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Cross-stream migration of a Brownian droplet in a
polymer solution under Poiseuille flow

Michael P. Howarda∗, Thomas M. Trusketta, and Arash Nikoubashmanb

The migration of a Brownian fluid droplet in a parallel-plate microchannel was investigated using
dissipative particle dynamics computer simulations. In a Newtonian solvent, the droplet migrated
toward the channel walls due to inertial effects at the studied flow conditions, in agreement with
theoretical predictions and recent simulations. However, the droplet focused onto the channel
centerline when polymer chains were added to the solvent. Focusing was typically enhanced for
longer polymers and higher polymer concentrations with a nontrivial flow-rate dependence due to
droplet and polymer deformability. Brownian motion caused the droplet position to fluctuate with a
distribution that primarily depended on the balance between inertial lift forces pushing the droplet
outward and elastic forces from the polymers driving it inward. The droplet shape was controlled
by the local shear rate, and so its average shape depended on the droplet distribution.

Introduction

Particle migration in a microchannel1,2 has important applica-
tions in separation technologies such as filtration,3 cell sorting,4

and fractionation.5 It also has implications for physical processes
like the margination of cells in the blood stream6,7 and for multi-
phase flows in geological formations (enhanced oil recovery).8–10

Such cross-stream migration could be desirable if a separation
is needed but undesirable if a homogeneous distribution is pre-
ferred, and it is important to understand and design the condi-
tions under which migration occurs. Multiple mechanisms exist
for cross-stream migration in microchannels,11–15 but in this arti-
cle we will focus on particle migration that is passively controlled
by a pressure- or gravity-driven flow,16,17 which is attractive from
an engineering perspective for its potential as a scalable, high-
throughput technology.

Rigid particles in a Newtonian fluid are known to move across
streamlines in parabolic (Poiseuille) flows due to lift forces at
small but finite fluid inertia.18,19 Inertial lift outward from the
channel center is balanced by an inward force induced by hydro-
dynamic interactions with the walls, causing the particle to adopt
an intermediate lateral position.17,20,21 This effect was first ob-
served experimentally by Segré and Silberberg,22 who found that
millimeter-sized spheres in pipe flow migrated to an annulus at
roughly 60% of the pipe radius. The number and position of these
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“focusing” points depends on the channel geometry and flow, and
has also been demonstrated for, e.g., parallel plates23 and square
ducts.24

Deformable droplets in a Newtonian fluid exhibit an even
richer set of behaviors than their rigid counterparts.18 Unlike
rigid spheres, droplets can migrate across streamlines even in the
Stokes flow (inertialess) limit due to their deformability. Chan
and Leal showed that the direction of this migration depends on
the viscosity ratio between the droplet and the fluid.25 Stan et
al. found that chemical and surfactant-induced Marangoni ef-
fects also influenced droplet migration.26,27 At finite fluid iner-
tia, Legendre and Magnaudet demonstrated that there is lift on a
droplet28 analogous to the Saffman lift on a rigid particle29,30 but
with a magnitude that depends on the viscosity ratio between the
droplet and the fluid. Experiments4,31 and simulations32–35 have
shown that droplets undergo Segré–Silberberg-type migration in
Poiseuille flow, and that the preferred lateral position depends
on several dimensionless parameters, including the Reynolds and
capillary numbers, as recently discussed in detail by Marson et
al.35

High-throughput applications like filtration or sorting may re-
quire focusing particles onto the channel centerline,16,21 which
is not always achieved by inertial or deformation-induced migra-
tion in simple channel geometries. Considerable efforts have been
dedicated to design various microfluidic device geometries that
can manipulate particles in this way,21 but finding such geome-
tries can be difficult and highly problem specific.17 Fortunately,
it has been shown that the addition of polymers to the Newto-
nian solvent provides a simple mechanism, called viscoelastic fo-
cusing,36 to drive particles across streamlines toward regions of
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low shear.
Viscoelastic polymer solutions induce inward particle migra-

tion in Poiseuille flow due to a gradient in the first normal
stress difference over the particle surface.37 The elastic force ex-
erted by the polymers competes directly with other forces act-
ing on the droplet for the flow conditions, including inertial lift,
deformation-induced forces, and wall forces, to set the lateral po-
sition of the particle. Such viscoelastic focusing of rigid particles
has been demonstrated experimentally10,37–42 and using com-
puter simulations.43–48 Interestingly, a neutral surface separating
focusing points at the channel center and at the walls was dis-
covered in simulations for certain classes of viscoelastic fluids.43

Droplets under shear are also known to migrate in polymer solu-
tions.4,25,39,40

Most prior theoretical descriptions18,25,36,37 and simula-
tions43,44,48 of viscoelastic focusing have adopted a continuum-
level description. Such models neglect microscopic details and
fluctuations of the macromolecular components of the viscoelas-
tic medium and the particle or droplet. However, in microfluidic
and nanofluidic devices, it can be necessary to consider such mo-
tion and interactions. For example, Brownian motion leads to
considerable scattering in the position of a rigid sphere around
the Segré–Silberberg annulus for Poiseuille flow in a pipe.49

Moreover, Brownian particles are often comparable in size to the
macromolecular constituents of non-Newtonian fluids. At these
length scales, Brownian spheres can exhibit anomolous motion
in polymer solutions,50–53 which has been attributed to coupling
between the motion of the sphere and the polymers.54,55 It is
then unclear whether well-established results for viscoelastic fo-
cusing of larger particles directly transfer to smaller particles in
microchannels.

