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Ubaldo M. Córdova-Figueroa∗a

The self-assembly of colloidal magnetic Janus particles with a laterally displaced (or shifted),
permanent dipole in a quasi-two-dimensional system is studied using Brownian dynamics sim-
ulations. The rate of formation of clusters and their structures are quantified for several values
of dipolar shift from the particle center, which is nondimensionalized using the particle’s radius
so that it takes values ranging from 0 to 1, and examined under different magnetic interaction
strengths relative to Brownian motion. For dipolar shifts close to 0, chain-like structures are
formed, which grow at long times following a power law, while particles of shift higher than 0.2
generally aggregate in ring-like clusters that experience limited growth. In the case of shifts be-
tween 0.4 and 0.5, the particles tend to aggregate in clusters of 3 to 6, while for all shifts higher
than 0.6 clusters rarely contain more than 3 particles due to the antiparallel dipole orientations
that are most stable at those shifts. The strength of the magnetic interactions hastens the rate at
which clusters are formed; however, the effect it has on cluster size is lessened by increases in the
shift of the dipoles. These results contribute to better understand the dynamics of magnetic Janus
particles and can help the synthesis of functionalized materials for specific applications such as
drug delivery.

1 Introduction
Magnetic colloids are of particular interest in the field of mate-
rials science due to the ease with which the structures formed
can be controlled when their magnetic interactions are properly
tuned. Nanoparticles of this nature have found myriad applica-
tions in progressive technologies such as photonics,1 controlled
motion,2–5 cancer treatment,6 and many others.7 To be able to
design systems of magnetic colloids which can be easily controlled
by exploiting their magnetic properties, we must first understand
their aggregation dynamics based on the nature of the colloids.

The simplest model for the study of magnetic colloids is that
of the dipolar hard sphere (DHS), a sphere of diameter d with a
point dipole moment m located in the center because it is isotropic
in both it’s shape and potential.8–11 The DHS model has been ex-
tensively studied, and its equilibrium properties are well under-
stood. Variations on the DHS model can be introduced by adding
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shape or potential anisotropy. These variations produce differ-
ences in structure and macroscopic behavior, the study of which is
the next step in understanding systems of magnetic colloidal par-
ticles. The subject of this study is one such variation on the DHS
model, characterized by a lateral shifting of the dipole with re-
spect to the particle center, commonly called the magnetic Janus
particle. Similar systems of Janus particles are of great interest in
the field of colloids due to their unique aggregation dynamics.12

Modern fabrication methods such as surface or bulk modifi-
cation have been used to successfully produce magnetic Janus
particles.13,14 One version of this method consists of using va-
por deposition to coat patches of the particle in a metal such as
iron oxide, thereby inducing a magnetic dipole on the particle.
Studies have shown that varying the deposition rate causes the
particles to exhibit distinct assembly behaviors in a way analo-
gous to the shifting of a dipole.15,16 This proves that there are
ways to tune the dipole of a magnetic colloidal particle, and as
such it is important to understand the structures which pertain to
each dipolar shift and magnetic potential, so as to predict these
structures in a real-world environment.

Previous research on these particles has mostly focused on the
effects that polydispersity, shape anisotropy, and dipole placement
have on the equilibrium behavior of the system.17–21 Studies of
large systems of Janus particles through the use of Molecular
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Dynamics simulations have been conducted,22 but these also fo-
cused on equilibrium behavior. Only recently have studies begun
to delve into the dynamic aspects of these systems, such as the re-
laxation dynamics of systems driven by time-dependent magnetic
or electric fields and the control of self-propelled systems.23–25

Previous work has shown that an increasing dipolar shift causes
the ground state structures of the system to transition from chain-
like to ring-like aggregates,26 with increasing dipoles leading to
more compact structures, but the dynamic growth and distribu-
tion of the structures in these systems has not been reported on.

