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Abstract	
We	propose	a	theory	based	on	non-equilibrium	thermodynamics	to	describe	the	mechanical	behavior	
of	an	active	polymer	gel	created	by	the	inclusion	of	molecular	motors	 in	 its	solvent.	When	activated,	
these	 motors	 attach	 to	 the	 chains	 of	 the	 polymer	 network	 and	 shorten	 them	 creating	 a	 global	
contraction	of	 the	gel,	which	mimics	 the	active	behavior	of	a	cytoskeleton.	The	power	generated	by	
these	 motors	 is	 obtained	 by	 ATP	 hydrolysis	 reaction,	 which	 transduces	 chemical	 energy	 into	
mechanical	 work.	 The	 latter	 is	 described	 by	 an	 increment	 of	 strain	 energy	 in	 the	 gel	 due	 to	 an	
increased	stiffness.		This	effect	is	described	with	an	increment	of	the	cross-link	density	in	the	polymer	
network,	which	reduces	its	entropy.	The	theory	then	considers	polymer	network	swelling	and	species	
diffusion	 to	 describe	 the	 transient	 passive	 behavior	 of	 the	 gel.	We	 finally	 formulate	 the	 problem	of	
uniaxial	 contraction	 of	 a	 slab	 of	 gel	 and	 compare	 the	 results	 with	 experiments,	 showing	 good	
agreement.		
	
Introduction	
Active	 polymer	 gels	 have	 been	 prototyped	 in	 the	 attempt	 to	 synthetically	 reproduce	 the	 active	
mechanical	 behavior	 of	 the	 cytoskeleton.	 	 This	 is	 useful	 for	 mimicking	 cellular	 activities	 that	 lack	
genetic	control	and	to	prototype	a	new	generation	of	active	materials	for	a	wide	set	of	technological	
applications	 [1].	 	 These	 gels	 are	 synthesized	 by	 polymerization	 of	 long	 hydrophilic	 chains	 forming	 a	
loose	network	that	is	capable	of	large	swelling	due	to	absorption	of	an	aqueous	solvent.		The	solvent	
includes	special	proteins,	molecular	motors,	which	attach	to	the	polymer	chains.		These	proteins	act	as	
enzymes	 for	 ATP	 (adenosine	 triphosphate)	 hydrolysis	 reaction	 taking	 place	within	 the	 solvent.	 	 The	
reaction	 converts	 ATP	molecules	 into	 ADP	 transducing	 chemical	 energy	 into	mechanical	work.	 	 This	
mechanical	 work	 has	 the	 effect	 of	 shortening	 the	 polymer	 chains	 where	 the	 motors	 are	 attached.		
Figure	1	provides	a	sketch	showing	the	activity	of	a	molecular	motor	shortening	a	polymer	chain,	with	
resulting	reduction	of	the	average	spacing	among	crosslinks.		As	a	consequence,	the	gel	becomes	stiffer	
and	solvent	molecules	will	diffuse	away	to	accommodate	contraction,	a	mechanism	that	has	also	been	
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observed	in	the	cytoskeleton	[2]	and	reproduced	in	gels	made	from	in	vitro	cytoskeletal	components	
[1,	3-5].		

Kruse	and	coworkers	[6]	developed	the	first	continuum	theory	(to	the	authors’	knowledge)	to	describe	
the	 activity	 of	molecular	motors	 in	 the	 context	 of	 active	 polar	 gels.	 	 Their	 aim	was	 to	 describe	 the	
behavior	of	a	cytoskeleton.		The	effect	of	the	motors,	pulling	on	the	polymer	chains,	is	represented	by	
force	dipoles.		These	dipoles	create	a	macroscopic	effect	that	is	described	with	a	reactive	stress,	which	
is	 then	 added	 to	 the	passive	 viscoelastic	 stress	 of	 the	 gel.	 	 The	 total	 stress	 then	 equilibrates	 all	 the	
external	 loads.	 	More	 recently,	MacKintosh	 and	 Levine	 [7]	 proposed	 a	 similar	 hydrodynamic	 theory	
based	again	on	the	generation	of	force	dipoles	by	motor	activity	within	the	gel,	which	translates	into	
the	generation	of	a	transient	contractile	stress.			

The	main	 limitation	of	 these	 theories	 lies	 in	 the	 description	of	 the	macroscopic	 effect	 of	 the	motor	
activity	 with	 a	 stress.	 	 Imagine	 a	 motor	 pulling	 on	 a	 very	 loose	 polymer	 chain	 as	 observed	 in	
experiments	 [1].	 	 The	 macroscopic	 stress	 generated	 by	 this	 activity	 is	 negligible,	 yet	 the	 motor	 is	
consuming	 a	 meaningful	 amount	 of	 fuel	 (ATP	 molecules).	 	 The	 gel	 stiffness	 on	 the	 other	 hand	 is	
significantly	affected.		The	transduction	of	chemical	energy	into	mechanical	work	is	thus	internal	to	the	
material,	and	the	polymer	stiffens.		This	effect	cause	macroscopic	contraction	when	solvent	diffusion	is	
allowed.		We	adopt	the	concept	that	the	stiffness	increment	is	due	to	evolution	of	the	crosslink	density	
since	 the	 average	 distance	 among	 crosslinks	 is	 reduced	 by	 the	 motors	 shortening	 the	 chains,	 as	
sketched	in	Figure	1.		We	take	this	point	of	view	because	it	is	likely	that	the	polymer	network	in	the	gel	
is	 far	 from	 being	 in	 a	 stretched	 condition	 even	 after	 chain	 shortening	 by	molecular	motor	 activity.		
Therefore,	 network	 elasticity	 is	 probably	 entropic	 rather	 than	 enthalpic,	 and	 the	 work	 done	 by	
molecular	motors	reduces	network	entropy,	increasing	the	system	free	energy.		The	additional	stored	
energy	in	the	system	is	associated	with	increased	constraints	on	chain	fluctuations,	thereby	stiffening	
the	gel.		Crosslink	density	evolution	is	created	by	a	motor	attaching	to	a	single	chain	and	shortening	it,	
as	described	above,	and	it	is	also	created	by	a	motor	attaching	to	two	distinct	chains,	hence	acting	as	a	
dynamic	crosslink.		Both	effects	can	be	described	with	the	proposed	model,	however	we	will	focus	on	
the	chain	shortening	mechanism.		We	describe	the	passive	behavior	of	the	gel	by	Flory’s	and	Rehner’s	
[8]	theory	for	polymer	network	swelling,	include	species	diffusion	as	proposed	by	Hong	et	al.	[9],	and	
add	to	that	model	an	increase	in	crosslink	density	to	account	for	the	effect	of	molecular	motors.	
	