We previously demonstrated the applicability of viscoelastic fo-
cusing for Brownian rigid spheres with sizes comparable to the
constituent polymer chains of a viscoelastic medium.45–47 How-
ever, we noted significant fluctuations of the particle around its
focused position, in qualitative agreement with microfluidic ex-
periments.41 It is desirable to exploit the viscoelastic focusing
mechanism to manipulate small Brownian droplets, which fluc-
tuate in shape in addition to position, in microchannels. To our
knowledge, this problem has gone relatively unexplored.

It is not obvious whether the viscoelastic focusing mechanism
also applies to Brownian droplets. Unlike their rigid counterparts,
small droplets deform under shear and eventually rupture at suffi-
ciently high shear rates. The critical shear rate for this to occur de-
pends sensitively on the droplet confinement and non-Newtonian
effects in the surrounding fluid.56–58 A droplet may breakup be-
fore sufficient elastic forces develop to focus it onto the cen-
terline, but deformation-induced migration of the droplet,18,25

which does not occur for rigid spheres, may actually assist the
desired cross-stream migration in certain regimes. The deforma-
bility of the droplets may further lead to nontrivial coupling with
comparably sized polymer chains, especially in confinement.59

For sufficiently long polymers or high enough polymer concentra-
tions, viscoelastic forces could induce cross-stream migration of a
small Brownian droplet in a microchannel, but the distribution of
the droplet position in the channel may be broad or narrow under

certain flow conditions.

In this article, we test the ability of viscoelastic focusing to in-
duce cross-stream migration of Brownian droplets using particle-
based computer simulations. Although the droplet migrated out-
ward in a Newtonian solvent (in agreement with prior simula-
tions35), we found that it focused onto the channel centerline in
solutions of sufficiently long polymers at modest concentrations.
The flow-rate dependence of this cross-streamline migration was
nontrivial due to a combination of effects from droplet deforma-
tion and the elastic force exerted by the polymers. We also varied
the viscosity ratio between the droplet and the solvent, but did
not observe any significant effect on the migration in the flow
regime considered. The droplet shape in the parabolic flow was
controlled primarily by the local shear rate (capillary number)
near the droplet, and so its average shape depended sensitively
on the droplet distribution in the channel.

The rest of this article is organized as follows. We first describe
the simulation model, including characterization of the fluid sur-
face tension and viscosity. We then report our results, first analyz-
ing the simulated flow fields and then systematically demonstrat-
ing the effects of polymer concentration, polymer chain length,
and flow rate on the distribution of the droplet in the channel
and its shape. We finally present our conclusions, suggesting av-
enues for future inquiry.

Simulation model
A single fluid droplet was simulated in a Newtonian solvent and
in a polymer solution using dissipative particle dynamics (DPD)
simulations60–62 DPD is a particle-based mesoscale simulation
method that faithfully resolves hydrodynamic interactions, incor-
porates thermal fluctuations, and is well-suited for modeling mul-
tiphase fluids. In DPD, particles interact with each other through
three pairwise forces: a conservative force FC, a dissipative force
FD, and a random force FR. As is typical, we modeled the conser-
vative force acting on particle i due to particle j by a soft repul-
sion,62

FC =

{
ai j (1− r/rc) r̂ r ≤ rc

0 r > rc
, (1)

where ai j sets the strength of the repulsion between particles i
and j, r is the distance between the particle centers, r̂ is the unit
vector to the center of particle i from the center of particle j, and
rc is the cutoff radius for the interaction that sets the effective size
of the particles.

The random and dissipative forces impart thermal fluctuations
and drag while also acting as a thermostat on the DPD particles.
These forces are applied in a pairwise manner that conserves mo-
mentum, with the forces on particle i from particle j given by

FD =−γi jw(r)(r̂ ·∆v)r̂ (2)

FR =
√

γi jw(r)ξ r̂, (3)

where γi j is the drag coefficient between particles i and j, w is a
weight function, and ∆v = vi−v j is the difference in the velocities
of particles i and j. To satisfy the fluctuation–dissipation theo-
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rem,61 ξ is an independent random variable for each pair of par-
ticles that has zero mean, 〈ξ (t)〉= 0, and a variance 〈ξ (t)ξ (t ′)〉=
2kBT δ (t− t ′) with kB being Boltzmann’s constant and T being the
temperature. In this work, the drag coefficients were assigned
per particle, γi, and the effective drag coefficient for a pair was
determined by the mixing rule γi j = 2/(1/γi +1/γ j).63

The weight function w modulates the dynamic properties, i.e.,
diffusivity and viscosity, of the fluid. We used the generalized
weight function proposed by Fan et al.,64

w(r) =

{
(1− r/rc)

s r ≤ rc

0 r > rc
, (4)

with s= 1/2. This choice of s increases the Schmidt number of the
fluid compared to the standard DPD weight function62 (s = 2) to
give a value closer to that of a real liquid. We also found that
using s = 1/2 gave better agreement with the no-slip boundary
conditions at the microchannel walls than using s= 2 (see below).

Fluid model

The polymer solution and droplet were modeled using three types
of DPD particles: solvent (s) particles, polymer segment (p) par-
ticles, and droplet (d) particles. The model and results in this
article will be reported in a fundamental system of units using d
as the unit of length, m as the unit of mass, and ε as the unit of
energy, which gives τ =

√
md2/ε as the unit of time. Throughout,

the total density of DPD particles was ρ = 3.0/d3, all DPD particles
had equal mass 1.0m, the temperature was T = 1.0ε/kB, and the
cutoff radius was rc = 1.0d. All simulations were performed using
HOOMD-blue65–67 (version 2.2.5) on multiple graphics process-
ing units with a simulation time step of 0.01τ.