The purpose of this work is to explore the effect a Janus na-
ture has on the dynamics of quasi-two-dimensional magnetic par-
ticle self-assembly. The growth of these systems was quantified
by studying the average cluster size and system nucleation over
time, with systems being categorized based on when they reach
equilibrium. Characteristic structures of the system at equilibrium
were also studied by way of inter-dipolar angles and population
distributions. Circularity of clusters was also determined by mea-
suring effective radius as a function of cluster size and comparing
values to the radius for an ideal circle. This article is organized
as follows: in the Problem Formulation section the model is in-
troduced, along with the governing equations for the system and
the parameters studied. In the Results section we present the
simulation results, including graphs for dynamic cluster growth
and equilibrium system structures. In the Conclusions section
we draw conclusions and discuss plans for future work.

2 Problem Formulation
2.1 Model

The model consists of identical colloidal particles with a perma-
nent laterally shifted dipole modeled as hard spheres submerged
in a quasi-two-dimensional Newtonian fluid at constant tempera-
ture. Figure 1 shows the model system where mi and m j are the
dipolar moments, S is the distance of the dipoles from the particle
center, and a is the particle radius. This figure also showcases the
primed reference system (x′,y′,z′) individual to each particle and
the laboratory reference system universal to the simulation. Par-
ticles are initialized with random positions and orientations in a
periodic box with a surface fraction φs = 0.01. Because of their as-
sociated computational cost, and since they have been shown to
strictly slow down kinetics in the nucleation process and speed it
up in the growth process for a dilute system27,28, hydrodynamic
interactions are not accounted for in this model. The dipolar shift
is found dividing the absolute shift S by the particle radius a, i.e.,
s = S/a. This model is representative of Janus particles with a fer-
romagnetic cap moving between two glass slides, a common way
to study such particles experimentally.

2.2 Governing Equations

Considering the particles are subjected solely to Brownian mo-
tion, interparticle forces, and hydrodynamic drag, the following
overdamped Langevin equations for the forces and torques arise:

FD +FP +FB = 0, (1)

TD +TM +TB = 0, (2)

Fig. 1 Model system. The magnetic region of the spherical colloids is
represented in orange given a magnetic dipole moment (mi or m j) lat-
erally displaced a distance S from the particle center. The body fixed
(x′,y′,z′) and the laboratory reference (x,y,z) frames, and additional inter-
particle interaction parameters are also shown.

where FD and TD are the drag force and torque, FP is the summa-
tion of forces due to magnetic and repulsive interactions between
particles, TM is the torque due to magnetic interactions, and FB

and TB are the Brownian force and torque. The magnetic interac-
tion force is modeled by the dipole-dipole interaction potential:

Φdd(i j) =− µ0

4π

[
3
(mi · rdi j)(m j · rdi j)

r5
di j

−
(mi ·m j)

r3
di j

]
, (3)

rdi j = rdi− rd j, rdi j =| rdi j |, (4)

where µ0 is the vacuum permeability (4π · 10−7H/m), and rdi j

is the dipole-dipole distance. The repulsive Weeks-Chandler-
Andersen (WCA)29 potential used to model steric repulsion be-
tween particles is given by:

ΦWCA(ri j) =

4ε

[(
2a
ri j

)12
−
(

2a
ri j

)6]
, if ri j ≤ 21/62a

0, if ri j > 21/62a
,

where ε is the potential strength, a is the particle’s radius, and ri j

is the distance between particle centers of mass.
Upon integration over finite differences of equations (1) and

(2), the resulting nondimensionalized equations of motion for
particle position and orientation arise:

r̃(t̃ +∆t̃) = r̃(t̃)+ F̃P(t̃)∆t̃ +∆r̃B, (5)

ΩΩΩ(t̃ +∆t̃) = ΩΩΩ(t̃)+ T̃M(t̃)∆t̃ +∆ΩΩΩ
B, (6)

where ∆r̃B and ∆ΩΩΩ
B are the random displacements inducing the

translational and rotational Brownian motion, respectively. In
these equations, the lengths were scaled with the particle ra-
dius (r ∼ a), the time was scaled with the characteristic diffu-
sion time (t ∼ τD), the forces were scaled using the Brownian
force (F ∼ kBT/a), and the torques with the Brownian torque
(T ∼ kBT ).

