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Abstract

Amphiphilic block copolymers self-assemble at the water/oil interface to form different 

mesomorphic structures, such as lamellar, micellar cubic, normal hexagonal, and reverse 

hexagonal. Usually, these structures are polycrystalline and the value of their elastic 

modulus depends on the average orientation of their constituent�s single crystals. We 

provide a model to predict the elastic modulus and yielding of mesophases from their 

characteristic length and intermicellar interactions. Shear modulus of each structure is 

calculated as a function of deformation (strain). Zero-shear modulus, G0, depends on the 
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Page 1 of 52 Soft Matter



2

inverse of intermicellar distance with a power law model. The power law index for each 

structure is approximately n+2 where n is the degree of confinement in the mesophase: 

1 for lamellar, 2 for both normal and reverse hexagonal, and 3 for micellar cubic structure. 

Rheological properties of different mesophases of Pluronic P84 in the presence of water 

and p-xylene are used as a case study. The model is found to be in good agreement with 

experimental data in the linear viscoelastic region. When compared to experimental data, 

the yield strain value from the model is one order of magnitude higher than the limit of the 

linear viscoelastic regime and close to the strain at cross-over point of storage and loss 

moduli. Frequency sweep measurements are done to characterize the relaxation and 

cooperative model behaviors of each mesophase structure.

1. Introduction

In the presence of selective solvents, amphiphilic block copolymers self-assemble and 

form different mesomorphic structures known as mesophases. Examples of mesophase 

structures are  micellar cubic, lamellar, normal and reverse hexagonal.1�4 A rich structural 

polymorphism has been observed in ternary water/oil/block copolymer systems, with the 
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block copolymer self-assembly forming micro-domains with spherical, cylindrical, or 

lamellar geometry, discrete or interconnected topology, and liquid-crystalline 

organization.5�8 These polycrystalline systems consist of randomly oriented single 

crystals and can be characterized as an isotropic system. Mesophases of block 

copolymer solutions are thermodynamically stable systems, where each block of 

copolymer energetically minimizes unfavorable interactions with its poor solvent. In this 

context, mesophases are comparable to microemulsions, where thermodynamics plays 

the dominant role in the stability of the system rather than interfacial tension. 

Mesophases have been utilized in a broad range of applications, such as pharmaceutical 

and biomedical applications9�12, and as templates for mesoporous material synthesis for 

hydrogels,13�15 separation processes,16�19 and adsorption applications.20,21 Rheological 

behavior of mesophases varies with structure and has an important role not only in their 

applications in industry, but also from a theoretical point of view.

While there are several rheological studies on the self-assembly of block copolymer 

melts,22�24 low molecular weight surfactant solutions,25�29 and flow-induced behavior and 
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rheology of block copolymers in single solvents,30�34 less work has been reported on the 

rheology of block copolymers in the presence of two solvents (ternary system).35,36 

Additionally, the elastic modulus of mesophases is highly dependent on their structure. 

For instance, lamellar mesophases are shown to have an elastic modulus of at least one 

order of magnitude lower when compared to hexagonal systems.27,35�37 The size of lattice 

parameter and intermicellar interactions within the mesophase are two important factors 

to be considered when evaluating each structure. 

Since mesophases are crystalline, estimation of their elastic constants can give us a 

general picture of their mechanical properties. Several simulation studies have been done 

to estimate the elastic constants of crystalline and amorphous polymers.38�40 For 

instance, Van Workum and de Pablo38,40 developed a method to calculate the elastic 

constants of face-centered cubic (FCC) crystals at different temperatures, where the bulk 

elastic constants are calculated in terms of stress fluctuations. Although simulation 

techniques are invaluable in evaluating the mechanical properties of crystalline materials, 
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no analytical model, to the best of our knowledge, has been proposed to estimate the 

average elastic modulus of a self-assembled mesophase based on its structure.   

In polycrystalline systems of metals, effective isotropic elastic constants can be derived 

from averaging elastic constants of their constituent single crystal grains.41�44 Depending 

on the crystalline structure of the unit cell, independent elements in the elasticity tensor 

are determined. Then, an averaging method is applied to calculate the tensile and/or 

shear modulus of the polycrystalline metal. We contend this method can be utilized for 

liquid crystalline mesophases. In the current work, we use this approach to model the 

elastic shear modulus and yielding behavior of different polymeric mesophases. 

Additionally, we show how the shear modulus of different mesophase structures change 

by intermicellar distance and micelle size. Rheological measurements in the linear 

viscoelastic regime are used to validate the model predictions. Considering the solid-like 

behavior of mesophases,45�47 comparing the estimated elastic modulus with the G' in the 

linear viscoelastic region is appropriate. 
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In the following sections, we first present the model to predict the shear elastic modulus 

of three different mesophase systems, namely micellar cubic, lamellar, and 

reverse/normal hexagonal, based on their intermicellar interactions and lattice parameter. 