In order to choose the DPD repulsive parameters, we first com-
puted the surface tension σ between coexisting slabs of solvent
and droplet particles. We fixed the repulsive parameter for parti-
cles of the same type to standard DPD values,62 ass = add = 25ε/d,
but varied the cross-interaction strength, asd. The drag coefficient
should not affect the measured surface tension, which is a static
property, and so was fixed to γs = γd = 1.0m/τ to promote fast
diffusion. The coexisting slabs were equilibrated by joining two
cubic regions of edge length 30d to give an orthorhombic box cen-
tered around the origin with edge lengths Lx = 30d, Ly = 30d, and
Lz = 60d, where x, y, and z denote the Cartesian coordinate axes.
Particles were allowed to interdiffuse for 5× 104 τ to equilibrate
the joined slabs.

In this geometry, σ can be computed from the pressure
anisotropy,68,69

σ =
Lz

2

〈
pzz−

pxx + pyy

2

〉
, (5)

where pαα denotes the diagonal component of the stress tensor
for index α, and the prefactor of 1/2 accounts for the presence
of two interfaces due to the periodic boundary conditions. The
cross-interaction strength was varied from asd = 40ε/d to 100ε/d,
and the surface tension was measured using eq. (5) by sampling
pαα every 0.05τ during a 105 τ simulation. The measured surface
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Fig. 1 Surface tension σ between slabs of solvent and droplet particles
for varied strengths of the repulsive cross-interaction asd. The solid line
gives the value predicted by eq. (6). Inset: Density ρ of solvent (solid
lines) and droplet (dashed lines) particles near the fluid interface at z =
0d.

tension (Fig. 1) is in good agreement with Groot and Warren’s
empirical equation,62

σ = 0.75ρkBTrcχ
0.26(1−2.36/χ)3/2, (6)

with χ = 0.286(asd− ass) being their fit to the Flory–Huggins pa-
rameter for the binary DPD fluid when ρ = 3.0/d3.

As expected, the surface tension increased with increasing asd

because the solvent and droplet particles became less miscible.
The solvent and droplet particle density profiles near the inter-
face (inset of Fig. 1) converged to similar values with increas-
ing asd, developing a sharper interface as σ increased. We de-
sired a droplet fluid that was barely soluble in the solvent but
that formed a droplet that could still deform under the flow rates
accessible in the simulations. At asd = 60ε/d, the density of sol-
vent particles dissolved in the droplet phase was already small
(4.66×10−4/d3), the interfacial width was comparable to the DPD
particle diameter, and the surface tension σ = 2.65ε/d2 permitted
modest deformation under viable flow rates. We accordingly se-
lected asd = 60ε/d for the cross-interaction strength.

We subsequently measured the shear viscosity of the solvent
using reverse nonequilibrium simulations (RNES).70 Details of
this method are well-described elsewhere.70,71 We simulated a
cubic box of edge length 20d containing only solvent particles
with drag coefficients that varied from γs = 1.0m/τ to 50.0m/τ.
Using RNES, we imposed a shear stress τzx on the solvent by peri-
odically exchanging the x-momenta of one pair of particles from
slabs of width 1.0d centered at z = ±5d. The swapped particles
were the ones that most opposed the desired direction of flow
(x) in each slab. We measured the velocity profile ux(z) between
the exchange slabs (|z|< 3.5d) every 10τ over a 5×105 τ simula-
tion, obtaining a Couette flow profile with a shear rate γ̇ = ∂ux/∂ z
that decreased as the time between exchanges was increased from
0.05τ to 0.5τ. The imposed shear stress was proportional to the
measured shear rate, τzx = µsγ̇, as expected for a Newtonian fluid.
The shear viscosity, µs, was then determined by a linear fit of τzx

versus γ̇.
As expected, the viscosity increased with increasing γs (Fig. 2).
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Fig. 2 Solvent viscosity µs for varied drag coefficient γs. The solid line
gives the value predicted by eq. (7).

The simulated viscosity was generally lower than theoretically es-
timated,64

µs =
315kBT

128πγsr3
c
+

512πγsρ
2r5

c
51975

, (7)

particularly at high values of γs. We selected γs = 4.5m/τ for
the solvent particles, which gives a measured shear viscosity of
µs = 1.73ετ/d3. In most cases, we used γd = γs, giving a droplet
viscosity µd = µs, but we also varied γd to determine the effects of
the viscosity ratio in select cases.

To model linear polymer chains of length M that were fully
soluble in the solvent but insoluble in the droplet, the polymer
segment (p) particles were treated as if they were solvent (s) par-
ticles in the DPD interactions, i.e., app = aps = 25ε/d, apd = 60ε/d,
and γp = 4.5m/τ. Bonds within a chain were modeled by adding
a harmonic spring force FB to FC for connected pairs of particles.
The force on particle i bonded to particle j was