	

Motor ATP

ADP

Crosslinks

	

Figure	1	Left:	Molecular	motor	binding	to	a	polymer	chain	(blue	spline);	
Right:	Motor	shortening	the	polymer	chains	by	conversion	of	ATP	into	
ADP	via	hydrolysis	and	resulting	in	gel	contraction	by	local	expulsion	of	
solvent	molecules	(cyan	circles).	
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As	 observed	 by	 Bertrand	et	 al.	 [1],	 some	motors	 attach	 to	 the	 chains	 and	 keep	 them	at	 a	 constant	
shortening	ratio.	 	These	static	motors	are	in	their	“reeled-in”	state	and	give	steady	state	stiffening	to	
the	gel,	as	much	as	a	10-fold	increase	in	elastic	modulus	[1].		The	remaining	motors	that	attach	to	the	
polymer	 chains,	 and	 that	 are	 not	 in	 their	 reeled-in	 state,	 give	 active	 contraction	 by	 progressive	
incremental	 chain	 shortening.	 These	 dynamic	 motors	 attach	 to	 the	 chains,	 reel	 them	 in,	 but	 then	
detach,	 with	 many	 of	 them	 doing	 so	 simultaneously	 and	 continuously.	 	 The	 polymer	 chain	 being	
shortened	 by	 a	 motor	 exerts	 resistive	 forces	 on	 the	 latter	 because	 its	 fluctuations	 are	 being	
constrained.		This	effect	challenges	the	strength	of	the	bonds	between	motor	and	chain,	and	for	some	
of	 the	motors	causes	 the	bonds	 to	be	broken.	 	This	phenomenon	explains	why	some	motors	detach	
from	the	chains	after	a	period	of	reeling	them	in.		As	a	consequence,	the	polymer	chain	extends	back	
to	its	original	length	and	the	motor	is	free	to	move	in	the	solvent	until	it	bonds	to	another	chain	and	
starts	 the	shortening	process	again.	 	When	a	given	motor	detaches	 from	the	chain,	 its	effect	on	 the	
stiffness	is	lost	and	so	is	its	contribution	to	the	contraction	of	the	gel.		For	simplicity	we	assume	that	all	
the	motors	that	attach	to	and	detach	from	the	chains	do	so	simultaneously	and	in	phase	so	that	there	
is	 periodic	 contraction	 and	 recovery	 in	 the	 gel.	 	 This	 hypothesis	 describes	 the	 behavior	 of	 local	
elements	of	the	gel,	and	relies	on	small	spatial	variation	of	chain	length	and	chain	shortening	rate.	
	
Thermodynamic	framework	
We	consider	the	reference	state	of	the	gel,	of	volume	V0	with	surface	S0,	to	be	that	of	the	unswollen	
polymer	 network	 alone.	 	 The	 conditions	 are	 quasi-static,	 and	 thus	 the	 1st	 Piola-Kirchhoff	 stress,	 tij,	
obeys	
!!!"
!!!

+ 𝐵! = 0	 	 in	Vo		 	 	 	 	 	 	 	 	 	 (1a)	

and	

𝑡!"𝑁! = 𝑇! 	 	 on	So	 	 	 	 	 	 	 	 	 	 (1b)	

where	Ni	is	the	outward	unit	normal	to	So,	Ti	is	the	surface	traction,	Xi	is	the	position	of	elements	of	the	
polymer	network	in	the	reference	configuration,	and	Bi	is	the	body	force	per	unit	reference	volume.			

During	 deformation	 of	 the	 gel,	 including	 swelling,	 the	 current	 position	 of	 elements	 of	 the	 polymer	
network	is	given	by	

𝑥! = 𝑥! 𝑋! , 𝑡 	 	 	 	 	 	 	 	 	 	 	 	 (2)	

where	t	is	time.		The	deformation	gradient	is	then	given	by	

𝐹!" =
!!!
!!!

	 	 	 	 	 	 	 	 	 	 	 	 (3)	

The	 solvent	 consists	 of	water	 and	 other	mobile	 species.	 	 Some	 of	 these	 species	 are	 reactive,	 some	
other	 species	 are	 inert,	 i.e.	 they	 do	 not	 participate	 in	 any	 chemical	 reaction.	 	 Let	 species	 k	 have	
concentration	Ck	in	moles	per	unit	volume	of	the	reference	state.		Take	the	molar	volume	of	species	k	
to	 be	Ω!	 so	 that	 the	 volume	of	 fluid	 associated	with	dVo	 is	Ω!𝐶!𝑑𝑉!	 (unless	 otherwise	 specified,	 a	
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repeated	 index	 within	 a	 product	 indicates	 a	 sum).	 	 Molecular	 incompressibility	 of	 all	 the	 species	
involved	imposes	the	constraint	

𝐽 = 1+ Ω!𝐶!		 	 	 	 	 	 	 	 	 	 	 (4)	

where	𝐽	is	the	determinant	of	the	deformation	gradient	𝐹!",	and	is	equal	to	the	ratio	𝑑𝑉/𝑑𝑉!,	with	𝑑𝑉	
the	infinitesimal	volume	of	dVo	in	the	deformed	configuration.	

Conservation	of	species	k	requires	that	

!!!

!"
= 𝑄!! −

!!!
!

!!!
	 	 	 	 	 	 	 	 	 	 	 (5)	

where	𝑄!!	 is	a	 source	 for	species	k	due	 to	chemical	 reactions,	measured	 in	moles	per	unit	 reference	
volume,	and	𝐽!!	is	the	flux	of	species	k,	identified	in	the	reference	configuration.			

The	Helmholtz	energy	per	unit	reference	volume	of	the	gel	is	assumed	to	be	the	functional	

𝜓 = 𝜓 𝐹!" ,𝑇,𝐶! ,𝑁 	 	 	 	 	 	 	 	 	 	 	 (6)	

where	𝑇	 is	 temperature,	 and	𝑁	 is	 the	 cross-link	 density	 of	 the	 polymer	 network.	 	 As	 explained	 in	
Appendix	A,	thermodynamics	dictates	

𝑡!" =
!"
!!!"

	 	 	 	 	 	 	 	 	 	 	 	 (7)	

𝜇! = !"
!!!

	 	 	 	 	 	 	 	 	 	 	 	 (8)	

and	

𝜂 = − !"
!"
	 	 	 	 	 	 	 	 	 	 	 	 (9)	

with	𝜇!	the	chemical	potential	of	species	k	and	𝜂	the	entropy	per	unit	reference	volume	of	the	gel.		We	
assume	positive	entropy	production	in	the	material	to	satisfy	the	second	law	of	thermodynamics.		Also,	
we	 assume	 that	 there	 are	 3	 independent	 processes,	 namely	 (i)	 chemical	 reactions	 and	 evolution	 of	
cross-link	density,	(ii)	heat	diffusion	and	(iii)	mass	diffusion.		Positive	entropy	production,	according	to	
Appendix	A,	then	gives	the	following	3	inequalities		

!!!

!!!
+ 𝜂! !"

!!!
𝐽!! ≤ 0		 	 	 	 	 	 	 	 	 	 (10)	

which	controls	the	direction	of	mass	flux,	with	𝜂!	the	entropy	per	mole	of	species	k,	

	!!
!

!
!"
!!!

≤ 0	 	 	 	 	 	 	 	 	 	 	 	 (11)	

which	controls	the	direction	of	the	heat	flux	𝐽!!,	and	

𝜇!𝑄!! +
!"
!"

!"
!"
≤ 0	 	 	 	 	 	 	 	 	 	 	 (12)	
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which	controls	the	direction	of	chemical	reactions	in	relation	to	an	evolution	of	the	cross-link	density.			

The	chemical	reaction	considered	is	ATP	hydrolysis,	and	thus	Eq.	(12)	becomes	

!"
!"