The Brownian displacement and rotation contributions in equa-
tions (5) and (6) can be characterized by the following statistical
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properties:

〈∆r̃B〉= 0, 〈∆r̃Br̃B〉= 2I∆t̃, (7)

〈∆ΩΩΩ
B〉= 0, 〈∆ΩΩΩ

B
ΩΩΩ

B〉= 3/2I∆t̃. (8)

In order to properly track the rotation of the particle dipoles in
three dimensional space, the quaternion parameters χ, η , ξ , and
ζ are used to define their orientation. Using these quaternions
we define the transformation matrix A as in30,31:

A =

−ξ 2 +η2−ζ 2 +χ2 2(ζ χ−ξ η) 2(ηζ +ξ χ)

−2(ξ η +ζ χ) ξ 2−η2−ζ 2 +χ2 2(ηχ−ξ ζ )

2(ηζ −ξ χ) −2(ξ ζ +ηχ) −ξ 2−η2 +ζ 2 +χ2

 .

The magnetic torque on the particles primed reference system
is obtained with TM ′ = A ·TM . This magnetic torque is used to
find the principle axis angular velocity by dividing the changing
orientation portion of equation (6) by the time step, ∆t. The time
evolution of the quaternions is related to the principle axis angu-
lar velocity, ω ′, via the following matrix30,31:

ξ̇

η̇

ζ̇

χ̇

=
1
2


−ζ χ ξ η

−χ −ζ η ξ

η −ξ χ −ζ

ξ η ζ χ




ω ′x
ω ′y
ω ′z
0

 .

2.3 Parameters Used

The strength of the magnetic interaction potential between parti-
cles is dictated by the dipolar coupling constant λ , a dimension-
less parameter, which represents the ratio of magnetic to Brown-
ian forces and is defined as:

λ =
µ0m2

4πa3kT
. (9)

For the repulsive WCA potential we varied the energy parame-
ter ε depending on the strength of the magnetic interactions.

The values studied for shift are from 0.0 - 0.6 as it has been
shown by Yener and Klapp22 that higher values yield few new in-
sights and are not experimentally relevant. An emphasis is given
to small shifts due to the substantial change in cluster properties
for shifts smaller than 0.2. The results shown are for λ = 15−45,
values lower than this were shown to not produce any aggrega-
tion while values higher than 75 caused all systems to exhibit
system size dependence through cluster agglomeration. In order
to resolve the fastest time scale in the system which is the charac-
teristic diffusion time of the particles τD, the time step is nondi-
mensionalized using it, i.e., ∆t̃ = ∆t/τD. For low and medium shift
cases the time step is kept at 10−4, but it is increased for simula-
tions in which the shift is higher than 0.5 due to the strength of
the magnetic potential rising sharply when the distance between
dipoles is smaller than 1. The WCA potential energy parameter ε

is also only increased when the shift is higher than 0.5 in order to
balance the sharply increasing magnetic potential. System size ef-
fects were studied in cases of small-shift by varying the amount of
particles from 250−750, while systems of medium and high shift

were kept at 500 particles since system-size effects are negligible
for those cases.

2.4 Cluster Properties

Two particles are considered to be in a cluster if the distance be-
tween their centers is below the interaction range, i.e., ri j/2a<α.
The value of the interaction range used in this work, to avoid mis-
quantification of clusters (as linear or ring structures), is α = 1.2.
The unfolding method is used to account for the periodic bound-
ary conditions.32,33 Using the number of clusters Nc and the
amount of particles in each cluster Nc,p, the weight averaged
mean cluster size can be calculated using the formula:

〈Nc〉= 〈
∑

Nc
p=1(Nc,p)

2

∑
Nc
p=1 Nc,p

〉. (10)

In order to quantify the nucleation and growth phases the nu-
cleation factor is calculated for each system using the formula:

nc =
Nc−NS

Np
, (11)

where NS is the number of singlets in the simulation and Np is the
number of particles. It is important to note that for the purposes
of this formula, singlets also count as clusters. The cluster size
distribution P(Nc) is also calculated.

