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The interactions of microtubules with motor proteins are ubiquitous in cellular and sub-cellular
processes that involve motility and cargo transport. In-vitro motility assays have demonstrated that
motor-driven microtubules exhibit rich dynamical behaviors from straight to curved configurations.
Here, we theoretically investigate the dynamic instabilities of elastic filaments, with free-ends, driven
by single follower forces that emulate the action of molecular motors. Using the resistive force theory
at low Reynolds number, and a combination of numerical techniques with linear stability analysis, we
show the existence of four distinct regimes of filament behavior, including a novel buckled state with
locked curvature. These successive instabilities recapitulate the full range of experimentally-observed
microtubule behavior, implying that neither structural nor actuation asymmetry are needed to elicit
this rich repertoire of motion.

I. INTRODUCTION

Microtubules are one of the main filamentous biopoly-
mers that form the cytoskeleton of eukaryotic cells. They
play crucial roles in the structural stability of cells as well
as in dynamic processes such as cell motility, division, re-
organization, adhesion, and signaling [1, 2]. Microtubules
are formed of α-β tubulin dimers. The polymerization
process by tail-head stacking of these dimers leads to an
inherent polarity, with each microtubule characterized by
a highly dynamic plus end and a relatively stable minus
end [1, 3]. Microtubules gain activity through the inter-
actions with motor proteins, namely kinesin and dynein
motors. These molecular motors transfer chemical energy
in the cytoplasm – in the form of adenosine-triphosphate
(ATP) – into mechanical work allowing them to move
unidirectionally along microtubules; kinesin motors move
towards the plus end, while dynein motors towards the
minus end [1, 3]. Reciprocally, by the law of action-
reaction, molecular motors can exert forces that drive
the microtubules into motion.

Microtubules have a persistence length (ratio of elastic
to Brownian forces) around 1mm, which is much larger
than their typical length L ≈ 50µm. Therefore, Brown-
ian forces can be neglected. Individual microtubules can
be viewed as elastic rods or filaments, immersed within
a fluid, and acted upon by motor proteins [3, 4]. Al-
though microtubules constitute a rather stiff part of the
cytoskeleton, experiments have found that a microtubule
can buckle under the action of a longitudinal force of
magnitude as small as 1pN [5]. This buckling instabil-
ity causes the microtubule to deform and assume curved
configurations, which have been well observed experimen-
tally in in vitro motility or gliding assays. In the glid-
ing assays, molecular motors are attached to a substrate
and the microtubules added into the ATP-rich solution
are propelled along the surface by the action of the an-
chored motors [4–8]. Early gliding assays were used to
infer the forces exerted by these molecular motors [4–
6]. For example, in [9], to estimate the average forces
of myosin motors, the authors analyzed the buckling of

the actin filaments fixed spatially at their leading end.
These actin filaments were shown to undergo both ro-
tations and flapping oscillations and their behavior was
analyzed mathematically in the context of elastic beam
models [10]. More recently, high-density gliding assays
are used as a model system for the collective dynamics
of active materials [7, 8]. An interesting feature that is
consistently observed in these experiments is that, while
many microtubules translate in a straight configuration,
some microtubules curl into tight arc-shaped configura-
tions and trace circular trajectories or rings with radii
of a few tens of microns (see Fig. 1). Meanwhile, other
microtubules move on almost regular wavy trajectories,
at similar wavelengths and smaller amplitude [7, 11].

Theoretical models that aim at explaining the mech-
anisms underlying the curling of microtubules in these
motility assays attribute it to one of two possibilities:
(i) a structural bistability of the tubulin dimers, which
allow them to exist in two distinct conformations, one
slightly shorter than the other. This causes the micro-
tubule to curve when a portion of its sub-segments switch
between the two states, providing a mechanism to create
rings via an internal change to the microtubule [12], or
(ii) differential binding of molecular motors on opposite
sides of the microtubule, which actively contribute to its
curling [13]. Although these theories are appealing, ev-
idence supporting the hypotheses that structural or ac-
tuation asymmetries are required for achieving filament
motions at buckled configuration with locked curvature
remains circumstantial at best. Here, we propose an al-
ternative, open-loop, mechanism that produces, without
inherent asymmetry, the full range of the experimentally-
observed microtubule behaviors from straight and undu-
latory translational motions to circular motions at locked
curvatures.

By way of background, it is important to note that
the morphological dynamics of active elastic filaments
in viscous flows incited a great deal of work in recent
years; see, for example, [14–17] and references therein
for various models of activity profiles. Elastic filaments
constitute an excellent model system for understanding
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FIG. 1. Microtubule behavior in motility assays: snapshots extracted from Supplementary Movie 1 of [7]. Many microtubules
glide in a straight or wavy configuration. One microtubule (indicated by the green arrow) traces a closed circular trajectory
for the full duration of the movie, while another (indicated by the red arrow) enters into a curved state at about 30 s, rotates
until about 80 s, then recovers its straight configuration.
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FIG. 2. Microfilament model: an elastic filament with free
ends is driven by a point force fp, located at s = sp, where s ∈
[0, L] is the arclength from 0 to the total length L. The local
slope is represented by the angle θ, and the local tangential
and normal directions are t and n.