!"
!"
≤ Δ𝐺!𝑄! 	 	 	 	 	 	 	 	 	 	 	 (13a)	

with	 	

Δ𝐺! = 𝜇!"# + 𝜇!!! − 𝜇!"# − 𝜇!	 	 	 	 	 	 	 	 	 (13b)	

the	 Gibbs	 energy	 released	 by	 one	 mole	 of	 ATP	 (32−40 𝑘𝐽 𝑚𝑜𝑙,	 [10])	 undergoing	 the	 hydrolysis	
reaction	

ATP+ H!O → ADP+ P	 	 	 	 	 	

where	P	is	the	ATP	lost	phosphate.	In	Eq.	(13a)	𝑄! 	is	the	reaction	rate,	in	moles	of	ATP	consumed	per	
second	per	unit	reference	volume.		Considering	𝜑	to	be	the	average	efficiency	of	all	the	motors	in	𝑉!	in	
transducing	chemical	energy	into	mechanical	work	[11],	we	deduce	that		

!"
!"

!"
!"
= 𝜑Δ𝐺!𝑄! 		 	 	 	 	 	 	 	 	 	 	 (14)	

where	Eq.	(13a)	imposes	𝜑 ≤ 1,	as	one	would	expect	of	a	parameter	representing	an	efficiency.		This	
result	implies	that	the	free	energy	released	by	the	reaction	is	in	part	recycled	in	the	system	to	increase	
the	strain	energy	of	the	polymer	chains,	while	the	remainder	is	dissipated	as	heat.		

We	consider	all	species	in	the	solvent	to	be	at	dilute	concentration	in	water,	i.e.	Ω!𝐶! ≪ Ω 𝐶		for	every	
species	 other	 than	 water,	 with	 Ω	 and	 𝐶	 the	 molar	 volume	 and	 molar	 concentration	 of	 water,	
respectively.		The	flux	of	solvent	is	then	controlled	by	that	of	water,	which	carries	all	other	species	with	
it.		Some	migration	of	reactive	species	within	the	water	flux	might	be	considered	as	a	consequence	of	
chemical	reactions.		However,	as	will	be	explained	later,	within	the	time	frame	of	consideration,	there	
is	 no	 significant	 change	 in	 molar	 concentration	 of	 species,	 per	 unit	 solvent	 volume.	 	 Thus,	 we	 can	
consider	the	solvent	as	a	homogeneous	fluid	and	rewrite	Eq.	(4)	as	

𝐽 ≈ 1+ Ω 𝐶	 	 	 	 	 	 	 	 	 	 	 	 (15)	

Next,	we	describe	the	reaction	kinetics	as	

𝑞! = 𝑟 𝛤!"#𝛤!𝛤!!!			 	 	 	 	 	 	 	 	 	 (16a)	

with		

𝑞! =
!!
!!
		 	 	 	 	 	 	 	 	 	 	 	 (16b)	

the	reaction	rate	in	moles	of	product	per	unit	current	solvent	volume	per	unit	time,	and	with	

𝛤! ≈ !!

!!
		 	 	 	 	 	 	 	 	 	 	 	 (16c)	
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the	 concentration	 of	moles	 of	 species	𝑘 = ATP,𝑚,H!O,	 per	 unit	 current	 solvent	 volume	 (where	𝑚	
stands	for	“motors”).		We	can	assume	𝛤!!! ≈ 1/Ω	given	that	water	is	the	predominant	species	in	the	
solvent.	 	 The	 reaction	 rate	 coefficient	𝑟	 is	obtained,	as	a	 function	of	 temperature,	 via	 the	Arrhenius	
relation	𝑟 = 𝑟! exp −𝐸!/𝑅𝑇 ,	with	𝐸!	the	activation	energy	of	the	reaction	(i.e.	the	energy	barrier	that	
must	be	crossed	through	thermal	fluctuation	to	allow	for	the	reaction	to	occur),	and	𝑟!	a	constant	that	
depends	on	the	type	of	reaction.		Substituting	Eqs.	(16b)	and	(16c)	into	(16a),	we	deduce	that	

𝑄! ≈ 𝑟 𝛤!"#𝐶!/Ω		 	 	 	 	 	 	 	 	 	 	 (17)	

where	 𝐶!	 is	 the	 molar	 concentration	 of	 motors	 per	 unit	 reference	 volume,	 a	 quantity	 that	 is	
homogeneous	 and	 stationary.	 	 From	 experimental	 observations,	 given	 the	 constant	 velocity	 of	 the	
motors	during	active	contraction	[1],	we	assume	the	depletion	of	ATP	molecules	to	be	negligible,	thus	
𝛤!"#	is	constant	with	time.		We	also	consider	homogeneous	distribution	of	ATP	molecules	within	the	
solvent.	 	 If	 we	 also	 assume	 negligible	 temperature	 change	 within	 the	 gel,	 𝑟	 can	 be	 seen	 as	
homogeneous	 and	 stationary,	 and	 thus	 𝑄! 	 is	 too.	 	 Finally,	 assuming	 the	 functional	 dependence	
𝜑 = 𝜑 𝑇,𝑄! ,	we	can	also	assume	𝜑	to	be	constant.	 	The	rate	of	 increase	of	cross-link	density,	from	
Eq.	(14),	now	takes	the	form	

!"
!"
= 𝑝/ !"

!"
		 	 	 	 	 	 	 	 	 	 	 	 (18a)	

with		

𝑝 ≈ 𝜑 Δ𝐺! 𝑟 𝛤!"#𝐶!/Ω			 	 	 	 	 	 	 	 	 	 (18b)	

the	density	of	mechanical	power,	per	unit	reference	volume,	generated	by	the	motors.	 	As	explained	
above,	during	gel	contraction	𝑝	is	approximately	a	constant.		

The	 Helmholtz	 energy	 of	 the	 material	 can	 be	 modeled	 assuming	 additive	 contributions	 from	 Neo-
Hookean	elastic	strain	energy	and	enthalpy	and	entropy	of	mixing	between	solvent	and	polymer	[8-9,	
12-13],	

𝜓 = !
!
𝑁𝑘𝑇 𝐹!"𝐹!" − 2 log 𝐽 − 3 + !"

!
Ω𝐶 log !!

!!!!
− !

!!!!
+ Π 1+ Ω𝐶 − 𝐽  			 	 (19)	

In	this	equation,	𝑘	 is	Boltzmann	constant,	𝑅	 is	the	gas	constant,	Π	 is	a	Lagrange	multiplier	to	enforce	
the	 molecular	 incompressibility	 of	 the	 solvent	 molecules	 and	 of	 the	 polymer	 chains.	 	 This	 also	
corresponds	to	the	total	pressure	in	the	gel.		Finally,	𝜒	is	a	constant	describing	the	enthalpy	of	mixing.			

Substitution	of	Eq.	(19)	into	(7)	gives	the	1st	Piola	Kirchhoff	stress	as	

𝑡!" = 𝑁𝑘𝑇 𝐹!" − 𝐹!"!! − Π 𝐽 𝐹!"!!	 	 	 	 	 	 	 	 	 (20)	

while	Eq.	(19)	into	(8)	gives	the	chemical	potential	of	the	solvent	

𝜇 = 𝑅𝑇 ln !!
!!!!

+ !!!!!!
!!!! ! + Π Ω	 	 	 	 	 	 	 	 (21)	

The	derivative	of	Eq.	(19)	with	respect	to	N	gives	us	
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!"
!"
= !