Next, we present the preparation and characterization of our experimental systems. Then, 

we discuss the results by comparing the model and experimental data. Finally, we 

conclude with summarizing the key findings. 

2. Model

From the generalized Hookes�s law, , where,  and are stress and strain tensors, � = � � � � 

respectively.  is known as the elasticity tensor, and for an isotropic material has 21 �

independent elements.48 Single crystals are not isotropic and the number of independent 

elements in their elasticity tensor depends on the crystal structure and its symmetry. For 

the cubic and hexagonal structures, the non-zero components of the elasticity matrix can 

be expressed as follows:48
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where  and  are elasticity matrices for the cubic and hexagonal systems, respectively. �� ��

There are 3 independent second order elastic constants (SOECs) for the cubic structure, 

while hexagonal structure has five SOECs. 

Voigt averaging procedure is commonly used for estimating elastic constants of 

polycrystals. In this method, we assume that all single crystals are in the same state of 

strain.41,49 Voigt-average shear modulus of cubic ( ) and hexagonal ( ) polycrystals �	
� �	
  �

are defined as follows: 42,44

 (3)�	
� =
(�11 � �12 + 3�44)

5
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(4)�	
  � =
��� �� + 3��

5

where,

(4.a)�� =
1

3(2�11 + �33)

(4.b)�� =
1

3(�11 + �12 + �13)

(4.c)�� =
1

3(2�44 +
�11 � �12

2 )

To calculate the elastic constant elements in equations (1) and (2), we consider three 

systems of spherical micelles in micellar cubic mesophases, cylindrical micelles in 

hexagonal mesophases, and planar micelles in lamellar mesophases. Van der Waals 

forces are assumed as the primary interaction between micelles. Similar to 

microemulsions, mesophases are thermodynamically stable systems, where the 

interfacial tension between oil and water becomes zero50�52 and leads to the spontaneous 

formation of mesophases. Consequently, the interfacial tension effect on the elastic 

behavior of the mesophases is negligible. 

For each system, we consider a single crystal undergoing deformation in the presence of 

van der Waals forces between nearest neighbors. We assume micelle size does not 
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change under deformation and only their distances change. This assumption is rational 

as micelles primarily consist of block copolymer chains and the force acting between two 

block copolymer molecules in a short range (in the order of a few angstroms) is much 

higher than the force between two micelles in a longer range (in the order of a few 

nanometers). In other words, the deformation of the unit cell can hardly separate the 

adjacent block copolymer molecules to change the size of micelles. Net force of the 

system after deformation is calculated by subtracting the sum of the forces before 

deformation from the sum of the forces after deformation. It has been shown that the 

second derivative of free energy, , with respect to strain ( ) is proportional to the shear � �

modulus, , as .53 Force has a direct relationship with energy; therefore, we can �  � �  
�2�

��2

use the strain derivative of net force as a measure of elastic constants. 

In the following sub-sections, we provide a model for each mesophase system. 

2.1. Micellar cubic mesophases

For the sake of simplicity, we assume a simple cubic system, a cube with a lattice 

parameter, , where eight spheres with a diameter of  are located in each corner (Figure � ��

1). Each micelle consists of an oil phase, water phase, and a Pluronic block copolymer 
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(6)!�

 = 8
� �� ��

12 �1
2 +4

� �� ��

12 �1
2

where  and  are the new distances between spheres in directions  and , �1 �1 2 1

respectively. Strain in each direction can be defined as the ratio of the change in length 

to the initial length.55 Therefore: 

(7a)��
 =
� � �

�

(7b)��� = ��� =
� � �

�

where , , and  are the strains in directions , , and , respectively. Considering ��
 ��� ��� 1 2 3

no change in the spheres� size and the incompressibility assumption:

(8)�1 = ���
 + �1

(9)�1 = ���� + �1

(10)(�1 + 2��)3 = (�1 + 2��)2(�1 +2��)

where  , , and .�1 = � � 2�� �1 = � � 2�� �1 = � � 2��

Tensile elastic constants are defined as follow:

(11a)��

 =
�2$!�

��2
�
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(11b)��
� =
�2$!�

���
����

where  is the change in interaction forces after deformation. Detailed derivation of the  $!�

equations can be found in the Electronic Supplementary Information (ESI). Additionally, 

from the theory of linear elasticity, the shear strain can be determined from tensile strains 

as . Therefore, the shear elastic constant is obtained (refer to ESI). Having ��
� =
��
� ���

2

all the independent constants in the elasticity matrix in equation (1), we use the Voigt 

average, equation (3), to calculate the shear modulus of micellar cubic mesophases.

Critical molecular weight entanglement (Mc) for polyethylene oxide (PEO) and 

polypropylene oxide (PPO) are 10,000 g/mol and 7000 g/mol, respectively.56,57 As will be 

discussed in the experimental section, we use Pluronic P84 block copolymer in samples, 

which has a molecular weight well below Mc. Therefore, block copolymers are not 

entangled in the system. Additionally, the radius of gyration of Pluronic P84 block 

copolymer is approximately 17 Å,8 which is smaller than the domain size of the micelles. 