various biophysical processes from ciliary beating [18]
and flagellar propulsion [19–23] to intracellular stream-
ing [24]. They also form a key ingredient to decipher-
ing the rheological behavior of many complex fluids and
soft materials [25, 26] and for the collective behavior of
active suspensions [27, 28]. Here, we present a focused
review of this growing literature; the interested reader
is referred to [3, 29, 30] and references therein for ad-
ditional details. De Canio, Lauga & Goldstein recently
used a planar filament, anchored at one end and acted
upon by a compressive follower force at the distal end to
model the action of molecular motors on microtubule fila-
ments, [31]. As the force strength increased, the filament
underwent a flutter instability leading to planar flapping
motions. In [32], the same anchored filament, free to
undergo three-dimensional motion, was shown to exhibit
richer dynamics, including three-dimensional spinning at
a buckled configuration with locked curvature. The role
of the hydrodynamic drag can be more significant for a fil-
ament with free-ends. Ref. [33] numerically examined the
existence of undulatory motions in a model of a free-end
filament acted upon by motor forces. The morphological
changes of passive actin filaments with free-ends placed
in background shear or extensile flows were considered
in a series of experimental and theoretical models that
showed various transitions from tumbling to coiling and
snaking, as discussed in [34, 35] and references therein.

In this paper, we develop a classic elastohydrodynamic
model, balancing elasticity and viscous drag, that takes

into account minimal features of the microtubule and mo-
tor protein interactions: a free-end elastic filament sub-
merged in viscous fluid and acted upon by a longitudinal
point force of constant magnitude that remains tangent
to the filament for all time. We vary the strength and
location of the point force along the filament. In the con-
text of this simple model, we observe up to four successive
instabilities as we increase the force strength, spanning
the full range of experimentally-observed microtubule be-
havior in the gliding assays. This nonlinear behavior is
consistent with a linear stability analysis of the filament
dynamics. It is also consistent with a lower-order bead-
spring model that clearly gives rise to the structure of
the eigenvalues underlying these morphological transi-
tions. In addition, we discuss the role of the location
of the actuation force and we present a scaling law that
estimates the critical force value where the transition to
a locked-curvature occurs.

II. MICROFILAMENT MODEL

We consider a slender elastic filament of length L, with
free ends, actuated by an arbitrary force distribution fa
along its centerline. The force fa(t, s) is a function of
both time t and arclength s along the filament, where
s ∈ [0, L]. The centerline of the filament is represented by
the position vector r(t, s) relative a fixed inertial frame
(e1, e2, e3), where (e1, e2) span the plane of motion of
the filament. The geometry of the filament can be de-
termined from the local tangential and normal unit vec-
tors t(t, s) and n(t, s), chosen such that n points in the
direction of increasing curvature. Equivalently, the fil-
ament geometry can be obtained from the local slope
angle θ(t, s) of the body frame, such that ts = θsn and
tt = θtn, where θs = ∂θ/∂s is the curvature of the fila-
ment. Here, and throughout this manuscript, we will use
the subscript ()s to denote differentiation with respect to
arclength s and ()t to denote differentiation with respect
to time t.

In addition to the actuation force fa = f‖(t, s)t +
f⊥(t, s)n, the filament is subject to a restoring elastic
force fe, that is a function of the filament geometry, and
a hydrodynamic drag force fh, which is proportional to
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the filament velocity. At zero Reynolds number, these
forces satisfy the local force balance

fh + fe + fa = 0. (1)

It is a classical results that the elastic force density fe
satisfies [29, 36]

fe = −Arssss − [Λ(s)rs]s , (2)

where A is the bending rigidity and Λ is the line tension
that prevents the filament from being extended or com-
pressed. Mathematically, Λ is a Lagrange multiplier that
satisfies the inextensibility constraint rts · rs = 0. We
calculate the hydrodynamic force fh using the resistive
force theory [37, 38], where fh is proportional to the local
velocity, with the anisotropic drag coefficients ξ⊥ and ξ‖
along the normal and tangential directions respectively,

fh = −
(
ξ⊥nn + ξ‖tt

)
· rt. (3)

Substituting Eqs. (2) and (3) into Eq. (1), we obtain the
governing equation as a hyperdiffusive partial differential
equation

−(ξ⊥nn + ξ‖tt) · rt −Arssss − (Λrs)s + fa = 0. (4)

We non-dimensionlize Eq. (4) by choosing the filament
length L as the length scale and the elastic relaxation
time ξ⊥L

4/A as the time scale; Eq. (4) becomes

−(nn + γtt) · rt − rssss − (Λrs)s + fa = 0, (5)

where γ = ξ‖/ξ⊥. Here, we redefined all the variables in

dimensionless form, such that tension is scaled by A/L2,
and force density is scaled by A/L3.

We next rewrite Eq. (5) in scalar form. To this end,
we first take the dot product between Eq. (5) and t, n,
and use the relation ts = θsn. We arrive at the velocity
components

rt · t = γ−1
(
3θsθss − Λs + f‖

)
, (6a)

rt · n = −θsss + θ3s − Λθs + f⊥. (6b)

We take the derivative of Eqs. (6) with respect to s to
obtain

rts · t + θsrt · n = γ−1
[
3θ2ss + 3θsθsss − Λss + (f‖)s

]
, (7a)

rts · n− θsrt · t = −θssss + 3θ2sθss − (Λθs)s + (f⊥)s. (7b)

Using the relations rts ·t = 0 and rts ·n = θt and Eqs. (6),
we obtain the scalar form of the governing equations for
θ(t, s) and Λ(t, s), namely,