!
𝑘𝑇 𝐹!"𝐹!" − 2 log 𝐽 − 3 	 	 	 	 	 	 	 	 	 (22)	

and	 substitution	 of	 this	 in	 Eq.	 (18a)	 gives	 the	 rate	 of	 change	 of	 cross-link	 density,	 during	 gel	
contraction,	as	
!"
!"
= !!

!" !!"!!"!! !" !!!
	 	 	 	 	 	 	 	 	 	 (23)	

Solvent	diffusion	can	be	described	using	Fick’s	law,	in	Lagrangian	form	[9,	12-13],	as	

𝐽! = −𝐶 !
!"
𝐹!"!!𝐹!"!!

!!!!!

!!!
+ 𝜂!!! !"

!!!
 			 	 	 	 	 	 	 	 (24)	

which,	 for	 any	 non-negative	 diffusivity	 coefficient,	𝐷,	 respects	 the	 condition	 imposed	 by	 Eq.	 (10).		
Boundary	conditions	for	the	mass	diffusion	problem	are	then,	

𝜇 = 𝜇!"# 			 	 on	𝑆!	 	 	 	 	 	 	 	 	 	 (25a)	

if	the	boundary	is	permeable,	where	𝜇!"#	is	the	chemical	potential	of	the	solvent	molecules	external	to	
the	gel	and	near	the	surface	of	it,	or	

𝐽!  𝑁! = 0 			 	 on	𝑆!	 	 	 	 	 	 	 	 	 	 (25b)	

if	the	boundary	is	impermeable.		In	a	similar	way,	we	can	use	Fourier’s	law	to	describe	heat	diffusion.	
However	thermal	effects	are	neglected	in	our	treatment,	assuming	negligible	temperature	rise	during	
the	process.	 	 This	 assumption	 relies	 on	 the	hypothesis	 of	 small	 specimen	 size,	 embedded	 in	 a	 large	
isothermal	bulk	 solution,	 thereby	allowing	 rapid	 removal	of	 any	heat	generated	within	 the	gel.	 	 The	
temperature	gradient	in	Eq.	(24)	is	then	zero	and	the	temperature	in	Eq.	(20)	and	(21)	is	uniform	and	
constant.	

We	assume	that	gel	contraction	occurs	without	external	loads	except	for	the	external	pressure,	Π!"#,		
of	the	solution	within	which	the	gel	is	embedded,	and	which	must	be	equilibrated	at	the	boundary	in	
the	deformed	configuration.		Equilibrium	given	by	Eq.	(1)	then	holds	for		

𝐵! = 0		 	 	 	 	 	 	 	 	 	 	 	 (26a)	

𝑇! = −Π!"# 𝐽 𝐹!"!!𝑁! 	 	 	 	 	 	 	 	 	 	 	 (26b)			

where	we	have	neglected	gravity.		The	initial	conditions	for	contraction	of	the	gel	are	associated	with	
the	undeformed	 state	of	 the	gel	 and	 thermodynamic	equilibrium.	 	 The	undeformed	 state	of	 the	gel	
corresponds	to	the	condition	of	the	swollen	polymer	with	𝐹!" = 𝐽!/!𝛿!" 	everywhere	in	the	body.		This	
condition	is	associated	with	a	homogeneous	stress	state	that	is	in	equilibrium,	satisfying	Eq.	(1)	along	
with	Eq.	(26),	and	thus	

Π = Π!"# + 𝑁𝑘𝑇 𝐽!!/! − 𝐽!!  	 	 	 	 	 	 	 	 	 (27)	

In	 this	 equation,	 the	 second	 term	 on	 the	 right	 hand	 side	 corresponds	 to	 the	 osmotic	 pressure	 that	
stretches	the	chains	of	the	polymer	network	to	accommodate	the	presence	of	the	solvent.	
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The	condition	of	thermodynamic	equilibrium	is	defined	by	the	absence	of	solvent	flow.		This,	from	Eq.	
(24),	with	 constant	and	uniform	𝑇,	 and	Eq.	 (25a),	 implies	𝜇 = 𝜇!"#	 everywhere	 in	 the	gel.	 	Once	we	
calculate	𝜇	from	Eq.	(21),	with	substitution	of	Ω𝐶	from	Eq.	(15)	and	of	Π	from	Eq.	(27),	we	obtain	an	
algebraic	equation	in	the	variable	𝐽.		The	solution	of	this	equation	is	𝐽!,	the	swelling	ratio	of	the	passive	
gel.		We	also	consider	𝑁!	to	be	the	crosslink	density	of	the	passive	gel.		After	activation,	the	gel	stiffens	
and	contracts	based	on	the	boundary	conditions	for	solvent	flow	and	gel	deformation.		Let	us	consider	
the	gel	 to	be	 free	 to	deform	 in	all	directions	and	 the	external	boundary	of	 it	 to	be	permeable.	 	The	
effect	 of	 the	 steady	 state	 contraction	 created	 by	 static	 motors	 can	 then	 be	 calculated	 as	 a	 new	
thermodynamic	 equilibrium	 state	 associated	 with	 a	 higher	 crosslink	 density	 𝑁!! > 𝑁!.	 	 In	 this	
configuration	we	impose	again	𝜇 = 𝜇!"#	everywhere	and	obtain	the	swelling	ratio	𝐽!! < 𝐽!	in	the	same	
way	we	obtained	𝐽!.	 	The	shear	modulus	can	be	calculated	 in	both	states	with	Flory’s	 formula	 [8]	as	
𝐺 = 𝑁𝑘𝑇 𝐽!!/!	by	substitution	of	𝐽	and	𝑁.		Figure	2	reports	the	evolution	of	𝐺!!,	the	steady	state	shear	
modulus,	as	a	function	of	𝐽!!	for	various	values	of	𝐽!	and	𝐺!	(the	initial	shear	modulus).		In	this	figure,	
we	reported	𝐽!	of	values	600,	800	and	1000,	for	𝐺! = 1 𝑃𝑎	(black	lines),	and	𝐺! = 10 𝑃𝑎	(blue	lines).		
The	value	of	the	constant	𝜒	 is	taken	from	Appendix	B,	where	this	case	is	analyzed	for	𝐽! = 1000	and	
𝐺! = 1 𝑃𝑎,	observing	a	10-fold	increment	in	stiffness	associated	with	a	30%	deformation,	as	indicated	
in	Figure	2.	

	

	

	

	

	

	

	

	

	

	

	

	

	

During	the	activity	of	dynamic	motors,	we	assume	thermodynamic	equilibrium	is	violated.		The	cross-
link	density	is	then	𝑁 > 𝑁!!,	and	it	 increases	at	the	rate	described	by	Eq.	(23).		This	in	turn	increases	
the	total	pressure	from	Eq.	(27),	which	creates	an	increment	of	the	chemical	potential	in	the	body	of	
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Figure	 2	 Steady	 state	 swelling	 ratio	  𝐽!!	 	 versus	 steady	 state	 shear	
modulus	 𝐺!!	 for	 a	 gel	 contracted	 isotopically	 by	 static	 motors.	 We	
assumed	 initial	 swelling	 ratios 𝐽!	 of	 600,	 800,	 and	 1000,	 and	 initial	
shear	modulus 𝐺!	of	1	Pa	(black	lines)	and	10	Pa	(blue	lines).	
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the	gel,	given	by	Eq.	(21),	for	which	𝜇 > 𝜇!"#.	 	The	solvent	molecules	are	progressively	expelled	from	
the	 gel,	 starting	 with	 the	 ones	 near	 the	 permeable	 boundary.	 	 The	 solvent	 flux	 determines	 the	
distribution	of	 concentration	of	 solvent	 via	 Eq.	 (5),	 but	with	 the	hydrolysis	 reaction	 giving	negligible	
contribution,	and	thus	𝑄!