2.5 Structure Properties

In order to quantify the orientational ordering of the particles,
the bonded particle orientation distribution function P(mi ·m j) is
calculated, considering that two particles are bonded as long as
they satisfy the distance criterion described above. The effective
radius of clusters as a function of cluster size is also studied as a
means to gage the "circularity" of clusters.

3 Results

3.1 Dynamic Cluster Growth

We begin our discussion by showing some of the structures
formed for various combinations of dipolar shift, s, a magnetic
interaction potential, λ , of 45 and a surface fraction, φs, of 0.01
over the course of the simulation in Fig. 2. Qualitatively, three
main cluster types can be observed for low (s = 0−0.1), medium
(s = 0.2−0.5), and high dipolar shifts (s = 0.6−1). For low shifts
of s = 0.0,0.1, as shown in Fig. 2a-f, clusters tend to be in the
form of long chains or large loops that continuously grow in size
as the simulation progresses. It is expected that at very long times
all particles would form part of a single cluster in these systems,
hence the size of these clusters depends on the amount of parti-
cles simulated and the length of the simulation. At medium shifts
such as s = 0.2, as shown in Fig. 2g-i, particles aggregate in com-
pact ringlike structures, which experience some growth through-
out the simulation. At high shifts of s = 0.6, as shown in Fig.
2j-l, mostly anti-parallel doublets and triplets are present, as new
particles rarely aggregate with existing triplet clusters. For all
the renderings presented in Fig. 2: repulsive surfaces are shown
in white, and magnetic surfaces are shown in orange; from left
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Fig. 2 Simulation renderings of systems of s = 0.0, 0.1, 0.2, and 0.6 over time. Panels (a), (d), (g), and (h) show overviews of the initial clusters formed.
Panels (b), (e), (h) and (k) show the first signs of the clusters that characterize each system forming. Panels (c), (f), (i), and (l) contain overviews of the
simulation at long times and closeups of each system’s characteristic clusters. Magnetic dipoles are shifted into orange regions.
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Fig. 3 Time effect on the aggregation behavior of a dilute system of magnetic Janus particles at λ = 45. Panel (a) shows weight averaged mean cluster
size, 〈Nc〉, as a function of time for various s. Additionally, the continuous lines represent the power law aggregation behavior at long time. Panel (b)
shows the nucleation and growth process for the same dipolar shifts, s, as presented in panel (a). In both panels filled symbols correspond to cases
where we observe systems with time-independency, while open symbols correspond to systems that are time-dependent. This style is adhered to for
all following graphs.

to right Fig. 2 follows a pattern of initial simulation snapshot
(t/τD = 0), early simulation clusters snapshot (t/τD = 40), and
late simulation closeup (t/τD > 2000) of characteristic clusters.
Videos of these systems can be found in the Electronic Supple-
mentary Information (ESI).

The ground state structures found by previous studies26 match
those seen for systems of medium and high shift.

In order to quantify the dynamic growth of the system, we
graph the average cluster size and the nucleation factor over time,
as seen in Fig. 3a and 3b. A distinction is made for systems of
low shift by graphing them using open symbols due to their time-
dependent nature. This nature is demonstrated by the fact that
the system does not reach an equilibrium of average cluster sizes
as the simulation progresses, but rather continues to increase fol-
lowing a power law behavior as clusters continue to acquire more
particles. The continued growth of these systems is due to the
chainlike configuration in which the particles bond that allows
for easier bonding of particles as soon as they find themselves
in the range of another particle’s magnetic interaction potential.
The continued growth is a characteristic of Diffusion Limited Ag-
gregation (DLA), as particles bond irreversibly and the process is
limited only by their mutual diffusion. Unlike DLA processes with
isotropic potentials, clusters in Janus particle systems such as this
one are not ramified, but rather consist of loose single chains of
particles.