θt = −θssss − Λθss −
(
1 + γ−1

)
Λsθs

+3
(
1 + γ−1

)
θ2sθss + γ−1f‖θs + (f⊥)s, (8a)

Λss − γθ2sΛ = 3θ2ss + (3 + γ)θsθsss
−γθ4s + (f‖)s − γf⊥θs. (8b)

The boundary conditions for the filament with free-ends
are given by the moment- and force-free conditions rss =
0 and rsss = 0 at both ends s = 0 and s = L, leading to

θs(0) = θss(0) = θs(1) = θss(1) = 0, (9a)

Λ(0) = Λ(1) = 0. (9b)

In obtaining Eqs. (8) from Eqs. (6), θ and Λ got decou-
pled from the translational motion of the filament. This
decoupling, or reduction, is possible because the filament
dynamics is invariant under rigid body translations. To
obtain the full filament dynamics, we first solve for the
filament geometry θ (shape and orientation) and tension
Λ using Eqs. (8), together with the boundary conditions
in Eqs. (9), then we calculate the translational velocity
using Eqs. (6) and solve for the translational motion of
the filament.

We consider the case where the filament is pushed by
a single follower force exerted at the point s = sp, sp ∈
(0, 1), such that f⊥ = 0 and f‖(s) = fpδ(s − sp), where
fp is constant, and the actuation force profile is given by

fa = fpδ(s− sp)t. (10)

We numerically solve Eqs. (8) and (9). To smooth the
singularity, we use the regularized form of the Dirac delta
function

δε(x) ≈ 1√
2πε

e
− x2

2ε2 , (11)

where ε is a small regularization parameter. Details of
the numerical methods can be found in the supplemental
document [39].

III. LINEARIZED EQUATIONS

For actuation forces fa = fpδ(s−sp)t of constant mag-
nitude fp, the straight filament configuration is a relative
equilibrium of Eqs. (8). That is to say, starting from a
straight configuration, the filament remains straight for
all time and translates freely along its tangential direc-
tion, at a constant translational velocity dictated by the
balance between the applied force fa and the hydrody-
namic drag force fh.

To investigate the stability of these relative equilib-
ria, we assume small filament deformations and linearize
Eqs. (8) about the straight configuration to get

θt = −θssss − Λθss −
(
1 + γ−1

)
Λsθs

+γ−1θsfpδ(s− sp), (12a)

Λss = fp[δ(s− sp)]s. (12b)

We integrate Eq. (12b), together with the boundary con-
ditions in Eqs. (9b), to obtain an expression for the ten-
sion Λ along the filament,

Λ(s) = fp[H(s− sp)− s], (13)

Page 3 of 12 Soft Matter



4

-3
-2
-1
0
1
2
3
4
5

-3
-2
-1
0
1
2
3
4
5

-3
-2
-1
0
1
2
3
4
5

-3
-2
-1
0
1
2
3
4
5

-2 0 2 4 6 8

Initial state

-3
-2
-1
0
1
2
3
4
5

-2 0 2 4 6 8 -2 0 2 4 6 8

-2 0 2 4 6 8-2 0 2 4 6 8

FIG. 3. Trajectory of the filament actuated by a tangential point force applied at sp/L = 0.4, with dimensionless force
magnitude fpL

3/A. The initial state is a curved geometry, shown in faded color. Darker color corresponds to increasing time.
(a) For fpL

3/A = 80, the filament recovers its straight geometry. (b) Increasing the force to fpL
3/A = 180, the filament

undergoes a circular motion with a locked curvature. (c) However, at a larger force fpL
3/A = 220, the filament escapes from

the circular motion and recovers its straight geometry again. (d) At fpL
3/A = 290, the filament exhibits decaying oscillations

as it returns to its straight shape. (e) At fpL
3/A = 300, the amplitude grows to a bounded value and the filament demonstrates

a motion similar to undulatory swimming (see supplemental movies 1-5).

where H(s − sp) is the Heaviside step function. Then,
we substitute Eq. (13) into Eq. (12a) to get the linear
equation for θ

θt = −θssss − fp[H(s− sp)− s]θss −
fp
[
δ(s− sp)−

(
1 + γ−1

)]
θs.(14)

To solve this linear partial differential equation, we as-
sume separation of time and space such that

θ(s, t) = θ̂(s)eωt, (15)

with the initial condition θ(s, t = 0) = θ̂(s) and growth
rate ω. We substitute Eq. (15) into Eq. (14) to obtain,
together with the free-ends boundary conditions (9a) for

θ̂, the eigenvalue problem

ωθ̂ = −θ̂ssss−fp[H(s− sp)− s]θ̂ss
− fp

[
δ(s− sp)−

(
1 + γ−1

)]
θ̂s.

(16)

This eigenvalue problem is not trivial to solve due to the
appearance of non-constant coefficients in the linear or-
dinary differential equation. Here, we compute the eigen-
values numerically by discretizing the right-hand side

of (16) using a second-order, finite-difference approxima-
tion.