FB =−κ (r−b) r̂, (8)

with spring constant κ = 100ε/d2 and b = 0.7d.72

Flow in microchannel
We simulated pressure-driven flow of the droplet and polymer
solution in a parallel plate microchannel. The full system was ini-
tialized as follows. We first dispersed solvent particles with a total
density of ρ = 3.0/d3 into a three-dimensional, periodic simula-
tion box of dimensions Lx = 80d, Ly = 40d, and Lz = 42d and equi-
librated the solvent for 1000τ. We chose x as the direction of flow
in the microchannel, and the parallel plates had normals along z.
We constructed the microchannel walls by freezing solvent par-
ticles having |z| ≥ H = 20d, zeroing their velocities, and switch-
ing their types to be wall (w) particles.73,74 (The total channel
width was 2H.) The wall particles interacted with the fluid as if
they were solvent particles, i.e., asw = apw = 25ε/d, adw = 60ε/d,
and γw = 4.5m/τ. Mutual DPD interactions between wall parti-
cles were excluded. To help enforce no-slip and no-penetration
boundary conditions at the walls, solvent, polymer, and droplet
particles were additionally reflected from the planes at z = ±H
using bounce-back rules.74,75 These boundary conditions on the
individual polymer beads ensure that the polymer chains do not

Fig. 3 Fluid droplet (orange) in a parallel plate microchannel (gray) with
fx = 0.005ε/d. Polymers of length M = 80 at polymer weight fraction
φp = 10% are depicted in green. The solvent particles (blue) have been
removed from the front of the image for visual clarity. A small number of
droplet particles are dissolved in the polymer solution due to their finite
solubility. This snapshot was rendered using OVITO 2.9.0. 76

cross through the walls.
We selected particles near the origin of the channel to form

a droplet of radius R = 4.0d, giving a droplet blockage ratio of
R/H ≈ 0.2. Due to the small but finite solubility of the droplet
particles in the solvent, we first estimated the number of particles
required to form such a droplet volume using the lever rule with
the coexistence densities shown in Fig. 1. This procedure gave
a droplet with a radius initially larger than R, but some particles
later dissolved into the solvent so that the droplet reached its tar-
get radius. We then randomly created linear polymers of length
M from the remaining solvent particles. To build each chain, we
first randomly removed M solvent particles. They were reinserted
as polymer segment (p) particles between the channel walls in
a randomly generated chain conformation having a bond length
of 0.7d between connected particles. The number of polymer
chains Np was chosen to give the desired polymer weight fraction,
φp = NpM/ρV , where V = 2LxLyH is the volume of the microchan-
nel. In most simulations, we used φp = 5.0% or 10.0%, but also
tested φp = 0.0% (no polymer), 2.5% and 7.5% for selected condi-
tions. The complete configuration, including the solvent, droplet,
and polymers, was equilibrated for 5000τ.

Flow was generated by applying a constant body force, fx, in
the x-direction for all solvent, polymer, and droplet particles. For
the pure solvent, applying such a force in conjunction with no-
slip boundary conditions at the channel walls gives the standard
parabolic (Poiseuille) velocity field,

ux(z) =U
[

1−
( z

H

)2
]
, (9)

where U = ρ fxH2/2µs is the maximum velocity at the channel
centerline for this flow field. To help enforce the wall bound-
ary conditions in the simulations, the frozen wall particles were
assigned velocities vx(z) = −ux(2H−|z|) based on their positions
in the wall.74 Additionally, ux(z) was initially superimposed onto
the polymer solution and droplet to accelerate the approach to a
steady flow profile during a 5000τ simulation. Fig. 3 shows an ex-
ample configuration for the polymer solution under flow at steady
state.

4 | 1–11

Page 4 of 13Soft Matter



0.0

0.5

1.0

1.5

u
x
[d
/
τ
]

(a)

no polymer
M = 10
M = 20

M = 40
M = 80

−1.0 −0.5 0.0 0.5 1.0

z/H

0.0

0.5

1.0

1.5

u
x
[d
/
τ
]

(b)

no polymer
φp = 2.5%

φp = 5.0%

φp = 7.5%

φp = 10.0%

Fig. 4 Average flow profile in the microchannel, ux, at fx = 0.005ε/d for
(a) various polymer chain lengths at φp = 10.0% and (b) various concen-
trations of M = 80 polymers. The solid lines give the expected profile
according to eq. (9) without any fitting parameters for the no-polymer
case and the fitted profiles from eq. (11) for the polymer solutions. Note
that the circles and crosses display the same data in both panels.

We repeated this procedure 5 times for each combination of
chain length M, polymer concentration φp, body force fx, and
droplet viscosity µd studied to generate independent starting con-
figurations. Production simulations of 105τ were performed for
each configuration. The droplet properties were sampled every
50τ, while the properties of the entire solution were recorded ev-
ery 2500τ. The computational workflow and data were managed
using the signac framework.77

Results and discussion
Flow field
We first measured the average velocity profile in the microchan-
nel, including the solvent, polymers, and droplet, to characterize
the flow field and check for the anticipated non-Newtonian effects
in the polymer solutions. The flow was unidirectional, ux(z), and
is shown for various polymer chain lengths at the largest poly-
mer concentration simulated (φp = 10.0%) in Fig. 4a and for vari-
ous concentrations of the longest polymers simulated (M = 80) in
Fig. 4b. The body force in Fig. 4 was fx = 0.005ε/d, which was
the largest value we simulated and where any wall slip or non-
Newtonian flow effects should be most pronounced. This upper
bound for fx in our simulations was determined by trial and error
so that no droplet breakup occurred.

The velocity profile in the absence of polymer was parabolic,
as expected, and was also in quantitative agreement with eq. (9)
using the measured µs (Fig. 2). This indicates that the no-slip
boundary conditions are well-enforced and also validates the
RNES measurement of µs. The presence of the droplet made
no measurable contribution to the expected neat solvent flow

field; however, the addition of polymers with M = 10 resulted
in a lower maximum velocity U at the centerline, consistent with
the expected higher viscosity of a polymer solution (Fig. 4a).78

Increasing the length of the polymers from M = 10 to M = 80 fur-
ther lowered U . Similar trends were observed when varying the
concentration of the M = 80 polymers from φp = 0.0% to 10.0%
(Fig. 4b), with higher polymer concentrations giving lower U .