As the mean cluster size graph shows in Fig. 3a, the trend
observed is that the average cluster size decreases as the shift pa-
rameter increases, with the largest average cluster size of around
20 being reached by the lowest shift system of 0.0, and the small-
est average cluster size of 3 pertaining to systems with a shift

of 0.6. The trend of decreasing cluster size is caused by how the
shift parameter affects the way particles bond. As the shift param-
eter increases, clusters begin to contract and the dipoles move to-
wards the center of the cluster, making it difficult for new particles
to enter clusters as the attractive forces between particles inside
the cluster and those outside decrease greatly with increasing dis-
tance. The distance eventually causes attractive forces to be insuf-
ficient to overcome the potential barrier induced by the repulsive
forces between particles. Because of this, systems of medium and
high shift reach an equilibrium phase where the average cluster
size ceases to increase. The equilibrium size is determined by a

Fig. 4 Effect of shift on cluster size distributions, P(Nc), for the same
systems studied in Fig 3. Filled symbols correspond to cases where the
mean cluster size is time-independent, while open symbols correspond
to cases where we observe time-dependency.
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Fig. 5 Effect of shift on orientational distribution function. Panels (a), (c), (e), (g), and (i) demonstrate the bonded particle orientation distribution
functions for the same five systems studied in Fig. 3. Panels (b), (d), (f), (h), and (j) contain the characteristic clusters for each of the systems.

balance between aggregation due to magnetic attraction and dis-
aggregation due to Brownian motion. The behavior is indicative
of Reaction Limited Aggregation (RLA)34, and is the crucial dis-
tinction between high and the low-shift systems. For cases of λ

> 75 cluster sizes continue to grow past the point where equilib-
rium is found in other systems because the magnetic attraction

becomes strong enough to overcome inter-particle repulsion re-
gardless of particle orientation.

The nucleation graph in Fig. 3b shows the nucleation and
growth phases for each system. The initial slope demonstrates
particle-particle aggregation, the nucleation phase, where all the
singlets begin to aggregate into clusters. Stable clusters in our sys-
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tems aggregate irreversibly, and as such there will be almost no
singlet particles at long times, when this point is reached it signals
that the nucleation phase has ended. Past that the particles ex-
perience cluster-cluster aggregation, the growth phase, where all
particles form part of some cluster and clusters begin to aggregate
with one another. For low shift systems, the growth phase will
theoretically continue until all particles are part of one cluster, but
the dilute nature of the simulation slows down the process such
that it becomes too computationally taxing to achieve. Systems
with medium shifts experience slower and limited growth due to
their RLA nature, and eventually reach an equilibrium similar to
the mean cluster size graph. For high shifts the basic doublet and
triplet clusters do not experience much growth and as such the
system quickly reaches equilibrium once nucleation ceases.

3.2 Population Distribution

Figure 4 contains the population distribution of clusters, which
is used to study in detail the differences in aggregation behavior
caused by the dipolar shift. The total time simulated is ≈ 3000τD

(see Fig. 3a) and the data in Fig. 4 represents the average of
the last 20% of the simulations. Low shifts are graphed using
open symbols in order to indicate their time-dependent nature,
though it is clear that these systems create the largest clusters by
a significant margin. It is clear that at longer times the popula-
tion distributions would show the peaks just shifted to the right.
For medium shifts, clusters can reach sizes of up to 12 for a shift
of 0.2, but they generally consist of 3− 8 particle clusters. For
high shifts, cluster size varies very little, only from 2 to 4 par-
ticles, with a majority of clusters consisting of 2 or 3 particles.
Increasing λ causes larger clusters to form, but the effect is most
prominent for systems of low shift while being negligible for sys-
tems of high shift. These results coincide with the findings re-
garding the orientations of particles found in Fig. 5. The neg-
ligible amount of singlets for all cases also confirms that stable
clusters in all systems studied aggregate irreversibly. In order to
tune these distributions for systems that reach equilibrium, the
surface fraction can be increased, leading to more clusters in the
4-8 particle region, but increasing the surface fraction also leads
to increased cluster-cluster aggregation. Population distributions
showing these behaviors have been added to the ESI (Fig. S1).