IV. MICROFILAMENT BEHAVIOR

We numerically investigate the behavior of the elastic
filament under an axial point force fpL

3/A applied at
sp/L = 0.4. Here, we use the dimensional form of sp
and fp. Starting from a slightly-curved initial geometry,
we systematically increase the value of the dimensionless
force magnitude fpL

3/A such that fpL
3/A = 80, 180,

220, 290, and 300. We observe five successive regimes
of motion and filament configuration, from straight to
oscillatory motions. Fig. 3 depicts the corresponding
trajectories in a fixed inertial frame. In Fig. 3(a), at
relatively small magnitude fpL

3/A = 80, the filament
relaxes uniformly to its straight shape while it translates
along a fixed direction determined by initial conditions.
At fpL

3/A = 180, the filament buckles into a curved
shape as it translates and rotates rigidly while maintain-
ing a locked-curvature as shown in Fig. 3(b); the radius of
the circular trajectory traced by the filament depends on
fpL

3/A but is independent of initial conditions. Specif-
ically, this radius first decreases as fpL

3/A increases,
reaches a minimum, then increases again. In Fig. 3(c),
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FIG. 4. Bending energy of the filament as a function of time for the trajectories shown in Fig. 3. The inset figures depict the
changes in the filament geometry in the body frame fixed at sp; darker colors correspond to increasing time. The dashed line
of 2LEb/A = 1 is the bending energy of the initial configuration.

as we increase the force further to fpL
3/A = 220, a

counter-intuitive motion occurs where the filament es-
capes from the circular motion and relaxes back to the
straight shape. This ‘escape’ behavior is observed for
a relatively short range of forces. For larger values of
fpL

3/A, the filament oscillates while undergoing a trans-
lational motion. At first, the oscillation amplitude de-
cays to zero as shown in Fig. 3(d) for fpL

3/A = 290.
At larger force values, the filament undergoes sustained
oscillations, at bounded amplitudes, similar to those ob-
served in undulatory swimming, as shown in Fig. 3(e) for
fpL

3/A = 300.
We calculate the dimensionless bending energy

2EbL/A,

2EbL

A
=

∫ 1

0

θ2sds
′, (17)

associated with each of these regimes. In Fig. 4, we plot
the bending energy versus time for the five cases shown
in Fig. 3; the insets represent the filament geometry in
a body frame fixed at sp/L = 0.4. The initial geometry
is highlighted in a faded (red) color and later geometries
are shown in deeper color as time evolves. Clearly, the
bending energy goes to zero when the filament returns to
its straight configuration in Fig. 4(a), (c) and (d), with
the exception that in the latter, the decaying oscillations

of the filament are manifested in decaying oscillations
of the corresponding bending energy. In Fig. 4(b), the
bending energy reaches a nonzero constant, correspond-
ing to the internal energy stored in the filament at this
locked-curvature whereas in Fig. 4(e) the bending energy
oscillates in time. Note that even if the applied force in-
creases from fpL

3/A = 180 in (b) to fpL
3/A = 300 in (e),

the bending energy decreases. This corresponds to the
increase in hydrodynamic dissipations with the filament
oscillation comparing to the locked-curvature motion.

In Fig. 5(a), we systematically examine the long-term
nonlinear behavior of the filament by plotting the cor-
responding bending energy as a function of the applied
force. As fpL

3/A increases from 0 to 300, we observe
successive changes in the stored elastic energy that reflect
the distinct regimes of filament behavior from straight (1)
to curved with locked shape (2), back to straight (1), then
to decaying oscillations (3), and finally to bounded oscil-
lations (4). In the latter, we report the maximum, min-
imum, and average values of the elastic energy, as high-
lighted in the grey region in Fig. 5(a). The transitions
between these regimes occur at around fpL

3/A = 111,
213, 234 and 297. It is worth noting that in regime (2), as
fpL

3/A increases, the filament curvature increases (im-
plied from the bending energy in Fig. 5(a)), reaches a
maximum, then decreases, in a way that is inversely pro-
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FIG. 5. (a) Bending energy of the steady states as a function of the applied force in the case sp = 0.4. As fpL
3/A increases from

0 to 300, we observe successive changes in the stored elastic energy that reflect the distinct regimes of filament behavior from
straight (1) to a buckled state with locked shape (2), back to straight (1), to decaying oscillations (3), and finally to bounded
oscillations (4). Filament configurations in the body frame are shown to the right. In regime (4), we report the maximum,
minimum, and average values of the elastic energy, as highlighted in the grey region. The transitions between these regimes
occur at around fpL

3/A = 111, 213, 234 and 297. (b) The dominant branch of the eigenvalue ω as a function of the applied
force, the real component is plotted in solid line, while the imaginary component is plotted in dashed line. In regime (4), we
superimpose the oscillation frequencies (shown as diamond markers) obtained from the nonlinear simulations. The results of
the linear stability analysis are consistent with the nonlinear analysis in (a). In addition, the configurations of the eigenmodes

associated with the dominant branch θ̂(s)eωt are shown to the left.

portional to the radius of the circular trajectory traced
by the filament (Fig. 3b). Specifically, as the filament
curvature decreases, the radius increases until the fila-
ment ‘escapes’ from this regime and returns to a stable
straight configuration.