Thus, chains do not bridge across the hydrophilic and hydrophobic domains (shown as 
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After deformation, the interaction forces would be:

(13)!&

 =
� �� 

6 ) '3
3 +

� �� 

6 ) '4
3

Intermicellar distances ( , , , and  ) are shown in Figure 2 and defined in the ESI. '1 '2  '3 '4

Strain in directions  and  are given in equations (14a) and (14b). Iso-strain condition is 1 2

assumed in direction  for simplicity. 3

(14a)�&
 =
%1 � %

%

(14b)�&� =
%2 � %

%

(14c)�&� = 0

Considering the incompressibility assumption, we have . Detailed derivation of %2 = %1%2

the equations is shown in the ESI. Having all the independent constants in the elasticity 

matrix in equation (1), we use the Voigt average, equation (3), to calculate the shear 

modulus of lamellar mesophases.
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2.3. Hexagonal mesophases

We assume a hexagonally packed structure with lattice parameter , where 6 cylindrical *

micelles with diameter of , are located in the corners with one located at the center of ��

the hexagon (Figure 3). Upon deformation in direction , the hexagon becomes deformed 1

and the distance  changes to  and , where  and . For the sake of simplicity, * + , , < * + > *

we assume the angles remain constant at 120°. It should be noted that without this 

assumption, the geometrical relationships become too complicated to provide an 

analytical solution. In the following sections, we will show that this assumption still offers 

satisfactory agreement between the model and experimental data. No deformation in the 

length of cylinders and direction  is assumed. Additionally, only the interaction of nearest 3

neighbors is considered. 
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where  is the distance between cylindrical micelles in hexagonal mesophases. In a *1

perfect hexagon, ; therefore:1 = 120°

(16)!�
" = (8 + 4 3)
� �� ��/2

8 2 *1
13/5

After deformation, the interaction forces would be:

(17)!�

 = 2
� �� ��/2

8 2 ,1
13/5 +8(� ��

��/2

8 2 +1
13/5 �/01+

� �� ��/2

8 2 +1
13/5 0231) +2

� �� ��/2

8 2 (
, + +

2 � ���
13/5

where  and  are the new distances between cylinders. Strain in each direction can be  ,1 +1

defined as follows:

(18a)��
 =
+0231 �

3

2 *

3

2 *

(18b)��� =
, � *

*

(18c)��� = 0

As mentioned previously, we have assumed the angle  remains fixed during deformation 1

and only the distances between cylinders change in the hexagonal arrangement. Thus, 

considering no change in the cylinders and the incompressibility assumption:

(19)
3

2*
2 =  + (, +

+

2) 
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(20)+1 = *��
 + *1

(21),1 = *��� + *1

Detailed derivations of the tensile elastic constants are shown in the ESI. In a hexagonal 

packed system, .48 Thus, having all the independent constants in the ��(( =
��

� ��
�

2

elasticity matrix in equation (2), we use the Voigt average, equation (4), to calculate the 

elasticity of hexagonal mesophases.

3. Experimental Section

3.1.Materials

Poly(ethylene oxide)19-poly(propylene oxide)43-poly(ethylene oxide)19 triblock copolymer, 

known as Pluronic P84 (Mw=4200 g/mol), is kindly provided by BASF. Deionized (DI) 

water and p-xylene (Sigma-Aldrich) are used as selective solvents for PEO and PPO 

blocks, respectively. 

3.2.Mesophase Preparation

Pluronic P84, DI water, and p-xylene are mixed in a glass vial through centrifugation. In 

this process, samples are repeatedly centrifuged (2000 rpm) at alternative directions until 
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a transparent mesophase is obtained. We select a constant concentration of Pluronic P84 

in which, by changing water/p-xylene ratio, different mesophase structures � micellar 

cubic, lamellar, normal hexagonal, and reverse hexagonal � are obtained. Composition 

shown in Table 1 are chosen based on the ternary phase diagram of the system.8

Table 1. Formulations of samples used in this study.

P84/water/p-xylene (wt%) Mesophase type

50/35/15 lamellar (L�)

50/47.5/2.5

normal hexagonal 

(H1)

50/20/30

reverse hexagonal 

(H2)

50/10/40 micellar cubic (BCC)

3.3.Small Angle X-ray Scattering (SAXS) Measurements

Mesophase samples are loaded into quartz capillaries with a nominal diameter of 1.5 mm 

(Charles Supper Company, Natick, MA). The capillary tubes are then sealed using 
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Critoseal tube sealant and epoxy glue (JB Weld). SAXS measurements are performed on 

a Bruker Nanostar System with a monochromated Cu QR radiation source. The beam 

center and sample-to-detector distance are determined using silver behenate. 