3.3 Structural Properties

Figure 5 displays the distribution of dipole orientations for par-
ticles that share a cluster and the accompanying characteristic
clusters for each system. Similar to Fig. 4, the data in Fig. 5 rep-
resents the average of the last 20% of the simulations. Systems
with shifts of zero have a large peak at 1, indicating an angle of
0◦. The angle corresponds to chain configuration, which is the
most stable state for bonded particles with a centered dipole. For
systems with shift equal to 0.1 the distribution begins to slant
towards values between 0.5 and 1, corresponding to angles be-
tween 45◦ and 0◦, indicating that the clusters are beginning to
contract and form amorphous ring-like structures.

For shifts of 0.2, a spread of peaks are found between 0 and 1,
indicating angles between 90◦ and 0◦. These angles correspond to

rings of 4 or more particles. The most common values for shift 0.4
are 0 and -0.5, corresponding to angles of 90◦ and 120◦, indicat-
ing clusters of 4 and 3 particles, respectively. A 90◦ angle indicates
a head-to-side orientation, meaning the particles dipoles arrange
in a square formation. A 120◦ angle indicates that the particle
dipoles arrange themselves in an equilateral triangle formation.
For shift 0.6, there are very clear peaks at -0.5 and -1, indicating
clusters of 3 and 2 particles respectively. Doublets and triplets
are the most common structure for shifts higher than 0.6, with
doublets becoming more probable as the shift approaches 1. For
dipolar shifts in the range 0≤ s≤ 0.5, the WCA potential strength,
ε, is kept at 100. This causes noticeable interpaticle separation at
s = 0 (see Fig. 5b) which is reduced as s increases (see Fig. 5b, d,
f, h). This is because as s increases the magnetic force increases
(due to the magnetic dipoles being closer to each other), conse-
quently, the equilibrium distance of the total interaction potential
decreases. At s > 0.5 the magnetic force overcomes the WCA po-
tential force for ε = 100, causing overlapping between particles.
To avoid overlapping, ε was significantly increased (ε = 1000),
leading to the increased distance between particles noticeable at
s = 0.6 (see Fig. 5j) similar to that observed at s = 0.

This clearly shows the effect the dipolar shift has on the favored
structures for each system, causing them to go from long chains,
to ringlike structures, to triplets and doublets. Increasing λ did
not have an effect on the orientation distribution of systems with
s≥ 0.1, but for very low shift systems (s = 0.0 and 0.05) it led to a
significantly higher portion of particles forming a straight chain,
thereby increasing the rigidity of those clusters. A figure detailing
these results can be found in the ESI (Fig. S2).

Fig. 6 Effective radius of clusters as a function of cluster size throughout
the aggregation process. Also graphed as a solid black line and a dashed
black are the effective radius for ideally circular rings and straight chains,
respectively.

Figure 6 represents the effective radius of clusters as a function
of cluster size throughout the aggregation process. The ideal be-
havior of effective radius for straight chains (Re f f ,chains) and ide-
ally circular rings (Re f f ,rings), nondimensionalized with the parti-
cle radius a, is plotted using the following equations:

Re f f ,chains = Nc, (12)
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Re f f ,rings = 1+
1

sin(π/Nc)
. (13)

Systems of 0.0 shift tend strongly towards chain-like behav-
ior, and they exhibit large standard deviations in effective radius
when clusters contain 15 or more particles due to the Brown-
ian forces randomly bending the chains, which is consistent with
what is observed in the literature.22 For 0.05 shift the behavior
is similar, up until around 15 particles, where effective radius de-
creases as clusters start transitioning into amorphous rings due
to the dipole shift curving the clusters in a particular direction.
At 0.1 shift this transition from chains into rings occurs around
a clusters size of 6 particles, and leads to more compact clusters
than lower shift systems. Systems of shifts 0.2, 0.4, and 0.6 ex-
hibit very similar behavior, forming compact clusters that hardly
deviate from ideally circular systems. The radius of gyration 〈Rg〉
shows essentially the same behavior as 〈Re f f 〉 when it’s plotted as
a function of 〈Nc〉 (see Fig. S3 in the ESI).