!!! ≈ 0.			

Progressive	stiffening	terminates	once	all	the	dynamic	motors	detach	from	the	shortened	chains.		We	
assume	 that	 the	 strain	 energy	 stored	 by	 a	 polymer	 chain	 can	 prompt	 this	 detachment,	 hence,	 the	
critical	energy	scales	with	the	work	required	to	detach	a	motor	from	its	chain,	𝐸!	(the	energy	of	their	
intermolecular	 bonds).	 	 The	 energy	 stored	 by	 a	 chain	 scales	with	 the	 energy	 stored	 in	 a	 portion	 of	
volume	 that	 includes	 one	 crosslink,	 𝜓!"/𝑁,	 with	 the	 strain	 energy	 in	 the	 polymer	 estimated	 as	
𝜓!" ≈ 𝜕𝜓 𝜕𝑁 𝜕𝑁 𝜕𝑡 𝑑𝑡!

! = 𝑝 𝑡	(neglecting	the	energy	stored	prior	to	contraction).		We	can	then	
estimate	the	critical	time	when	progressive	stiffening	stops	from	the	relation	

𝑝 𝑡!  ~𝑁!𝐸!	 	 	 	 	 	 	 	 	 	 	 	 (28)	

with	𝑁! 	the	cross-link	density	at	𝑡!,	prior	to	the	detachment	of	the	dynamic	motor.		It	can	be	observed	
from	Eq.	 (18b)	and	(28)	 that	a	higher	concentration	of	ATP	will	 lead	to	a	shorter	contraction	time	𝑡! 	
with	motors	detaching	sooner.	

At	this	point	the	cross-link	density	goes	back	suddenly	to	its	steady-state	value	𝑁!!	since	the	dynamic	
motors	are	no	 longer	attached	to	the	chains.	 	Stresses,	chemical	potential	and	swelling	ratio	 instead	
modify	 smoothly	 in	 time	 until	 thermodynamic	 equilibrium	and	 steady-state	 conditions	 are	 restored.		
We	consider	for	simplicity	that	each	dynamic	motor	takes	the	same	time	 interval	to	attach	to	a	new	
chain	and	then	repeats	the	process.		In	this	way,	the	gel	behavior	is	periodic	with	time	and	alternates	
between	contraction	and	recovery,	evidencing	the	peaks	of	gel	displacement	observed	by	Bertrand	et	
al.	[1].	

	
Uniaxial	contraction	
We	solve	here	 the	problem	of	uniaxial	 contraction	of	a	 slab	of	gel	and	use	 it	as	a	model	 system	 for	
comparison	with	experiments	[1].		These	experiments	consisted	in	measuring	the	movement	of	a	bead	
sitting	on	top	of	a	gel	fragment.		The	inset	of	Figure	3	provides	a	sketch.		We	normalize	the	measured	
bead	displacement	by	the	steady	state	gel	thickness	ℓ	(see	Appendix	B,	SI)	to	obtain	the	mean	value	of	
the	nominal	axial	strain	𝑒 = ∆ℓ/ℓ.		We	represent	the	gel	fragment	as	a	slab,	although	the	authors	did	
not	identify	its	shape	[1].		The	gel	can	deform	only	in	direction	𝑋!,	which	constrains	the	solvent	flux	to	
align	with	the	vertical	direction,	hence	𝐽! = 𝐽! = 0.		The	slab	sits	on	the	surface	of	a	glass	plate	and	is	
in	contact	with	a	 solution	containing	 solvent	molecules.	 	The	 top	of	 the	gel	 constitutes	a	permeable	
free	 surface	at	𝑋! = 0	where	solvent	molecules	can	diffuse	 freely.	 	They	diffuse	 from	the	gel	 to	 the	
solvent	solution,	in	proximity	of	the	top	surface,	and	vice-versa,	giving,	from	Eq.	(25a)	

𝜇 = 𝜇!"#,	 	 at	𝑋! = 0		 	 	 	 	 	 	 	 	 (29a)	

The	glass	plate	forms	an	impermeable	boundary	at	𝑋! = 𝐿,	preventing	any	solvent	flow	at	the	bottom	
of	the	slab,	giving,	from	Eqs.	(25b)	and	(24),	at	constant	𝑇,	
!"
!!!

= 0,	 	 at	𝑋! = 𝐿		 	 	 	 	 	 	 	 	 (29b)	
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The	axial	stretch	in	the	vertical	direction	is	𝜆!,	while	in	the	horizontal	directions	we	have	𝜆! = 𝜆! = 𝜆!	
at	any	time,	with	𝜆! = 𝐽!

!/!.		When	the	gel	contracts	we	have	

𝐽 = 𝜆!! 𝜆!	 	 	 	 	 	 	 	 	 	 	 	 (30)	

From	Eq.	(20),	the	axial	stress	is	then	

𝑡!! = 𝑁𝑘𝑇 𝜆! − 1/𝜆! − Π 𝜆!!	 	 	 	 	 	 	 	 	 (31)	

and	is	in	equilibrium	with	Eqs.	(1)	and	(26),	from	which	we	have	𝑡!! = −Π!"# 𝜆!!	everywhere.		This	gives	

Π = Π!"# + !"#
!

𝜆!! − 1 	 	 	 	 	 	 	 	 	 	 (32)	

Substitution	of	Eqs.	(15)	and	(32)	into	(21)	gives	

!!! !!"#

!"
= log !!!

!
+ !!!

!!
+ !

!
𝜆!! − 1 	 	 	 	 	 	 	 	 (33a)	

with	

𝑛 = !!
!!
		 	 	 	 	 	 	 	 	 	 	 	 (33b)	

and	𝑁!	 the	 Avogadro	 number.	 	 The	 chemical	 potential	 of	 the	 solvent	 molecules	 in	 the	 solution	 is	
𝜇!"# = 𝜇! + Ω 𝑋 Π!"# − Π! ,	 where	 𝜇!	 is	 the	 chemical	 potential	 of	 pure	 solvent	 at	 standard	
temperature	and	pressure,	𝑋	 is	the	molar	fraction	of	the	solvent	in	the	solution	and	Π!	the	standard	
pressure.	 	Considering	that	water	 is	the	predominant	species	 in	the	solution,	we	have	𝑋 ≈ 1,	so	that	
𝜇!"# − Ω Π!"# ≈ 𝜇! − Ω Π!	which	can	be	substituted	in	Eq.	(33a)	with	𝐽 = 𝐽!	to	define	the	equilibrium	
state	and	give	𝜆! = 𝐽!