3.4.Rheological Measurements 

Rheological tests are carried out on a stress-controlled Discovery Hybrid Rheometer 

(DHR-3) from TA Instruments (New Castle, DE). A 20 mm cross-hatched parallel plate 

geometry with 1 mm gap is used for measurements. The cross-hatched geometry is used 

to avoid probable wall slip of mesophases during measurements. The temperature during 

the tests is controlled at 25±0.1 °C by a peltier plate system. Small amplitude oscillatory 

shear tests are done at a fixed strain of 0.5% in the linear viscoelastic region (verified by 

amplitude sweep tests). Isothermal dynamic amplitude sweep is carried out at the fixed 

frequency of 10 rad/s. 

4. Results and Discussion

4.1.SAXS Analysis

One dimensional (1D) SAXS data obtained for different mesophases are shown in Figure 

4. Relative peak positions ( ) is used to determine the structure of each sample. 5-5 6
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Lamellar structures show 1:2:3:4� relative peak positions, hexagonal structures have 

>=U0=<=UE=0T relative peak positions, and micellar cubic (body centered cubic, BCC) 

structures have relative peak positions of >=U<=<=UD" were  is the scattering vector and 5

 is the principal peak in each curve. 5 6
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Figure 4. Radially averaged I(q) from SAXS scattering of mesophase systems containing Pluronic P84/water/p-

xylene: (a) micellar cubic with 50/10/40 composition, (b) lamellar with 50/35/15 composition, (c) normal hexagonal 

with 50/47.5/2.5 composition, and (d) reverse hexagonal 50/20/30 composition. 

It should be noted that the pattern shown in Figure 4a might have mixed phases, where 

the peaks shown in black are cubic, and the ones indexed in blue are lamellar. From the 
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phase diagram of the system8 and the rheological measurements that will be presented 

in the following sections, we can conclude that the composition has mainly a cubic phase 

(BCC from Im3m space group). 

From the SAXS scattering profiles and using Bragg�s law, lattice parameter for each 

mesophase, radius of spheres and cylinders in micellar cubic and hexagonal 

mesophases, respectively, and the distance between micelles are calculated. These 

parameters are schematically shown in Figure 5. From Bragg�s law, , where  2%sin: =  3;

 is the X-ray wavelength,  is the scattering angle,  is the order of reflection (taken as ; < 3

1 for the principal scattering vector, ), and  is the lattice parameter.58 The magnitude 5 6 %

of the scattering vector, , is . For a lamellar structure, the lattice parameter, , 5  5 =
�)sin<

; %&

also known as the lamellar periodicity, is defined as . For hexagonal mesophases, %& =  
�)

5 6

the lattice parameter, , which is equal to the distance between the centers of adjacent %�

cylinders, can be calculated as .8 In the case of the micellar cubic mesophase,  %� =  
�)

35 6

the first six Bragg peaks identified from SAXS data in Figure 4a are indexed as 110, 200, 
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211, 220, 310, and 222.53 The slope of the line passing through the origin of the  versus 
1

%*+=

, is equal to the reciprocal of the lattice parameter, .8,45 (*2 + +2 + =2)
1/2 1

%�

Apolar domain volume fraction, , is defined as the volume fraction of p-xylene and the >

PPO block; the polar domain volume fraction, , is the volume fraction of water and 1 � >

the PEO block. Thus, the thickness of the polar and apolar domains in lamellar 

mesophases and the radius of the polar and apolar domains in micellar cubic and 

hexagonal mesophases are determined and shown in Table 2. We have used these 

parameters in the model to plot the estimated shear modulus versus deformation.8,59 
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Figure 5. Schematic representation of the lattice parameter, polar domain, and apolar domain in (a) micellar cubic, 

(b) lamellar, (c) normal hexagonal, and (d) reverse hexagonal mesophases. Dashed lines show the micelle size in (a) 

BCC as RC, (b) lamellar as L, and (c,d) hexagonal systems as RH. 

Table 2. Calculated parameters for micellar cubic, lamellar, normal hexagonal and reverse hexagonal mesophases 

from SAXS.

Mesophase 

structure

Lattice 

parameter 

(nm)

>

Polar domain 

size 

(nm)

Apolar 

domain 

size (nm)

 or ��

 (nm)��

Intermicellar 

distance

(nm)

BCC 7.9 0.72 6.56 1.34 3.42 1.06

LR 6.0 0.46 3.24 2.76 NA 1.92,2.64*

H1 7.6 0.33 5.31 2.29 1.15 5.3
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H2 7.0 0.62 4.11 2.89 2.05 2.9

* The two numbers stand for intermicellar distance in apolar and polar domains, respectively.

4.2.Rheological Analyses

Since mesophases have gel-like behavior,45,46 rheology is a sufficient tool to measure the 

modulus and yielding behavior. Consequently, rheological experiments are performed in 

the linear viscoelastic region. It should be noted that since the model predicts the linear 

response of mesophases, we have only done oscillatory tests in the linear viscoelastic 

regime to validate the model. We have done comprehensive large amplitude oscillatory 

shear (LAOS) tests on the samples that are out of scope of this work. However, we have 

seen a hysteresis (the area in the closed loop graph of stress versus strain) in the 

Lissajous plots that only appears at high amplitudes of oscillatory deformation (non-linear 

regime). In fact, high amplitude deformations can result in the alignment and or change 

in structure of mesophases,60,61 which we believe are out of the scope of the current work.