V. LINEAR STABILITY ANALYSIS

We next analyze the linear stability of the filament sub-
ject to small deformations by computing the eigenvalues
ω associated with Eq. (16). In Fig. 5(b), we report the
real and imaginary components of the dominant branch,
the branch with the largest nonzero real part Re(ω), as
a function of fpL

3/A. Note that we ignore the trivial
branch (ω = 0) associated with the translational symme-
try of the filament. As in Fig. 5(a), the linear stability
analysis shows five regimes, the first and third are stable,
with ω real and negative, while the second is unstable,
with ω real and positive, indicating that the straight fil-
ament configuration is unstable. The imaginary part of
ω becomes nonzero when the force for fpL

3/A ≥ 234
with negative real part at first, indicating decaying oscil-
lations but as fpL

3/A increases past 300, the real part
Re(ω) becomes positive indicating linearly growing oscil-
lations and unstable straight configuration. On the left
of Fig. 5(a), we plot the eigenmodes associated with the

dominant branch θ̂(s)eωt; darker color indicates increas-
ing time. The oscillation frequencies obtained from the
nonlinear simulations in regime (4) are shown as diamond

markers in Fig. 5(b), indicating perfect agreement with
the frequencies Im(ω) obtained from the linear stability
analysis.

We compare the filament behavior to the two limit
cases where the force is applied at one of the filament’s
ends, either pushing the filament ahead for sp = 0 or
pulling it behind for sp/L = 1. The eigenvalues of these
limit cases are plotted in Fig. 6. For sp = 0, the filament
transitions from stable to oscillatory motion, but it does
not exhibit a buckled state with locked curvature. For
sp/L = 1, the straight configuration is always stable due
to the extensile stress everywhere in the filament. It is
worthwhile to mention that the limit sp/L→ 1 is a singu-
lar limit. In this limit, an infinitesimal portion (sp/L, 1]
of the filament is always under compression due to the
applied force; thus the filament can, in theory, buckle,
albeit at very large forces. At sp/L = 1, the filament is
in pure tension and buckling is not possible.

To quantify the role of the location of the applied force
on the filament behavior, we vary both the location sp/L
and magnitude fpL

3/A of the applied force and classify
the filament’s behavior according to the eigenvalues of
the linear stability analysis. For each value of sp/L, we
compute the values of the critical force that marks the
transitions in the filament behavior. We map the filament
behavior onto the phase space (sp/L, fpL

3/A) in Fig. 7,
which shows four regions with four distinct filament be-
haviors: stable, buckled with locked curvature, decaying
oscillations and sustained oscillations. The buckled be-
havior with locked curvature occurs in an “island” that

Page 6 of 12Soft Matter



7

100 120 140 160 180

-1500

-1000

-500

0

500

1000

1500

2000

100 120 140 160 180
-2000

-1500

-1000

-500

0

500

1000

1500

2000

-2000
0 20 40 60 80 0 20 40 60 80

1 3 4 1

FIG. 6. Eigenvalues of the two limit cases: (a) pushing force at sp = 0; (b) pulling force at sp = 1. In (a), only three regimes
of motion are observed: stable, decaying oscillations and growing oscillations. In (b), the filament is always stable, which can
be proved as a singular limit.

101

102

103

104

105

0 0.2 0.4 0.6 0.8 1

stable

locked-

curvature

decaying-

oscillation

sustained-

oscillation
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filament behaviors are observed: stable (straight filament un-
dergoing translational motion), buckled state with locked cur-
vature (curved filament tracing a circular trajectory), stable
with decaying oscillations, and buckled state with sustained
oscillations (filament oscillates while undergoing translational
motion reminiscent to undulatory swimming). The dashed
line indicates the approximate scaling law of the critical value
that buckling occurs.

appears only for 0.35 < sp/L < 1 when the force is ap-
plied away from the two ends of the filaments.

To elucidate the physical mechanisms at play in these
regimes, we note that the filament can be split into two
segments: the segment trailing the location of the ap-
plied force is under tension while the segment ahead is
under compression. The interplay between these two
segments allows the filament, for a range of values of
the applied forces, to buckle into a curved configura-
tion with locked-curvature. A simple scaling argument
suggests that, in addition to the elastic relaxation time
scale Te ∼ ξL4/A that we used as a characteristic time

to obtain the non-dimensional form of the equations of
motion, there are two additional time scales associated
with the portion of the filament under compression: a
time scale Tp ∼ ξ(L − sp)/fp that arises from balanc-
ing the applied force with the hydrodynamic drag on
a straight filament in translational motion, and a time
scale Tc ∼ ξ(L − sp)4/A that is obtained by balancing
drag with the elastic force. If sp/L = 1, the time scale
Tc = 0 implying that the elastic forces required to de-
form the filament are infinitely large; the filament does
not deform, consistent with the linear stability analysis
in Fig. 6. When sp = 0, the two time scales Tc and Te
are identical. The ratio Te/Tp is equal to the dimension-
less force fpL

3/A. For large force values (Te/Tp � 1),
the translational motion happens much faster than the
elastic deformation; the filament has no time to relax, in-
stead it buckles. For 0 < sp < L, the ratio Tc/Tp is equal
to (fpL

3/A)((L − sp)3/L3). The condition Tc/Tp ∼ 1
implies a buckling criterion fpL

3/A ∼ L3/(L − sp)3.
This buckling criterion is superimposed onto in the phase
space in Fig. 7. For sp/L > 0.35, this simple scaling argu-
ment shows excellent agreement with the transition from
stable to buckled state.