For dilute polymer solutions, the zero-shear viscosity µ0 can be
estimated using Einstein’s equation for the viscosity of a suspen-
sion,79,80

µ0 = µs(1+2.5Φ), (10)

where Φ = 4πR3
hNp/3V is the polymer pervaded-volume fraction

defined using the hydrodynamic radius Rh of the polymers. For
simplicity, we approximate the polymers as Gaussian chains, for
which Rh ≈ 0.271bM1/2.81 This yields an estimated viscosity in-
crease of roughly 5% for the M = 80 polymers at φp = 2.5% and
of nearly 20% for the same polymers at φp = 10.0%. Using this
estimate as an effective viscosity in eq. (9) gives a maximum ve-
locity that almost quantitatively matches the measured value in
Fig. 4b at φp = 2.5%, but overpredicts the maximum velocity at
φp = 10.0%.

The discrepancy at the higher concentration was partially
caused by the increasingly non-Newtonian character of the poly-
mer solutions. As the polymer length or concentration increased,
the velocity profiles became less parabolic and developed a flat-
tened region near z/H = 0. Unlike the neat solvent, the velocity
profiles for the polymer solutions were not well-described using
eq. (9), which was derived for a Newtonian fluid, because of this
difference in shape. To obtain a better fit to the velocity profiles
and quantify this non-Newtonian behavior, we assumed that the
shear stress in the polymer solutions followed a power-law model,
τzx = Kγ̇n, where n is the flow behavior index and K is a prefac-
tor that also gives correct dimensions to τzx. In a parallel plate
channel, the flow field for a power-law fluid is

ux(z) =
n

n+1

(
ρ fxHn+1

K

)1/n[
1−
( |z|

H

)1+1/n
]
. (11)

A Newtonian solvent has n = 1 and K = µs, and eq. (11) reduces
to eq. (9), whereas shear-thinning fluids have n < 1, resulting in
a non-parabolic flow profile.

We determined K and n by fitting the flow fields in Fig. 4
through eq. (11), recovering exponents ranging from n = 0.92 for
M = 10 (nearly Newtonian) to n = 0.66 for M = 80 (shear thin-
ning) when φp = 10.0% (Fig. 4a). Likewise, n decreased from
0.81 at φp = 2.5% to 0.69 at φp = 7.5% for the M = 80 polymers
(Fig. 4b). Hence, the polymer solutions became increasingly
shear-thinning for longer polymers or higher polymer concentra-
tions, as expected. There is a small but noticeable deviation of
the measured velocity from the fit using eq. (11) for M = 80 at
φp = 10.0%, suggesting that the shear stress may have a more so-
phisticated functional form than the simplistic power-law model.
Nonetheless, the fitted exponents give us a useful qualitative char-
acterization of the polymer solutions.

Solutions of longer polymer chains shear thin more readily un-
der flow than solutions with shorter chains because longer chains
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have longer relaxation times, τp, that cause them to deform and
align with the flow at smaller γ̇.82 The dimensionless Weissenberg
number, Wi = γ̇τp, characterizes this relationship. When Wi� 1,
the rate of deformation is slow compared to the polymer relax-
ation and primarily coil conformations are expected, whereas for
Wi� 1, the polymers are expected to be highly deformed. We ap-
proximate the shear rate by γ̇ ≈U/H, and estimate the polymer
relaxation time from the Zimm model for a Gaussian chain,81,82

τp ≈ 0.326µsb3M3/2/kBT . We find that Wi ≈ 0.4 for the M = 10
polymers and Wi ≈ 8 for the M = 80 polymers for the conditions
in Fig. 4a ( fx = 0.005ε/d). Hence, more significant chain stretch-
ing and shear-alignment is expected for the longer chains, which
should result in more shear thinning (smaller values of n). This
expectation is consistent with the shape of the flow fields in Fig. 4
and the fitted values for n. The enhanced shear thinning corre-
sponds to more significant chain stretching, which should lead to
stronger elastic forces on the droplet for cross-stream migration.

Droplet distribution

Having characterized the flow in the microchannel, we measured
the center-of-mass position of the droplet between the channel
walls, zc. The droplet was identified for each configuration using
a clustering procedure83,84 in order to exclude droplet particles
dissolved in the solvent from subsequent analysis. We analyzed
the absolute value |zc| based on the symmetry of the microchannel
and to improve sampling. Previous studies34,35 have reported the
average center-of-mass position, 〈|zc|〉, which is the first moment
of the distribution of |zc|. However, a Brownian droplet can adopt
a variety of distributions in the channel depending on the condi-
tions, and we found that 〈|zc|〉 was not sufficiently discriminating
between these. For example, a uniformly distributed droplet has
〈|zc|〉 ≈ (H−R)/2, which is indistinguishable from a droplet which
is strongly focused at this position throughout the entire simula-
tion. We accordingly computed the distribution of |zc| using a bin
size of 1.0d, and will focus most of our discussion around such
distributions.