Amplitude sweep tests are done to determine the linear viscoelastic region of each 

mesophase. Experimental results for micellar cubic, lamellar, reverse hexagonal, and 

normal hexagonal structures, along with the developed model in the previous section, are 
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shown in Figure 6. Data presented in Table 2 are used as the model parameters. The 

Hamaker constant ( ) values for hydrocarbons and water are approximately 0.5 × 10W>C ��

J and 1.5 × 10W>C J, respectively.62 For lamellar and normal hexagonal systems, the 

Hamaker constant is considered as 1.5 × 10W>C J, while its value is assumed to be 0.5 × 

10W>C J for reverse hexagonal and reverse BCC structures.  It should be noted that any 

variation in the Hamaker constant linearly changes the values of elastic constants.
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Figure 6. Storage modulus, G', and loss modulus, G", versus strain obtained through amplitude sweep experiments 

on (a) micellar cubic, (b) lamellar, (c) normal hexagonal and (d) reverse hexagonal mesophases of Pluronic 

P84/water/p-xylene with  50/10/40, 50/35/15, 50/47.5/2.5, and 50/20/30 compositions, respectively. Solid lines are the 

estimated shear modulus from the models developed for each mesophase structure.

Calculated shear elastic modulus from the model (solid lines in Figure 6) is in very good 

agreement with the value of elastic modulus from rheological experiments, confirming that 
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the interactions between micelles within randomly orientated grains of liquid crystals 

determines the value of the shear modulus in mosophases. The micellar cubic 

mesophase shows the highest elastic modulus among other mesophases, which is due 

to its higher symmetry and higher coordination number (the number of the nearest 

neighbors). Values of elastic modulus of micellar cubic is in the same order of magnitude 

with the one of the hard gel cubic structures.63 The normal hexagonal mesophase shows 

slightly higher elastic modulus compared to the reverse one.64 Based on the proposed 

model, we can explain the observed difference based on the distance between cylindrical 

micelles in normal and reverse hexagonal systems in this study, originated from different 

compositions and lattice parameter sizes in each system (Table 2). In addition, the value 

of the Hamaker constant in the normal hexagonal case is higher than that of the reverse 

hexagonal mesophase, having a higher contribution to the elastic constants for the normal 

phase. The lamellar mesophase shows at least one order of magnitude lower elastic 

modulus compared to micellar cubic and hexagonal mesophases, in agreement with our 

experimental data and the literature.27,35�37 
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The point where the elastic modulus (G') starts to decrease with strain is the threshold of 

non-linear viscoelastic region, , and can be defined as the yield point.65  Based on the �&	?

experimental data, all mesophase structures show the same trend in the amplitude sweep 

curve. This trend is known as type III non-linear behavior which is evident by a weak strain 

overshoot and a local maximum in loss modulus (G"). Polymer solutions and highly 

concentrated emulsions (HCE) have the same behavior.63,66�68 We suggest that the 

rearrangement of micellar structures in mesophases are the main reasons for observing 

type III behavior.69�71 An alternative definition for yield strain is the crossover of G' and 

G", , beyond which the loss modulus (as a measure of energy dissipation) is �@
�� = �A

dominant. The experimental values of yield strain (  and ), based on two �&	? �@
�� = �A

different definitions provided, are extracted from rheological data as shown in Table 3. In 

addition, from our model, we can estimate the yield strain ( ) as the point where Gv �@
B/%C+

decreases with strain. Ideally, we expect to have similar values for  and . �&	? �@
B/%C+

However, the data in Table 3 show that our model overestimates the yield strain point. 

We attribute this deviation from experimental data to the simplifying assumptions. For 
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instance, while grain boundaries contribute to the yielding process, our model does not 

consider them. Interestingly,  is in the same order of magnitude with the .�@
�� = �A �@
B/%C+

Table 3. Calculated values of yield strain for different mesophases from model and experimental data.