In practice, multiple molecular motors can simultane-
ously bind to the same microtubule, generating a distri-
bution of forces along the microtubule length. It is there-
fore worthwhile to investigate the influence of multiple
point forces and of continuous force distributions on the
filament behavior. To this end, we consider the following
two scenarios: (i) a filament subject to two point forces
f1 = f2 = fp located at s1 and s2, respectively, and (ii)
a filament subject to a Gaussian force density as in (10)
and (11), with a standard deviation ε that is not nec-
essarily small. To compare the behavior of the filament
under these force profiles to its behavior under a single
force, we fix one force at s1 = 0.4 as done in Figs. 3-5. In
Fig. 8(a), we vary the position s2 of the second force and
in Fig. 8(b), we vary ε. The dominant eigenvalue, with
real part shown in solid lines and imaginary part shown
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FIG. 8. Linear stability analysis: (a) filament subject to two point forces of equal strength as shown to the right; one force is
fixed at s1 = 0.4 and the second force is located at s2 = 0.2 (black), 0.5 (red), and 0.8 (blue), and (b) filament subject to a
Gaussian force profile with standard deviations ε = 0.01 (black), 0.05 (red), and 0.1 (blue) as shown to the left. The eigenvalues
are calculated with respect to the force magnitude, the real parts of the dominant eigenvalue are represented in solid lines, and
the imaginary parts in dashed lines.

in dashed lines, is shown in Fig. 8(a) for three cases: (I)
s2 = 0.2, (II) s2 = 0.5, and (III) s2 = 0.8, force profiles
are all depicted to the right. For s2 = 0.2, the filament
transitions from straight to first decaying, then sustained,
oscillations as the force strength increases. For s2 = 0.5,
the filament exhibits a buckled state at locked curvature
for a range of force values similar to that reported in the
case of a single force. For s2 = 0.8, the straight configura-
tion is stable and transitions to oscillatory motions occur
at much larger values of the force. These results show
that there exists a range of separation distances between
pairs of forces of equal strength for which the filament
exhibits all the behaviors reported in Fig. 7 for a single
force. Also by continuity, we expect the filament to ex-
hibit similar behaviors for a range of force values when
the two forces are not of equal strength. Fig. 8(b) depicts
the dominant eigenvalue for a Gaussian force profile for
(I) ε = 0.01, (II) ε = 0.05, and (III) ε = 0.1. The buck-
led state at locked-curvature is observed for ε = 0.01 and
ε = 0.05, and disappears for ε = 0.1 as the force profile
flattens. This is in contrast to the results in [14], where
spiral deformations are observed for tangential forces that
are uniformly applied along the filament. We attribute
this distinction in behavior to fundamental differences in
the filament model. In [14], the filament is composed of a
chain of colloidal particles that experience internal bond
forces and excluded-volume repulsion forces in addition
to bending resistance that differs from the bending model
considered here.

VI. SPRING-BEAD MODEL

Our goal in this section is to gain more insight into
the appearance of the locked-curvature state (the yellow
region in Fig. 7), and the transition from this to oscilla-
tory motions. In particular, we would like to confirm that

the mechanism leading for this locked-curvature state de-
pends on the interplay between the two portions of the fil-
ament: the trailing portion that is under tension and the
portion ahead of the axial force that is under compres-
sion. To this end, we consider a bead-spring model with
the aim of reproducing these effects with the minimum
number of degrees of freedom. Specifically, we study a
simpler model consisting of a chain of N + 1 spherical
beads linked by N rigid rods, with a torsional spring of
constant rotational stiffness coefficient k at each joint.
The total length of the chain is L. The position of each
bead is denoted by ri, with i = 0, . . . , N , and satisfies
ri+1 = ri +L/Nti, where ti is a unit vector representing
the orientation of the ith link, where i changes from 1 to
N . The chain is subject to an external force F applied
at one joint, say joint p, parallel to the link connecting
joint p to joint p + 1 such that F = F tp, where p is the
index of the chosen link. As p increases, with all other
parameters held constant, the portion of the chain that
is being pulled increases while the portion that is being
pushed or compressed decreases. On the other hand, as
N increases, keeping all other parameters the same, the
opposite is true: the pulled portion of the chain decreases
and the pushed portion increases. By comparing the be-
havior of the chain for various N and p, we can confirm
that the interplay between these two segments is a uni-
versal mechanism that governs the transitions between
various behaviors. Specifically, we expect a transition to
oscillatory motion as N increases and a gradual inhibi-
tion of these buckling instabilities as p increases.

It is convenient for what follows to scale all lengths by
the total length L of the chain. Considering a net drag
coefficient ξ on the chain, we scale time by ξL2/k. The
force F is then scaled by k/L. The scaled drag coefficient
on each bead is 1/(N + 1). We write the equations of
motion of the chain in dimensionless form. First, the
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force balance on the whole chain leads to

F tp −
1

N + 1

N∑
i=0

vi = 0, (18)

where vi = rit denotes the velocity of the ith bead.
Then, on the jth link, the moment about rj−1 is balanced
in terms of the inner forces and the torsional springs.
Namely, for j < p, one has

1

N
nj ·

(
F tp −

1

N + 1

N∑
i=j

vi
)
−Θj−1 + Θj = 0, (19)

whereas, for j ≥ p,

− 1

N(N + 1)
nj ·

N∑
i=j

vi −Θj−1 + Θj = 0. (20)

Here, we defined Θj = θj+1 − θj , for j = 1, 2, ..., N − 1,
to represent the relative angles between two consecutive
links. This definition is ambiguous at the two free ends
of the chain; to disambiguate, we define Θ0 = ΘN = 0.