We first considered the distribution of the droplet in solutions
of M = 80 polymer chains of increasing concentration φp (Fig. 5)
for the flow conditions shown in Fig. 4b. In the neat solvent,
the droplet migrated outward from the channel centerline, show-
ing a strongly preferred position of |zc|/H ≈ 0.375. Such out-
ward migration is consistent with prior theoretical and simulation
work for droplets.33–35 The droplet can migrate by two mecha-
nisms: (1) deformation due to the flow, even in the creeping flow
limit, and (2) lift forces at finite inertia. We define a channel
Reynolds number, Re = 2ρUH/µs, and a droplet Reynolds num-
ber Red = Re(R/H)2.21,35 When the channel Reynolds number is
sufficiently small, the flow is expected to be laminar. When Red

is small, inertial forces on the droplet are not significant and re-
sults from the Stokes flow limit are expected to apply. As an up-
per bound, we find Re . 100 and Red . 4 for the investigated
flow rates, consistent with the laminar flow of Fig. 4 but suggest-
ing that inertial lift on the droplet may be significant, as in the
Segré–Silberberg effect for rigid particles.22,47,49 This estimate is
in accord with the observed migration of the droplet away from
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Fig. 5 Distribution of droplet center-of-mass, |zc|, in a solution of M = 80
polymers at increasing polymer concentrations φp for fx = 0.005ε/d. The
inset shows the same distribution near the channel wall at the lowest
flow rate simulated ( fx = 0.001ε/d), where a pronounced peak develops
at larger φp due to depletion interactions. Note that the axis markings for
|zc|/H have been chosen so that they can be readily reinterpreted in units
of the droplet blockage ratio, R/H = 0.2.

the centerline.
The addition of polymers to the channel at increasing polymer

concentration φp dramatically altered the preferred position of the
droplet. The droplet distribution significantly broadened at the
lowest concentration (φp = 2.5%). Interestingly, this included an
increased probability of finding the droplet near the wall, beyond
the preferred peak in the neat solvent, which we speculate may be
partially due to polymer-mediated depletion interactions.85 De-
pletion, often discussed in the context of rigid spherical colloids
in solution with smaller polymer chains, induces an effective at-
traction between otherwise hard particles (the colloids) due to
volume exclusion of a secondary species (the polymers).86 In this
case, the effective attraction is between the droplet and the wall
because the polymers are insoluble in the droplet and cannot pen-
etrate the channel boundaries.

Continuing to add polymer increasingly focused the droplet
onto the channel centerline with a narrowing distribution of |zc|.
The increased polymer concentration had competing effects on
the droplet migration. On the one hand, the depletion force scales
with φp,85 which increases the outward force on the droplet near
the wall. On the other hand, the increased φp lowered the maxi-
mum velocity in the channel, decreasing the outward inertial lift
on the droplet.21 Concurrently, the increased polymer concentra-
tion also increased the inward elastic force on the droplet.47 The
net result of these interactions when fx = 0.005ε/d was an in-
creased inward force for larger φp, which improves the droplet
focusing onto the centerline, consistent with our previous work
on viscoelastic focusing of rigid particle.45–47 However, the de-
pletion attraction should also be present for systems at lower flow
rates or at rest, where it may have a much larger magnitude rela-
tive to the elastic force. Indeed, a pronounced peak near the wall
was also obtained at φp = 10.0% as a result of depletion forces for
simulations at fx = 0.001ε/d, the lowest flow rate studied here
(inset of Fig. 5).

We next considered the impact of chain length M on droplet mi-
gration at two polymer concentrations, φp = 5.0% and φp = 10.0%.
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Fig. 6 Distribution of droplet center-of-mass, |zc|, in a solution of poly-
mers of length M at (a) φp = 5.0% and (b) φp = 10.0% for fx = 0.005ε/d.

Longer chains are expected to have better droplet focusing onto
the centerline for three reasons: (1) the elastic force should scale
with M,47 (2) longer chains deform at lower shear rates and so
can exert more elastic force for a given γ̇, and (3) the maximum
velocity was found to be lower for longer chains, reducing the
outward inertial lift. The measured distributions of |zc| (Fig. 6)
are clearly consistent with this hypothesis. The addition of poly-
mers with M = 10 did not have a significant impact on the droplet
distribution compared to the neat solvent. This may not be sur-
prising given that Wi = 0.4 for the M = 10 polymers, and the solu-
tion is nearly Newtonian. However, adding polymers of increasing
length improved the focusing onto the centerline in a monotonic
fashion for a given concentration. These longer polymers have a
larger Wi for a given γ̇, and so stretch more and impart a larger
elastic force onto the droplets.

We note, however, that there are additional concentration ef-
fects that influenced when polymers of a given size became ef-
fective focusers. This is most apparent for the M = 40 chains. At
φp = 5.0%, the droplet had a broad distribution of |zc| and a most
probable position of |zc|/H ≈ 0.425. However, at φp = 10.0%, the
droplet was strongly focused onto the centerline. We speculate
that this difference in behavior is due to an increase in elastic
force with concentration, which was sufficient to overcome the
inertial lift at φp = 10.0% but too weak at φp = 5.0%.

To understand this flow rate and concentration dependence in
more detail, we computed the droplet distribution for the M = 40
chains at varying fx for φp = 5.0% and 10.0%, which we com-
pare to the distributions without any polymer (Fig. 7). Without
polymer, the droplet initially migrated outward as fx increased,
but the peak of this distribution moved inward with additional
increases in fx (Fig. 7a), consistent with the simulations of Mar-
son et al.35 The initial outward migration is analogous to the
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Fig. 7 Distribution of droplet center-of-mass, |zc|, in a solution of M = 40
polymers at (a) φp = 5.0% and (b) φp = 10.0% for fx = 0.005ε/d.