Fig. 7 Long time mean cluster sizes, 〈Nc〉∞, as a function of dipolar shift
for several magnetic coupling constant, λ . Filled symbols correspond
to cases where the mean cluster size is time-independent, while open
symbols correspond to cases where we observe time-dependency. A
continuous line representing the power-law behavior of mean cluster size
with respect to shift is shown for the time independent region. The results
of Yener et al. 22 for 3D systems of φ = 0.07 and λ = 6.67−53.33 are also
graphed for comparison

3.4 Combined effect of λ and shift

Figure 7 shows the average cluster size at long times as a func-
tion of shift for various λ , also presented are the results of Yener
et al.22 for 3D systems of φ = 0.07 and λ = 6.67−53.33. Again the
data in Fig. 7 represents the average of the last 20% of the sim-
ulations. Systems, which are time-dependent are graphed with
open symbols since the values would differ depending on the
final time simulated. For the region of systems that are time-
independent the average cluster size follows an inverse power law
behavior with respect to the dipolar shift (Nc ∼ s−0.6±0.1). Since

λ mainly serves to increase the rate of aggregation, its effect is
more pronounced in the time-dependent systems as clusters will
continue to grow until all particles form one cluster, while time-
independent systems reach an equilibrium average cluster size
where growth ceases. Comparison with the Yener results shows
some deviation for low shift values as the average cluster size
for these systems depends greatly on interaction strength, parti-
cle density and simulation time; all of which differ for our sim-
ulations, particularly the density (0.01 vs. 0.07) and simulation
time (3000 vs. 7500). The 3D nature of the Yener system allows
for the formation of staggered loops in systems of shift 0.1− 0.2,
which contain a larger amount of average particles than the loops
present in our simulations. The results are in agreement for shifts
of 0.3 and higher where systems reach a given equilibrium size
regardless of particle density or simulation time.

4 Conclusions

We studied the dynamics of magnetic Janus particles with differ-
ing combinations of dipolar shifts and magnetic interaction po-
tentials. An inverse relationship was found between the lateral
shift of the dipole and the average cluster size; as the dipole shift
increases, the average cluster size decreases. Three basic clus-
ter types were identified based on the dipolar shift: chains or
loops, rings, and triplets or doublets; clusters characteristic of
the low, medium and high shift regimes, respectively. Systems
with shifts very close to 0 are time dependent because they fa-
vor chainlike aggregation which allows for low-potential barriers
to cluster growth, giving them a DLA nature that allows for con-
tinuous cluster growth. As the dipolar shift reaches 0.2 and be-
yond, the favorable orientation between dipoles of bonded parti-
cles leads clusters to contract, increasing the potential barrier for
cluster growth such that the average cluster size reaches an equi-
librium determined by the balance between attractive and repul-
sive forces. Our study of the effective radius as a funciton of clus-
ter size shows that systems of shift higher than 0.2 exhibit clusters
with great circularity, and there exists a transition point for sys-
tems of lower shift where they go from favoring linear structures
to circular ones when clusters are large enough.

The main effect of λ increasing is a shorter aggregation time,
though at high λ of over 75 cluster-cluster aggregation starts to
happen for all systems, meaning that all systems become size
dependent. Although our study did not consider the effects of
hydrodynamic forces, it has been shown that even for systems
of much higher particle concentration accounting for hydrody-
namic forces does not change the qualitative nature of the sys-
tem’s aggregation.27 Understanding the factors which influence
self-assembly can help characterize materials based on the geom-
etry of their aggregation, or design them for specific uses such as
droplet manipulation or microfluidic mixing.35,36 The design pro-
cess of new materials can also benefit from the fact that one can
control the structures by tuning the parameters that affect self-
assembly. Future work will include higher quantities and concen-
trations of particles, and three-dimensional simulations.
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Graphical Abstract

The effect of dipolar shift on the size, morphology, and aggregation process of clusters is studied.
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