By construction, vi+1 = vi + θitni/N , which we sub-
stitute into Eq. (18) to calculate v0,

v0 = F tp −
1

N(N + 1)

N∑
i=1

(N − i+ 1) θitni. (21)

We also use vi+1 = vi + θitni/N to obtain an expression

for nj ·
∑N
i=j vi, namely,

nj ·
N∑
i=j

vi = (N − j + 1)F sin(θp − θj)+

1

N(N + 1)

j∑
i=1

i(N − j + 1)θit cos(θi − θj)+

1

N(N + 1)

N∑
i=j+1

j (N − i+ 1) θit cos(θi − θj).

(22)

We substitute Eq. (22) into Eqs. (19) and (20) to get a
closed system of N nonlinear ordinary differential equa-
tions for the N degrees of freedom θj , j = 1, 2..., N , that
describe the shape and orientation of the chain. We solve
this system numerically to obtain the deformation and
rotational motion of the spring-bead chain. To recon-
struct the chain’s translational motion, we substitute θj
into (21) and integrate numerically.

Similar to the full filament model, the straight configu-
ration of the chain is a relative equilibrium of the nonlin-
ear equations of motion. To analyze the stability of this
relative equilibrium, we assume small deformations and
linearize the equations of motion for θj . We get that, for
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FIG. 9. Spring-bead model: (a) for N = 2, p = 1, the
chain undergoes a circular motion at a locked shape when
FL/k > 12. (b) at FL/k > 12, the only nonzero eigenvalue
ω1 obtained the linear stability analysis becomes positive. (c)
for N = 4, p = 1, the chain undergoes oscillatory motion
for FL/k = 23. (d) Linear stability analysis reveals three
eigenvalues, that are all real for small FL/k = 23. The real
parts are plotted with solid lines, and the imaginary parts
with dashed lines; the inset shows the dominant eigenvalue.
The two branches ω1,2 collide at FL/k = 15.3, forming a
Hopf bifurcation reminiscent of the dominant branch of the
continuous filament in Fig. 6(a).

j < p,

j∑
i=1

i(N − j + 1)θit +
N∑

i=j+1

j(N − i+ 1)θit =

N2(N + 1)2
[

j

N(N + 1)
F (θp − θj)−Θj−1 + Θj

]
,

(23)
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and, for j ≥ p,
j∑
i=1

i(N − j + 1)θit +
N∑

i=j+1

j(N − i+ 1)θit =

N2(N + 1)2
[
− (N − j + 1)

N(N + 1)
F (θp − θj)−Θj−1 + Θj

]
.

(24)

We first consider a minimal case of two links. When the
force is exerted on the first link (p = 1), an instability
occurs at FL/k = 12. For example, in Fig. 9(a), we
solve the nonlinear equations Eqs. (18-20) for FL/k = 13
and with an initial condition slightly-perturbed from the
straight configuration. The links fold into a “V” shape
at a locked angle Θ1 = ∆θ = θ2 − θ1, and undergo a
circular motion reminiscent to that observed in Fig. 3(b).
The angle ∆θ can be calculated analytically from the
nonlinear equations by assuming a rigid-body motion of
the links, with rotation rate Ω = θ1t = θ2t. We get
that FL/k = 12∆θ/sin ∆θ. This yields ∆θ ≈ 0.69 for
FL/k = 13, which matches the numerical results shown
in Fig. 9(a). The instability can be tested by solving the
linearized equations Eqs. (23) and (24), which gives rise
to one nonzero eigenvalue ω1 = 6(FL/k − 12), depicted
in Fig. 9(b), and confirming the nonlinear analysis that
for FL/k > 12, the straight configuration of the two-link
chain becomes unstable.

In an effort to capture the transition from a buckling
at a locked shape to oscillatory motions, we increase the
number of links while applying the force at p = 1. We ob-
serve the following sequence of bifurcations in the chain
behavior. When N = 3, we obtain two nonzero eigen-
values ω1 = 6(FL/k − 12) and ω2 = 18(FL/k − 20),
implying that the three-link chain becomes unstable for
FL/k > 12, but cannot exhibit oscillatory motions. For
N = 4, we obtain three nonzero eigenvalues, including
two branches with nonzero imaginary part, indicating
oscillatory motions. In Fig. 9(c), we show an example
of such oscillations by solving the nonlinear equation for
FL/k = 23. In Fig. 9(d), we show the three branches of
the eigenvalues as a function of the applied force FL/k;
the non-positive real eigenvalues ω1 and ω2 collide at
FL/k = 15.3 to give rise a complex pair, first with a
negative real part (decaying oscillations), then positive
real part at FL/k = 16.6 (growing oscillations). The
dominant branch shown in the inset of Fig. 9(d) resem-
bles the dominant branch in Fig. 6(a). Thus, at p = 1
and N = 4, the structure of the eigenvalue problem does
not lead to a transition from the locked shape to oscilla-
tory deformations. This is true for all N when p = 1, as
evidenced in Fig. 10(a). The phase space in Fig. 10(a)
depicts the chain behavior as a function of the length of
each link (the inverse 1/N of the number of links) and
applied force FL/k. As N → ∞, the chain model ap-
proaches the full filament model, with force applied near
the proximal end of the filament.