Mesophase 

structure
 (%)�&	?  (%)�@
�� = �A  (%)�@
B/%C+

BCC 1.00 8.0 8.6

L� 1.6 28.2 12.0

H1 1.1 47.7 28.5

H2 1.0 48.2 25.0

Our model suggests that the shear modulus is highly dependent on the distance between 

interacting micelles, and consequently the lattice parameter of each mesophase, as 

shown in Figure 7. For each mesophase system, we have plotted the estimated zero-

shear modulus ( , modulus at very low deformation, i.e. 0.01%) from the model as a �0

function of reciprocal intermicellar distance ( ), considering the lattice parameter changes 
1

'

in the range of 2-50 nm, a domain range that can practically be observed in these 

systems. The results indicate that  dependency to the intermicellar distance increases �0
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as the distance increases. A power law equation, , is used to fit the data, �0 = �0(
1

')
B

where  and  are the model parameters (listed in Table 4 for different mesophases).�0 B

The power law index for each structure is approximately , where  is the degree BD 3 + 2 3

of confinement in each system. In other words, micellar cubic mesopahses have three-

dimensional confinement and , lamellar mesophases with one degree of BD 3 + 2 = 5

confinement, have , and both normal and reverse hexagonal systems with BD 1 + 2 = 3

two-dimensional confinement show .BD 2 + 2 = 4
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Figure 7. Calculated zero-shear modulus as a function of inverse intermicellar distance (1/D) for micellar cubic, 

lamellar, normal hexagonal, and reverse hexagonal systems. The solid lines are a power law fit to the data. 

Dependency of the calculated zero-shear modulus on micelle size is different from that of 

micellar distance. At a constant intermicellar distance,  is plotted against micelle size �0

in Figure 8. Micelle size is defined as RC for cubic, L for lamellar, and RH for normal and 

reverse hexagonal systems (Figure 5). For the lamellar system,  is independent of �0

micelle size as expected; for micellar cubic mesophase structures, it is a power law 

function of micelle size ( );  for normal and reverse hexagonal systems,  is �0 = ����
3� �0

approximately an exponential function of micelle size ( ). For BCC system, �0 = ��C
�3���

the power law index is constant at three different intermicellar distances ( ) and 3� = 1.6

only the pre-power parameter changes. In normal and reverse hexagonal mesophases, 

both the pre-exponential parameter and exponential index are a function of intermicellar 

distance. At a constant intermicellar distance, the index in both normal and reverse 

hexagonal systems are the same. Model parameters are summarized in Table 4. 
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Table 4. The power law model parameters for calculated zero-shear modulus dependency to the inverse of 

intermicellar distance and the power law and exponential model parameters for calculated zero-shear modulus 

dependency to micelle size in different mesophase systems. 

Structure �0 B

Intermicellar 

distance 

(nm)

 or �� ��  or 3� 3�

2 623 1.8

5 18 1.8BCC 2.6 ×107  5.2 

8 4 1.8

2 41879 0

5 2680.3 0L� 265 3.0

8 654.4 0

2 1.2×106 0.5

5 2.1×104 0.4H1 3.2 ×107 4.3

8 5.3×103 0.25
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2 6.6×104 0.5
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Figure 8. Calculated zero-shear modulus as a function of micelle size for (a) micellar cubic, (b) lamellar, (c) normal hexagonal, 

and (d) reverse hexagonal systems at 3 constant intermicellar distances (values in the legends). Solid lines are the power law (for 

BCC) and exponential (for H1 and H2) fits to the data.
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After determining the extent of linear viscoelastic region for each mesophase, a dynamic 

frequency sweep experiment is done on samples in the linear regime to measure the 

linear viscoelastic properties of the mesophases. As seen in Figure 9, G' is higher than 

G" in all frequency ranges (0.06-600 rad/s) for all mesophases, which implies the solid-

like behavior of the samples. G' is nearly frequency-independent with a subtle increase 

with increasing frequency. G' of the reverse hexagonal mesophase is slightly lower than 

that of its normal counterpart, which could be due to the difference in micelle size and 

intermicellar distance, as explained in the previous paragraphs.  All samples are in the 

rubbery-plateau region of the universal frequency sweep curve of viscoelastic materials, 

where G' is higher than G" and no G'-G" crossover is seen in frequency sweep data, 

indicating high structural relaxation times of mesophases. All mesophases show shear-

thinning behavior as their complex viscosity 6Y*) decreases with increasing frequency.
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Figure 9. Storage modulus, G', loss modulus, G", and complex viscosity, Y(" versus angular frequency obtained 

through frequency sweep experiments on: (a) micellar cubic, (b) lamellar, (c) normal hexagonal, and (d) reverse 

hexagonal mesophases of Pluronic P84/water/p-xylene with 50/10/40, 50/35/15, 50/47.5/2.5, and 50/20/30 

compositions, respectively.

A shallow minimum in G" of mesophases is a characteristic of polymeric gels and has 

been observed for emulsions and soft-glassy materials as well.67,70,72�74 The minimum in 

loss modulus shows the presence of two relaxation behaviors in the system and the 
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transition from R����������� (long time, related to low frequency) to �-relaxation (short 

time, high frequency). Continuous relaxation spectra of studied samples (shown in Figure 

10) are obtained from fitting the generalized Maxwell model. It is evident that the micellar 

cubic system has a characteristic relaxation time of , where the maximum in ; = 15.5 0

H( ) is observed. However, for lamellar, normal hexagonal, and reverse hexagonal ;

systems, no peak is observed in the studied frequency range. Although, we can predict 

two relaxation times from the extrapolation of G' and G" to low and high frequencies. The 

longer relaxation time (>102 s) can be attributed to interfacial relaxation, while the shorter 

relaxation time (<10-4 s) is related to the elasticity of water or oil in nanoconfined 

structures.46 
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Figure 10. Continuous relaxation spectrum for micellar cubic, lamellar, normal hexagonal, and reverse hexagonal 

mesophase systems. 