Segré–Silberberg effect for rigid colloids;47,49 however, the in-
ward trend of the preferred position with increasing fx is stronger
for the droplet due to it deformability.35

At φp = 5.0% (Fig. 7b), there was an initial trend to migrate
inward when fx . 0.003ε/d. However, at larger fx, the droplet
began to move outward, suggesting that inertial lift dominated
over the available elastic force. In contrast, the droplet distribu-
tion sharpened around the channel centerline at φp = 10.0% for
all fx considered here (Fig. 7c). It is possible that there is a suffi-
ciently large fx that could exceed the inward elastic force at this
concentration. However, the droplet may breakup under shear
before such a force can be applied. This contrasts with the case of
the rigid colloid, which does not have this restriction on the flow
rate.

We finally tested the sensitivity of viscoelastic focusing to the
viscosity ratio between the droplet and the solvent. In the Stokes
flow limit, Chan and Leal showed that inward or outward droplet
migration can be obtained in a Newtonian solvent based on this
ratio.25 However, recent simulations by Marson et al. suggest
that such differences may not be as significant in the inertial
regime.35 Our primary interest is in how the droplet migration
may change in a non-Newtonian polymer solution. We varied
the droplet viscosity ratio with the solvent, µd/µs, from 0.54
(γd = 1.0m/τ) to 5.3 (γd = 40.0m/τ) for the M = 80 polymer solu-
tions at φp = 10.0%, which focused the droplet when µd/µs = 1.0.
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Since the effective viscosity of the polymer solution µ0 is higher
than that of the pure solvent, µd/µs should be considered an up-
per bound on the viscosity ratio between the droplet and the poly-
mer solution.

We found no significant differences between the droplet distri-
butions under these conditions, and so we omit the data here for
brevity. This result may not be unexpected given the qualitative
picture of the viscoelastic focusing mechanism. The polymers are
insoluble in the droplet, and so they primarily influence the fluid
around it. (The flow inside the droplet is affected by µd, but such
effects may be secondary.) Given that the viscosity ratio did not
significantly alter the droplet distribution in the inertial regime of
the pure solvent for Marson et al.,35 it is then not surprising that
the viscosity ratio also does not significantly change the droplet
distribution in the polymer solution. Indeed, letting µd/µs → ∞

should recover the rigid particle limit of viscoelastic focusing to
which we have already drawn comparison. However, we do antic-
ipate that the viscosity ratio may still influence the droplet distri-
bution more significantly in other flow regimes (e.g., Stokes flow
limit) that were not accessible to us in our simulations. In these
cases, the migration forces controlled by the viscosity ratio, with
inward or outward direction,25 would either work cooperatively
or antagonistically with the elastic force of a sufficiently deformed
polymer.

Droplet shape

We have concentrated our discussion thus far on how polymers
influence the droplet distribution in the microchannel, but have
not yet considered how the polymers influence the droplet shape
and orientation in the flow. To characterize the droplet shape, we
first computed its gyration tensor G,

Gαβ =
1

Nd

Nd

∑
i=1

∆ri,α ∆ri,β , (12)

where ∆ri is the vector from the droplet center of mass to par-
ticle i, α and β are indices in the usual tensor notation, and Nd

is the number of particles in the droplet. We then computed the
eigenvalues λ 2

α of G, whose corresponding eigenvectors give the
principal moments of the droplet, and sorted them in descending
order, λ 2

1 ≥ λ 2
2 ≥ λ 2

3 . We determined the Taylor deformation pa-
rameter,87,88 a dimensionless measure of the asphericity of the
droplet, as

D≈ λ1− (λ2 +λ3)/2
λ1 +(λ2 +λ3)/2

. (13)

For a sphere, G is diagonal (λ1 = λ2 = λ3) and D = 0, while a
prolate spheroid has λ1 > λ2 = λ3 and D→ 1 when the aspect ra-
tio between the major and minor axes of the spheroid increases.
Hence, larger values of D correspond to droplets that have more
significant deformation. We additionally determined the inclina-
tion angle of the droplet relative to the flow direction, θ , using
G:89

tan(2θ) =
2Gxz

Gxx−Gzz
. (14)

θ ≈ 0◦ for a sphere (no preferred orientation) or for an object
completely aligned with the flow, but θ 6= 0◦ for particles that
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Fig. 8 Average droplet (a) Taylor deformation parameter 〈D〉 and (b) incli-
nation angle 〈θ〉 versus average center-of-mass position 〈|zc|〉 for varied
polymer chain lengths M at φp = 5.0% (open symbols) and 10.0% (filled
symbols). Each color indicates a different applied force fx.

align with a relative tilt.
It is well-established that D increases with γ̇ for a droplet in an

unbounded shear flow.87,88,90 In the limit of small deformations,
Taylor predicted that87,88

D =
19λ +16
16λ +16

Ca, (15)

where Ca = γ̇Rµ0/σ is the capillary number and λ = µd/µ0 is the
viscosity ratio. Roscoe91 and Chaffey and Brenner92 later showed
that in this regime, the droplet inclination angle θ to O(D) is, in
radians,

θ =
π

4
− D

5
(2λ +3) . (16)

For small deformations, θ ≈ 45◦, as argued by Taylor,87,88 but θ

decreases as the droplet deforms and aligns more with the flow
for larger Ca. In Poiseuille flows, the shear rate γ̇ (and so also
the local capillary number) varies across the channel, and accord-
ingly, the droplet may experience a different deformation and ori-
entation based on its lateral position. There may additionally be
confinement and non-Newtonian effects on the droplet deforma-
tion and orientation.56–59,93,94

Fig. 8a shows the average deformation 〈D〉 versus the average
center-of-mass position of the droplet 〈|zc|〉, clearly indicating that
the droplet is (on average) more deformed when it is (on aver-
age) farther from the centerline, where the shear rate is higher.
The droplet is additionally (on average) more inclined relative to
the flow when it is more deformed (Fig. 8b). This increasing av-
erage inclination is somewhat surprising, as prior studies on the
deformation of droplets in simple shear flow showed that droplets
are more aligned with the flow under higher shear rates,93,94 in
qualitative agreement with the predictions of eq. (16).
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Fig. 9 Average droplet (a) Taylor deformation parameter 〈D〉 and (b) in-
clination angle 〈θ〉 versus local capillary number Ca at the droplet center-
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diction 87,88 for D with λ = 1 (eq. (15)), while the line in (b) is the small-
deformation prediction 91,92 for θ with λ = 1 (eq. (16)).

