3 of Amberff99SB-ILDN/TIP3P has ∼11% contribution

and belongs to the bridge region in the φ-ψ space. This configuration is rarely observed in

Amber03w/TIP4P/2005.

The most populated clusters (0, 1, and 2) in CHARMM36/mTIP3P are located within

β-region in the φ-ψ space. Cluster 0 in CHARMM36/mTIP3P resembles cluster 2 of Am-

ber03w/TIP4P/2005 and cluster 1 of Amberff99SB-ILDN/TIP3P. Cluster 1 of CHARMM36/mTIP3P

and cluster 1 of Amber03w/TIP4P/2005 are similar. Cluster 2 of CHARMM36/mTIP3P,

∼16% of the structures, comprises of extended conformations. These are rarely observed

in other force fields. Cluster 0 of OPLS-AA/M/TIP3P is similar to cluster 1 of Am-

ber03w/TIP4P/2005. The other top clusters (cluster 1 and 2) of OPLS-AA/M/TIP3P are

around the β-region, and the sidechain aligns with the surface in these clusters.

The collective differences indicate that Amber03w/TIP4P/2005 restricts the conforma-

tions of Val to few structures, and its dominant cluster 0 (∼41%) is rarely observed with other

force fields. This coincides with one of the dominant well in the PMF of Val obtained with

Amber03w/TIP4P/2005. Though OPLS-AA/M/TIP3P and Amberff99SB-ILDN/TIP3P

have similar PMF profiles, the distribution of structures within the clusters are different.

CHARMM36/mTIP3P shares some of the clusters with Amberff99SB-ILDN/TIP3P and

Amber03w/TIP4P/2005 but has a lower value of PMF for ξ <0.6 nm. Thus, for similar

(different) PMFs we observe a diversity (similarity) of structures across different force fields.

In contrast to Val, Trp shows lesser differences across the different force fields. In the

top four clusters that contribute to >80% of the total structures sampled, all the force fields

indicate stacking between the aromatic group of Trp and graphene. The dominant cluster

(cluster 0) in all force fields is similar. This cluster is relatively less sampled (∼35%) with

Amber03w/TIP4P/2005 compared to other force fields (>40%). The backbone configuration

of cluster 0 is around β-region with C-terminus closer to the surface than the N-terminus.

Other clusters vary in the relative position of C- and N- terminus with respect to graphene

and sampling in the φ-ψ space. However, they share the feature of Trp sidechain and

graphene aromatic groups stacking. The configuration of cluster 1 in CHARMM36/mTIP3P
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FIG. 9. The clusters of Trp in the φ-ψ-d subspace obtained with the four force fields. Color code

is same as that in Figure 8.

is around the left-handed α-helix region (α
′
and δ

′
) and is rarely sampled in other force fields.

The remaining clusters in CHARMM36/mTIP3P and OPLS-AA/M/TIP3P have similar

sampling in φ-ψ space. The prominence of the stacked configurations across all force fields

indicates that the π-π interactions between Trp and graphene dominate the Trp-graphene

interactions.

IV Conclusions

Given the multiple options of force fields available to study protein–graphene interac-

tions and the absence of experimental data for validation of these force fields, a compar-

ison between their performances is necessary. In this work, we investigate the differences

in the description of amino acid–graphene interactions by four empirical non-polarizable

force fields — Amberff99SB-ILDN/TIP3P, CHARMM36/mTIP3P, OPLS-AA/M/TIP3P,

and Amber03w/TIP4P/2005. We find that the formation of amino acid–graphene complex

is favorable for all amino acids and force fields. The PMFs between the amino acids and

graphene are qualitatively similar between the force fields. There are quantitative differences

in the PMFs especially near the global minimum for each amino acid. In general, the two

Amber force fields are in good agreement with each other. CHARMM36/mTIP3P predicts

the less favorable adsorption energy for most amino acids amongst the studied force fields.
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While there are quantitative differences, the relative binding strength of amino acids are

similar between the force fields in most cases. This implies an inherent convergence in the

delicate description of amino acid interactions with their surrounding environment across

the tested force fields. Furthermore, the relative binding preferences of the amino acids on

graphene agree with the available experimental, and ab initio data. Given the limited avail-

able experimental data, it is possible that this agreement will reduce as experimental data for

more amino acids is reported. This might occur either because of inaccurate description of

the potential energy of the system or inherent limitations of the non-polarizable force fields.

In the latter scenario, polarizable force fields such as Drude-particle109 or fluctuating charge

models110 can be explored. Previous studies report that polarizability can influence water

structure near graphene to varying degrees.37,111,112. For all the studied non-polarizable force

fields, we observed that ∆Aads strongly correlates with amino acid–graphene, and water–

graphene intermolecular interactions.

We observe variations in the structures sampled by the amino acids near the graphene

surface across different force fields. We characterize the conformations based on φ-ψ dis-

tributions and cluster analysis. The results indicate that the differences in conformations

in the bulk state do not fully account for those seen in the adsorbed state between the

force fields. The differences in the conformations of adsorbed amino acids is a manifestation

of differences in bulk state, the configurational energy landscape of the amino acids and

graphene-amino acid interactions. Our clustering protocol enables us to identify the most

prominent structures sampled for each amino acid with every force field and facilitates the

comparison between them. The prominent conformations of the amino acids in the graphene

adsorbed state involve amide-π and π-π stacking interactions. For most cases, the adsorbed

state has lower preference for the α-helix region. New dihedral space corresponding to α-

planar, β-planar, bridge, and PII regions are sampled in the graphene adsorbed state. The

specific region that is favored is strongly dependent on both the force field and the amino

acid. Larger differences in amino acid structures sampled upon adsorption across different

force fields seem to be observed where there are no clear dominant graphene-amino acid

interactions. These differences are subdued when a dominant interaction takes over – such

as in case of aromatic residues and Arg. It is however, clear that even with similar PMFs

differences in conformations are observed.

What can the adsorption of amino acids on graphene tell us about the force field de-
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pendence of adsorption behavior of larger molecules, such as peptides and proteins? It

could be expected that the different non-polarizable force fields will give similar qualitative

behavior when comparing the relative strength of adsorption across different peptides or

proteins. Of course, the ∆Aads of larger molecules need not be the sum of ∆Aads of individ-

ual amino acids. We are currently investigating this aspect in context of peptide–graphene

interactions. It could be hypothesized that the differences in the structures of adsorbed

amino acids across force fields would build up to manifest in large discrepancies for protein

structure on graphene. It however, can be counter argued that since these force fields are

developed based on folded protein structure the differences will eventually converge. There-

fore, it is quite possible that there is a non-linear trend in the differences across force fields

with respect to size of the protein. Nevertheless, with limited sampling it can be expected

that the conformations of the peptides/proteins in the graphene adsorbed state could vary

with the force field. While the enhanced sampling methods can help in addressing the sam-

pling challenges in simulations, more experimental data characterizing protein structure at

surfaces is necessary to validate the force fields, and improve them as needed.
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We thoroughly investigate the differences in free energy of adsorption and 
the structures of the amino acids adsorbed on graphene with force fields.
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