When the force is exerted on the second link (p = 2),
the straight configuration is unconditionally stable for

N = 2, when the chain is being mostly pulled by the
applied force, and exhibits a transition to a locked-
curvature state for N = 3 and N = 4. For these N val-
ues, the dominant eigenvalue is similar to that shown in
Fig. 9(d) (results not shown for brevity), and thus transi-
tions to oscillatory motions are not permitted. However,
at N = 5, the chain exhibits two successive instabilities
as FL/k increases, first from straight to a shape with
locked curvature, then to sustained oscillations as shown
in Fig. 10(b).

In summary, when the force is applied to the first link
(Fig. 10(a)), as we vary the total number of links and the
magnitude of the applied force, the chain exhibits a tran-
sition to circular trajectories at locked shape for N ≤ 3
and to oscillatory motions for N ≥ 4, and no transition
between these two states for any N . In contrast, when
the force is applied to the second link (Fig. 10(b)), al-
lowing for a greater portion of the chain to trail behind
the applied force, we recover the transitions from straight
to curved shape, then from curved shape to oscillatory
motions for 5 ≤ N ≤ 7. Taken together, these results in-
dicate that the transition from locked curvature to oscil-
latory motion requires (i) a minimum number of degrees
of freedom in the portion of the chain that is under com-
pression, and (ii) a sufficient portion of the chain should
be trailing behind the location of the applied force.

VII. DISCUSSION

Motility assays show that microtubules driven by
molecular motors can exhibit straight, circular (at
locked-curvature) and oscillatory motions [7, 11, 12]. In-
spired by these observations, we proposed the simplest
model of a motor-driven filament with free-ends using an
applied ‘follower-force’ of constant magnitude. The point
force fp can be applied anywhere along the filament, not
necessarily at the two ends. When fp is applied at the
proximal end, the filament exhibits a Hopf bifurcation,
and transitions from a stable straight configuration to
decaying then sustained oscillations, reminiscent of the
Hopf bifurcation reported in Refs. [31, 32] for a clamped
filament. When fp is applied at the distal end, the fil-
ament’s straight configuration is unconditionally stable.
In between, the portion of the filament ahead of the force
location experiences compressive stress while the trailing
portion is under tension. This interplay of compressive
and tensile stresses along the filament gives rise to a novel
instability, as the force magnitude increases beyond a
threshold value, where the filament buckles into a config-
uration with locked curvature and undergoes circular mo-
tion in the plane, analogous to experimentally observed
trajectories of microtubules driven by motor proteins [7].
A simple scaling argument shows that the length scale
that is relevant for the transition to the locked curvature
is not the length of the full filament, but of the portion
that is under compression.

Motivated by these findings, we proposed a yet simpler
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FIG. 10. The phase space summarizing the behavior of the bead-spring model as a function of (1/N, FL/k). Results are
constructed based on linear stability analysis and confirmed using numerical simulations of the nonlinear equations. (a) for
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buckled regime with locked-curvature disappears; (b) for p = 2, the force FL/k is applied at the second link. With one trailing
link, we observe a transition from locked-curvature to oscillations when N ≥ 5.

spring-bead model. The results of this model support our
findings in the filament model that the trailing portion
that is under tension plays an important role in these
morphological transitions. Taken together, the results
from the filament and spring-bead model suggest that
neither structural nor actuation asymmetries in motor-
driven microtubules are needed to produce buckled states
at locked curvature.

The filament model proposed here is an ideal repre-
sentation of a motor-driven microtubule. In the real sys-
tem, molecular motors bind and unbind stochastically to
microtubules. Further, in the motility assays that moti-
vated this study, the molecular motors are fixed to the
substrate and do not move with the microtubules, but
other motors get in contact with the microtubules as they
are transported by the action of bound motors. Despite
the limitations of the current model, we use it to roughly
gauge whether the morphological transitions reported in
this study are biologically-relevant to the mechanics of
motor-driven microtubules. The force exerted on micro-
tubules by the molecular motors is known to be of the
order of pico-Newtons (≈ 1-10 pN) and microtubules are
approximately 20 µm in length. Assuming, following [31],
that the bending rigidity A ≈ 10 pN·µm2, we get that
for the transition observed at the largest dimensionless
force value fpL

3/A = 300, the dimensional force density
fp = 300(10)/203 = 3/8 pN/µm. Thus, the force value
must be about 7.5 pN, which is within what is biologically

achievable by a single molecular motor.

A few comments relating our findings to recent studies
on active microfilaments are in order. In particular, a
spiraling instability reminiscent of the buckling instabil-
ity with locked configuration is observed in untethered
flexible chains subject to uniform and non-uniform tan-
gential forces [14, 15, 17, 40]. The spiraling mode seems
to depend on the structural (polymer-like) model of the
chain, which is fundamentally distinct from the filament
model considered here, and the presence of thermal fluc-
tuations. Our model is based on a continuum rod theory
and it is closest to the models considered in [31, 32].

The work in this study is a first step towards devel-
oping more realistic mechanics-based models of the full
interplay of molecular motors with microtubules. Fu-
ture extension of this work will account for the stochas-
tic binding of molecular motors. In ongoing work, we are
extending this model to account for long range hydro-
dynamic effects of the viscous fluid using slender body
theory [41]. We are particularly interested in the inter-
action of multiple filaments connected kinematically (via
structural elements) and dynamically (via molecular mo-
tors) to model the internal axoneme structure of cilia and
flagella [32, 42–44]. These models will provide the basis
to address complex systems in cellular biophysics, from
the mechanisms underlying self-sustained oscillations in
flagellar mechanics to flow transport by ciliary beds.
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