It is tempting to find a parameter to collapse the data in Fig. 8
onto a single curve, e.g., through the capillary number.35,90,95

Unfortunately, such an analysis is again considerably complicated
using only average quantities because of the droplet distribution.
Indeed, the average properties computed in Fig. 8 and in prior
studies35 are intimately connected to the droplet distribution,
which sets the preferred droplet location and as a consequence,
the shear rates it experiences. This interplay between the droplet
distribution and its shape may be the reason for the increase in
〈θ〉 with increasing 〈|zc|〉 in Fig. 8b.

To deconvolve the droplet shape from the droplet distribution,
we averaged D and θ as functions of the shear rate |γ̇| at the
droplet center-of-mass using the flow fields measured in the sim-
ulations (Fig. 4). We then defined a local capillary number us-
ing the solution viscosity µ0 estimated from eq. (10). Figure 9
shows the results of this procedure for the pure solvent and the
M = 80 polymers with φp = 10.0%. In each case, the data were
well-collapsed across all body forces when plotted against Ca.
Moreover, all data nearly collapsed onto a single curve for small
Ca, i.e., near the channel centerline. However, there were some
noticeable differences at larger Ca for a given fx, particularly in θ .
These deviations corresponded to larger γ̇ and droplet positions
closer to the channel walls. This discrepancy then may be con-
nected to wall effects on the droplet and larger non-Newtonian
effects in the polymer solution in that regime.

The droplet deformation D increased monotonically with shear
rate (Fig. 9a). The solid line corresponds to Taylor’s prediction
with λ ≈ 1. (Including the polymer contribution in the viscosity
ratio made less than a 1% difference to the slope of the curve.)

The measured deformation was typically larger than predicted
by Taylor’s theory, in good agreement with previous experimental
and numerical studies of confined droplets in Newtonian and non-
Newtonian fluids,93,94 and it never reached zero even as Ca→ 0
due to the finite size of the droplet in the parabolic flow. In con-
trast to D, the inclination angle θ showed a maximum at interme-
diate Ca (Fig. 9b). This non-monotonic shape is not predicted for
droplets confined in simple shear,91–93 and so is likely due to the
parabolic flow field. On visual inspection of the trajectories, the
change in orientation with the flow appeared to be due to align-
ment of the droplet with the walls, but more alignment is also
expected at higher Ca.56,93,94

Other than these boundary effects, we found that the droplet
shape was not strongly influenced by the presence of the polymers
in solution. Instead, the deformation and orientation correlated
strongly with the shear rate due to the imposed flow. The primary
roles of the polymers in setting the average deformation (Fig. 8)
were then as viscosity modifiers, altering the flow field (Fig. 4)
for a given body force, and as focusers for the droplet, which
caused the droplet to experience a given shear rate with higher
probability.

Conclusions
We used dissipative particle dynamics computer simulations to
show that a Brownian droplet in a dilute polymer solution mi-
grates toward the center of a parallel-plate microchannel under
pressure-driven flow. Similar to a small rigid colloid in a poly-
mer solution, the droplet had a distribution of positions in the
channel that sharpened near the center for longer polymer chains
at higher concentrations. However, the dependence of this dis-
tribution on the flow rate was more complex than for the rigid
colloid due to the deformability of the droplet, which induced
cross-stream migration even in the absence of polymer and also
set an upper limit on the accessible flow rate for stretching the
polymer chains in order to avoid droplet breakup. Interestingly,
the viscoelastic focusing mechanism was robust to the droplet vis-
cosity ratio with the solvent for the flow conditions tested. The
average droplet shape depended on the droplet distribution be-
cause the local droplet deformation was controlled by the shear
rate (capillary number). Our simulations demonstrate the appli-
cability of the viscoelastic focusing mechanism for small Brown-
ian droplets that are comparable in size to the polymer chains in
the viscoelastic fluid.

Polymer-induced migration may play an important role in
droplet migration and mobility in small channels flooded with
complex fluids, such as those encountered in oil recovery from
geological formations or in membrane filtration. In this work,
we have neglected polymer solubility and adsorption with the
droplet, the presence of surfactants, complex microchannel
boundaries, and collective interactions between droplets at finite
concentration. Such effects are surely present in many applica-
tions, and an intriguing avenue of future research is to determine
how they may assist or hinder polymer-induced droplet migra-
tion in microchannels. Viscoelastic focusing will likely also influ-
ence the migration of other rigid and deformable objects in these
complex fluid mixtures, including colloids, star polymers,96 den-
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drimers, cells, and micelles. Controlling the distribution of these
objects in a mixture through general inertial and viscoelastic fo-
cusing mechanisms presents an opportunity to effect a separation.
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Dilute polymer solutions under pressure-driven flow can drive cross-stream migration of a small 
Brownian droplet to the centerline of a planar microchannel.
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