!/!.			
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When	 the	 motors	 are	 activated,	 the	 static	 ones	 create	 a	 steady	 state	 chain	 shortening	 in	 the	 gel,	
making	 it	 stiffer	 and	 shorter.	 	 The	 shortening	 amount	 is	 about	 30%	 [1],	 and	 therefore	we	 consider	
𝜆!,! ≈ 0.7𝜆!.	 	Equating	Eq.	(30)	with	Eq.	(15),	differentiating	with	time	and	then	substituting	 into	Eq.	
(5)	with	𝑄!

!!! ≈ 0	we	have		
!!!
!"
≈ − !

!!!
 !!!
!!!

		 	 	 	 	 	 	 	 	 	 	 (34)	

Rewriting	Eq.	(24)	for	𝐽!	we	have	

𝐽! = − ! !!!!!!!
!!!!

 !
!!!

!
!"

	 	 	 	 	 	 	 	 	 	 (35)	

Substituting	Eq.	(30)	into	(33a),	then	into	(35)	and	into	(34),	we	obtain			

!!!
!"
≈ 𝐷 !

!!!

!
!!!!!!

− 2𝜒 !!!!!!!
!!!!!!

+ 𝑛 !!!!!!!
!!!!!!

𝜆!! + 1  !!!
!!!

+ !!!!!!!
!!!!!!

𝜆!! − 1
!"
!!!

	 	 	 (36)	

Finally,	Eq.	(23)	rewrites	as		

!"
!"
= !!

!" !!!!!!!!!! !"# !!!!! !!
	 	 	 	 	 	 	 	 	 	 (37)	

Eq.	 (36)	 and	 (37)	 constitute	 a	 system	 of	 partial	 differential	 equations	 in	 the	 variables	𝜆!	 and	𝑁.	 At	
𝑡 = 0,	 𝜆! = 𝜆!,!	 and	𝑁 = 𝑁!!,	 which	 give	 the	 initial	 conditions	 for	 the	 system	 of	 equations.	 	 The	
boundary	 conditions	 can	 be	 defined	 by	 substitution	 of	 Eq.	 (30)	 into	 (33)	 and	 then	 into	 (29).	 	 The	
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Figure	3	Comparison	of	theoretical	results	(black	line)	with	experiments	
from	 two	 distinct	 peaks	 in	 gel	 contraction	 (black	 circles	 and	 blue	
triangles)	 [1].	 The	 inset	 sketches	 the	 system	 used	 to	 model	 uniaxial	
contraction	for	the	theoretical	results.	
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solution	of	this	system	of	equations	is	obtained,	using	the	physical	parameters	taken	from	literature	[1,	
9,	14-15]	and	described	in	Appendix	B,	to	finally	produce	the	results	shown	in	Figure	3,	4	and	5.	

Figure	3	compares	the	theoretical	results	with	experiments	[1],	taken	from	two	of	the	observed	peaks	
of	 contraction.	 	 The	 experimental	 points	 (black	 circles	 and	 blue	 triangles)	 are	 scattered	 around	 a	
continuous	trend,	which	agrees	qualitatively	with	our	simulation	(black	line).		The	scatter	of	the	points	
is	due	 to	 thermal	 fluctuation.	 	Figure	4	 reports	 the	simulated	distribution	of	 the	nominal	axial	 strain	
through	the	thickness	of	the	gel	at	different	times	during	an	extended	(ideal)	contraction	time	of	3.5	s.		
Figure	 5	 reports	 the	 simulated	mean	 nominal	 axial	 strain	 e,	 as	 a	 function	 of	 time,	 for	 an	 extended	
contraction	time	of	5	s	and	for	different	values	of	power	generation,	from	0.1 𝑝	 to	10 𝑝,	with	𝑝	 that	
adopted	in	Figure	3.	
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Figure	4	Nominal	strain	distributions	along	the	depth	of	the	active	gel	
obtained	 from	 the	 simulated	 results	 shown	 in	 Figure	 3.	 	 The	
contraction	time	is	here	extended	to	an	ideal	value	of	3.5	s.	
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Figure	 5	 Evolution	 of	 the	 mean	 nominal	 strain	 for	 various	 levels	 of	
mechanical	 power	 density	 generated	 by	 the	 molecular	 motors.	 The	
reference	power	density	𝑝	is	adopted	in	the	simulation	results	of	Figure	
3.		The	contraction	time	is	here	extended	to	an	ideal	value	of	5	s.	

	
Discussions	and	Conclusions	
As	shown	in	Figure	3,	our	theory	well	predicts	the	trend	in	gel	contraction	and	recovery.		Deformation	
recovery	(after	the	peak	of	contraction)	is	initially	much	faster	than	contraction,	in	agreement	with	the	
experiments	[1,	3,	15],	however	it	decelerates	fast,	leading	to	an	overall	slower	recovery,	compared	to	
experiments.		This	might	be	due	to	the	simplified	model	for	describing	the	elastic	behavior	of	the	gel,	
based	 on	 neo-Hookean	 elasticity,	 which	 neglects	 enthalpic	 stiffness.	 	 Also,	 the	 experiments	 show	 a	
three-dimensional	displacement	of	the	bead,	thus	our	hypothesis	of	uniaxial	deformation	generates	an	
approximation.	 	 A	 more	 refined	 model,	 with	 use	 of	 finite	 elements,	 should	 be	 developed	 and	
implemented	 for	 a	 more	 realistic	 comparison.	 	 In	 Figure	 4	 we	 can	 observe	 that	 the	 contraction	 is	
initially	localized	in	a	region	close	to	the	free	surface,	where	the	solvent	molecules	can	be	expelled,	and	
then	progresses	through	the	depth	of	the	slab.		At	3.5	s,	the	contraction	becomes	homogeneous	in	the	
gel	as	it	progresses.		Figure	5	shows	an	initial	stage	with	a	high	rate	of	mean	strain	of	contraction	(line	
slope),	 corresponding	 to	 the	 initial	 stage	at	 Figure	4.	 	A	 second	 stage	with	much	 slower	 contraction	
starts	when	the	strain	becomes	homogenous	along	the	depth	(Figures	3-4).		If	molecular	motors	were	
to	 be	 designed	 to	 maximize	 contraction,	 their	 power	 generation	 and	 contraction	 time	 should	 be	
maximized.	 	The	latter	parameter	would	find	its	optimum	at	the	point	of	transition	between	the	first	
and	the	second	regimes,	given	the	second	regime	produces	little	contraction.		This	transition,	though,	
depends	on	the	geometry	of	the	specimen	and	on	the	diffusivity	of	the	solvent	through	the	gel	and	its	
interface	with	the	surroundings.	