The theory of cooperative flow64,75,76 is used to model the experimental value of moduli 

versus angular frequency for different mesophases. Bohlin75 was the first one who 

proposed the theory of cooperative flow to correlate the microstructure of a fluid with 

rheology. In this theory, it is assumed that a fluid is divided into subunits where the 

cooperative rearrangement of subunits results in overall flow behavior. Based on this 

theory, the magnitude of complex modulus ( ) can be expressed as a function of angular � 6

frequency ( ) as follows:E
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                                                                                   |� 6 | = ��(E)
2

+ ���(E)
2

= �E
-G

(22)

where  and  are the model parameters and can be obtained from fitting experimental � G

data.  is the interaction strength between flow subunits and  is defined as the � G

coordination number in the original model. Fitting parameters are summarized in Table 5. 

Interaction strength parameter, , represents the complex viscosity at angular frequency �

of 1 rad/s, .45 Values of  have been extracted from frequency sweep |H 6 |
E = 1

|H 6 |
E = 1

results and are listed in Table 5. 

Table 5. Cooperative model fitting parameters for different mesophases and their complex viscosity at 1 rad/s.

Structure (pa.s1/z)� G
H 6E = 1

(pa.s)

BCC 48,874 11 48,291

L� 955 12 959

H1 14,313 13 14,365

H2 16,252 15 16,201
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Our results show that  and  are very close. In liquid crystal systems, Bohlin75 � H 6E = 1

suggested that  is the same as the coordination number, i.e., it is equal to 2 in lamellar G

and 6 in hexagonal systems. However, there have been discrepancies in the reported 

values of  in the literature. May et al.45 observed ~13 for reverse hexagonal systems. G G

Coppola et al.28 reported a range of 5-12 for  in CTAB/water mixtures for hexagonal G

mesophases. Rodriguez-Abreu et al. reported  as 6.7 and 9.5 for reverse hexagonal and  G

normal hexagonal mesophases, respectively.64 It can be suggested that the  value G

shows the average coordination number of liquid crystal grains in the polycrystalline 

system. 

Conclusion 

Mesophases are self-assembled structures of amphiphilic molecules with the length scale 

in the range of 2-50 nm. Mesophases can be considered as a polycrystalline lyotropic 

liquid crystal, where each single crystal is oriented in a specific direction. Averaging the 
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elastic constant of single crystals provides the elastic modulus of polycrystalline 

mesophases. A mathematical model, inspired from polycrystalline metals, is proposed to 

estimate the elastic modulus of different mesophases as a function of their intermicellar 

distance. We show that the shear modulus dependence of each structure can be 

expressed as a function of intermicellar distance and applied deformation. Additionally, 

the shear modulus in the linear viscoelastic regime follows a power law dependence with 

the reciprocal of intermicellar distance, where the power law index for each system is 

different and depends on the degree of confinement. Self-assembled structures of 

Pluronic P84/water/p-xylene systems with 50 wt% block copolymer and different water/oil 

ratios are used to evaluate the accuracy of the proposed model. The results show that 

the model can successfully predict the order of magnitude of the elastic modulus of 

mesophases. Yield strain values obtained from the model are one order of magnitude 

higher than the experimental limits of the linear viscoelastic regime but lie in the close 

proximity of G'-G'' cross-over in the amplitude sweep experiment. Rheological data 

suggest that micellar cubic structures show a specific relaxation time of 15.5 s. The 

lamellar and hexagonal mesophases do not have a distinct relaxation time within the 
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measurement window, although two relaxation times can be predicted for them, where 

the longer one is attributed to the interfacial relaxation and the shorter one is related to 

the elasticity of solvents in nanoconfined structures. The cooperative model is 

successfully used to fit the frequency sweep data of mesophase systems. 
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Derivation of elastic constants for different mesophase systems can be found in the 

Electronic Supplementary Information.

Conflicts of Interest

There are no conflicts to declare. 

Acknowledgement 

The authors thank Aaron Lindsay for assistance with SAXS measurements and Elijah 

Wade for helpful discussions. This work was supported in part by U.S. Department of the 

Interior, Bureau of Reclamation (Agreement No. R16AC0002). This work was performed 

in part at the Center for Integrated Nanotechnologies (CINT) at the Los Alamos National 

Laboratories (LANL). CINT is funded by the DOE Office of Basic Energy Sciences. LANL 

is operated by Los Alamos National Security, LLC, for the National Nuclear Security 

Page 43 of 52 Soft Matter



44

Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. 

S.Q. and R.F. thank National Science Foundation (award No. 1438584) that made the 

purchase of the rheometer possible. 