The	 ratio	of	 static	motors	 to	dynamic	motors	 is	 thus	 far	postulated	 in	 the	model	due	 to	 the	 lack	of	
experimental	evidences.		The	effect	of	static	motors	is	used	to	formulate	the	initial	conditions	for	the	
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boundary	value	problem.		The	hypothesis	of	simultaneous	detachment	and	attachment	of	all	dynamic	
motors	represent	another	simplification	 in	our	model.	 	The	number	of	attached	dynamic	motors	per	
unit	volume	is	the	variable	𝐶!	in	Eq.	(17)	and	(18b)	and	its	evolution	with	time	and	its	distribution	in	
space	 affects	 the	evolution	of	 the	power	density	𝑝	 in	 Eq.	 (18a).	 	 Albeit	 simultaneous	 attachment	of	
motors	is	probably	unrealistic,	simultaneous	detachment	results	intuitive	from	the	following	reasoning.		
Take	a	small	control	volume	in	the	gel.		The	average	strain	energy	stored	by	the	polymer	chains	in	that	
volume	increases	with	time	by	motor	activity	at	the	rate	defined	by	the	parameter	𝑝.		This	process	also	
increments	 the	 osmotic	 pressure	 in	 the	 gel,	 which	 is	 associated	 with	 the	 elastic	 resistance	 of	 the	
polymer	network	to	swelling.	 	When	the	critical	conditions	for	the	detachment	of	the	first	motor	are	
met,	 the	 chain	 at	which	 it	was	 attached	will	 suddenly	 release	 all	 its	 tension	 and	 local	movement	of	
solvent	molecule	 will	 follow	 in	 order	 to	 redistribute	 chain	 tension	 in	 the	 control	 volume.	 	 This	 will	
increment	 the	 tension	 in	 the	chains	 that	 still	have	motors	attached,	hence	prompting	 further	motor	
detachment	 in	 cascade.	 	 The	 timescale	 for	 the	described	mechanism	 is	 proportional	 to	 that	 of	 local	
(short-range)	motion	of	solvent	molecules,	which	we	consider	to	be	negligibly	small	compared	to	the	
timescale	of	all	other	phenomena	described.	 	 In	order	 to	 improve	 the	model	by	accounting	 for	non-
simultaneous	attachment	of	motors,	one	should	develop	a	statistical	law	for	the	evolution	of	𝐶!	that	
accounts	for	the	attachment	probability	of	a	given	motor,	at	a	given	time.	
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Appendix	A	
The	first	law	of	thermodynamics	is	given	by	

!
!"

𝑒𝑑𝑉!!!
= − 𝑁!𝐽!!𝑑𝑆!!!

+ 𝑇!𝑣!𝑑𝑆!!!
+ 𝐵!𝑣!𝑑𝑉!!!

− 𝑁!  ℎ!𝐽!!𝑑𝑆!!!
	 	 	 (A1)	

where	 e	 is	 internal	 energy	 per	 unit	 volume	 in	 the	 reference	 state,	 𝐽!!	 is	 heat	 flux	 in	 the	 reference	
configuration,	vi	is	the	velocity	of	elements	of	the	polymer	network	and	thus	is	the	rate	of	change	of	xi	
and	ℎ!	is	the	partial	molar	enthalpy	of	species	k.		Use	of	the	divergence	theorem	and	the	principle	of	
virtual	power	gives	us	

!"
!"
= − !!!

!

!!!
+ 𝑡!"

!!!"
!"

−
! !!!!

!

!!!
			 	 	 	 	 	 	 	 	 (A2)	

The	rate	of	change	of	entropy	of	the	body	is	

!
!"

𝜂𝑑𝑉!!!
= − 𝑁!

!!
!

!
𝑑𝑆!!!

− 𝑁!  𝜂!𝐽!!𝑑𝑆!!!
+ 𝜂!𝑑𝑉!!!

	 	 	 	 	 (A3)	

where	 𝜂	 is	 the	 entropy	 per	 unit	 volume	 in	 the	 reference	 state,	 𝜂!	 is	 the	 partial	 molar	 entropy	 of	
species	k	and	𝜂!	is	the	rate	of	entropy	production	per	unit	volume	in	the	reference	state.		This	leads	to	

!"
!"
= − !

!
!!!

!

!!!
− 𝐽!!

!
!!!

!
!
−

! !!!!
!

!!!
+ 𝜂!			 	 	 	 	 	 	 	 (A4)	

The	Helmholtz	energy	per	unit	volume	is	given	by	

𝜓 = 𝑒 − 𝑇𝜂	 	 	 	 	 	 	 	 	 	 	 	 (A5)	
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and	thus	

!"
!"
= 𝑡!"

!!!"
!"

−
! !!!!

!

!!!
− !!

!

!
!"
!!!

+ 𝑇
! !!!!

!

!!!
− 𝜂 !"

!"
− 𝑇𝜂!	 	 	 	 	 	 (A6)	

We	introduce	𝜇!,	the	chemical	potential	of	species	k,	and	observe	that	

𝜇! = ℎ! − 𝑇𝜂!	 	 	 	 	 	 	 	 	 	 	 (A7)	

The	rate	of	change	of	the	specific	Helmholtz	energy,	by	us	equating	Eq.	(A5)	to	the	time	derivative	of	
Eq.	(A5)	and	by	us	using	Eq.	(5),	becomes	

!"
!"
= 𝑡!"

!!!"
!"

− !!!

!!!
+ 𝜂! !"

!!!
𝐽!! −

!!
!

!
!"
!!!

+ 𝜇! !!!

!"
− 𝑄!! − 𝜂 !"

!"
− 𝑇𝜂!	 	 	 			 (A8)	

We	next	assume	that	the	Helmholtz	energy	has	functional	dependence	provided	by	Eq.	(6)	and	rewrite	
Eq.	(A8)	as	an	expression	for	entropy	production	

𝑇𝜂! = 𝑡!" −
!"
!!!"

!!!"
!"

+ 𝜇! − !"
!!!

!!!

!"
− 𝜂 + !"

!"
!"
!"
− !!!

!!!
+ 𝜂! !"

!!!
𝐽!! −

!!
!

!
!"
!!!

− 𝜇!𝑄!! −
!"
!"

!"
!"
	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 (A10)	

From	the	second	law	of	thermodynamics,	we	must	impose	the	right	hand	side	of	Eq.	(A10)	to	be	≥ 0.			

Considering	chemical	equilibrium,	homogenous	and	stationary	distribution	of	temperature	and	species	
concentration,	which	 also	 implies	 no	 flux	 of	 species,	 and	no	 change	of	 cross-link	 density,	 the	 first	 3	
terms	 in	parenthesis	 in	 Eq.	 (A10)	must	be	≥ 0	 for	 all	 deformation	 rates,	 concentration	 changes	and	
temperature	adjustments,	whether	positive	or	negative.		This	gives	Eqs.	(7),	(8)	and	(9).		Eq.	(A10)	can	
then	be	rewritten	as	

𝑇𝜂! = − !!!

!!!
+ 𝜂! !"

!!!
𝐽!! −

!!
!

!
!"
!!!

− 𝜇!𝑄!! −
!"
!"

!"
!"
	 	 	 	 	 	 (A11)	

If	we	assume	that	the	first,	the	second	and	the	third	and	fourth	together	are	independent	processes,	
from	Eq.	(A11)	we	then	obtain	inequalities	at	Eqs.	(10),	(11),	and	(12).		

Appendix	B	
Considering	 room	 temperature,	 we	 have	 𝑘𝑇 = 4.14 ∙ 10!!" 𝐽	 and	 𝑅𝑇 = 2.49 ∙ 10! 𝐽.	 	 The	 linear	
dimension	 of	 a	 water	 molecule	 is	 3	 Å,	 giving	 a	 solvent	 molar	 volume	 of	Ω ≈ 1.63 ∙ 10!! 𝑚!.	 	 The	
diffusion	 coefficient	 is	 estimated	 using	 the	 Stokes-Einstein	 formula	𝐷 = 𝑘𝑇/ 6𝜋𝜌𝜂 ,	where	𝜌	 is	 the	
radius	 of	 a	 water	 molecule,	 1.5	 Å,	 and	 𝜂 = 8.9 ∙ 10!! 𝑃𝑎 𝑠	 is	 the	 viscosity	 of	 water,	 giving	 finally	
𝐷 = 1.65 ∙ 10!! 𝑚!/𝑠.			

Bertrand	et	al.	[1]	measured	the	shear	modulus	of	the	passive	gel	as	𝐺! = 1 𝑃𝑎.		Adopting	the	relation	
𝐺! = 𝑘𝑇 𝑅!!,	we	 can	estimate	 the	 radius	of	 gyration	of	 the	 linkers,	 giving	𝑅! ≈ 160 𝑛𝑚.	 	 The	Kuhn	
length	of	one	linker	chain	is	reported	as	𝐿! ≈ 2000 𝑛𝑚,	while	the	cross	sectional	area	is	𝐴! ≈ 1 𝑛𝑚!	
[1].		This	gives	a	volume	of	polymer,	per	crosslink,	estimated	as	𝑉! ≈ 3𝐴!𝐿! = 6 ∙ 10! 𝑛𝑚!.		The	total	
volume	 of	 gel,	 per	 crosslink,	 is	 𝑉 ≈ 𝑅!! = 4 ∙ 10! 𝑛𝑚!,	 giving	 a	 volume	 fraction	 of	 polymer	 of	
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𝑓! ≈ 10!!.		From	this	we	estimate	the	initial	swelling	ratio	as	𝐽! = 1 𝑓! ≈ 10!,	giving	𝜆! = 𝐽!!/! ≈ 10	
for	the	passive	gel.		The	shear	modulus	of	the	polymer	network	before	swelling	is	𝑁!𝑘𝑇,	while	that	of	a	
gel	subject	to	uniaxial	contraction	is	𝐺 = 𝑁𝑘𝑇𝜆! 𝜆!!.		For	the	passive	gel	we	have	𝜆! = 𝜆!	and	𝑁 = 𝑁!,	
giving	𝐺! = 𝑁!𝑘𝑇 𝜆!	[8].	 	From	this	we	obtain	the	crosslink	density	of	the	passive	gel	as	𝑁! ≈ 2.42 ∙
10! 𝜇𝑚!!.			

After	activation	of	the	motors,	Bertrand	et	al.	[1]	observed	a	10-fold	increase	in	gel	stiffness	at	steady	
state,	i.e.	the	stiffening	created	by	static	motors,	giving	𝐺!! = 10 𝐺!.		This	was	also	accompanied	by	a	
contraction	 of	 ~ 30%,	 giving	 𝜆!,! = 0.7 𝜆!,	 and	 then	 𝑁!! = 𝐺!!𝜆!! 𝑘𝑇𝜆!,! = 3.46 ∙ 10! 𝜇𝑚!!.	 	 At	
steady	state,	we	consider	the	chemical	potential	of	the	solvent	to	be	homogenous	and	equal	to	that	of	
the	passive	gel.		Thus,	Eq.	(33)	must	give	the	same	result	for	𝐽 = 𝜆!!	and	𝑁 = 𝑁!,	and	for	𝐽 = 𝜆!,!𝜆!!	and	
𝑁 = 𝑁!!.	 	This	condition	is	satisfied	only	if	we	choose	𝜒 = 0.44.	 	The	value	of	initial	and	steady	state	
chemical	 potential	 of	 the	 solvent	 is	 then	 calculated,	 from	 Eq.	 (33),	 as	𝜇!"# − Ω Π!"# = 𝜇! − Ω Π! ≈
5.4 ∙ 10!!𝑅𝑇 = −1.34 ∙ 10!! 𝐽/𝑚𝑜𝑙.			

The	size	of	the	gel	fragments	was	not	measured	in	Bertrand	et	al.	[1],	however,	they	observed	it	to	be	
in	the	range	of	1 𝜇𝑚	and	estimated	the	relation	𝐴/𝑧~3 𝜇𝑚,	with	𝐴	and	𝑧	the	area	and	the	thickness	of	
the	fragment,	respectively.	We	adopt	𝑧 = 0.6 𝜇𝑚	and	𝐴 = 1.8 𝜇𝑚!	so	that	the	volume	of	the	fragment	
is	 ~1 𝜇𝑚!.	 	 𝑧	 constitutes	 the	 initial	 length	 of	 the	 fragment,	 giving	 reference	 length	 𝐿 = 𝑧/𝜆! =
0.06 𝜇𝑚,	 and	 a	 characteristic	 time	 𝑡∗ = 𝐿! 𝐷 = 2.2 ∙ 10!!𝑠.	 	 The	 thickness	 of	 the	 gel	 fragment	 at	
steady	state	 is	ℓ = 0.7𝑧 = 0.42 𝜇𝑚	and	the	bead	displacements	observed	in	the	experiments	[1]	are	
divided	 by	 this	 length	 to	 obtain	 the	 experimental	 values	 of	 the	mean	 nominal	 strain	 𝑒	 reported	 in	
Figure	3.			

A	single	motor	FtsK50C	has	been	shown	to	produce	forces	up	to	50 𝑝𝑁	and	to	travel	along	the	chain	at	
a	 speed	 of	 more	 than	 1.7	 𝜇𝑚 𝑠	 [1,14-15],	 which	 gives	 a	 power	 generation,	 per	 motor,	 of	 𝑝! ≈
10!!𝑝𝑊.		Let	us	consider	a	value	of	𝑝 = 1.4𝑝𝑊 𝜇𝑚!,	to	observe	the	same	maximum	contraction	as	
in	 the	 experiments	 [1],	 so	 that	we	use	 this	 as	 a	 calibration	parameter.	 	 Considering	𝑝 = 𝑝!𝐶!,	we	
have	 𝐶! ≈ 1.4 ∙ 10!𝜇𝑚!!,	 which	 corresponds	 to	 a	 mean	 motor	 spacing	 of	 𝐿! ≈ 0.04 𝜇𝑚	 in	 the	
reference	 state,	 and	 𝑙! ≈ 0.4 𝜇𝑚	 in	 the	 swollen	 state	 (giving	 roughly	 16	 dynamic	 motors	 per	 gel	
fragment).	 	 The	 contraction	 time	 𝑡!  	 can	 be	 estimated	 using	 Eq.	 (28).	 	 Considering	 the	motor-chain	
intermolecular	 bonds	 being	 primarily	 hydrogen-type,	 we	 estimate	𝐸!  ≈  10!! 𝑝𝐽.	 	 Given	𝑁!  ≈ 2 ∙
10!𝜇𝑚!!,	and	making	the	assumption	of	700-fold	maximum	stiffening,	as	obtained	 in	our	numerical	
results,	 we	 have	𝑁!  ≈ 10!𝜇𝑚!!.	 	 Finally	 we	 obtain	 a	 value	 in	 the	 order	 of	 𝑡! ≈  0.5 𝑠	 which	 also	
confirms	the	experimental	observations	 in	Bertrand	et	al.	 [1],	where	 the	average	contraction	 time	 is	
0.5	s	(in	Figure	3	it	can	be	observed	that	the	peak	corresponding	to	the	black	circles	has	slightly	longer	
contraction	time	while	in	that	corresponding	to	the	blue	triangles	is	shorter).	
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