References

1 J. Du and R. K. O�Reilly, Soft Matter, 2009, 5, 3544�3561.

2 D. U. Ahn and E. Sancaktar, Soft Matter, 2008, 4, 1454�1466.

3 P. Alexandridis and B. Lindman, Amphiphilic block copolymers: self-assembly and 

applications, Elsevier, 2000.

4 J. Liu,  a. Y. Y. Kim, L. Q. Q. Wang, B. J. J. Palmer, Y. L. L. Chen, P. Bruinsma, B. 

C. C. Bunker, G. J. J. Exarhos, G. L. L. Graff, P. C. C. Rieke, G. E. E. Fryxell, J. W. 

W. Virden, B. J. J. Tarasevich and L. a. A. Chick, Adv. Colloid Interface Sci., 1996, 

69, 131�180.

5 P. Alexandridis, U. Olsson and B. Lindman, Macromolecules, 1995, 28, 7700�7710.

6 P. Holmqvist, P. Alexandridis and B. Lindman, Langmuir, 1997, 13, 2471�2479.

Page 44 of 52Soft Matter



45

7 P. Alexandridis, U. Olsson and B. Lindman, Langmuir, 1997, 13, 23�34.

8 P. Alexandridis, U. Olsson and B. Lindman, Langmuir, 1998, 14, 2627�2638.

9 L. Yang and P. Alexandridis, Curr. Opin. Colloid Interface Sci., 2000, 5, 132�143.

10 O. Parisi, L. Scrivano, S. Candamano, M. Ruffo, A. Vattimo, M. Spanedda and F. 

Puoci, Molecules, 2017, 23, 63.

11 N. A. Gujarathi, B. R. Rane and R. K. Keservani, in Novel Approaches for Drug 

Delivery, Medican Information Science Reference, 2017, pp. 190�216.

12 S. Hocine and M.-H. Li, Soft Matter, 2013, 9, 5839�5861.

13 L. Sievens-figueroa and C. A. Guymon, Chem. Mater., 2009, 21, 1060�1068.

14 D. T. McCormick, K. D. Stovall and C. A. Guymon, Macromolecules, 2003, 36, 

6549�6558.

15 M. A. DePierro, K. G. Carpenter and C. A. Guymon, Chem. Mater., 2006, 18, 5609�

5617.

16 M. Zhou, P. R. Nemade, X. Lu, X. Zeng, E. S. Hatakeyama, R. D. Noble and D. L. 

Gin, J. Am. Chem. Soc., 2007, 129, 9574�9575.

Page 45 of 52 Soft Matter



46

17 X. Feng, M. E. Tousley, M. G. Cowan, B. R. Wiesenauer, S. Nejati, Y. Choo, R. D. 

Noble, M. Elimelech, D. L. Gin and C. O. Osuji, ACS Nano, 2014, 8, 11977�11986.

18 H.-P. Hentze and E. W. Kaler, Curr. Opin. Colloid Interface Sci., 2003, 8, 164�178.

19 S. Qavi, A. Lindsay, M. Firestone and R. Foudazi, J. Memb. Sci., 2019, 580, 125�

133.

20 F. Kleitz, T. Czuryszkiewicz, A. Leonid A. Solovyov and M. Lindén, Chem. Mater., 

2006, 18, 5070�5079.

21 F. Kleitz, A. Tae-Wan Kim and R. Ryoo, Langmuir, 2005, 22, 440�445.

22 R. Jiaxiang, S. S. Adriana and R. Krishnamoorti, Macromolecules, 2000, 33, 3739�

3746.

23 J. M. Sebastian, C. Lai, W. G. William and A. R. Richard, Macromolecules, 2002, 

35, 2707�2713.

24 M. B. Kossuth, D. C. Morse and F. S. Bates, J. Rheol., 1998, 43, 167�196.

25 G. Palazzo, Soft Matter, 2013, 9, 10668�10677.

26 K. Morishima, S. Sugawara, T. Yoshimura and M. Shibayama, Langmuir, 2017, 33, 

Page 46 of 52Soft Matter



47

6084�6091.

27 G. Montalvo, M. Valiente and E. Rodenas, Langmuir, 1996, 12, 5202�5208.

28 L. Coppola, R. Gianferri, I. Nicotera, C. Oliviero and G. A. Ranieri, Phys. Chem. 

Chem. Phys., 2004, 6, 2364�2372.

29 A. A. Adams, M. J. Solomon, R. G. Larson and X. Xia, J. Rheol., 2017, 61, 967�

977.

30 X. Li, E. Park, K. Hyun, L. Oktavia and M. Kwak, J. Rheol., 2018, 62, 107�120.

31 I. W. Hamley, Curr. Opin. Colloid Interface Sci., 2000, 5, 341�349.

32 I. W. Hamley and V. Castelletto, Prog. Polym. Sci., 2004, 29, 909�948.

33 N. P. Balsara and B. Hammouda, Phys. Rev. Lett., 1994, 72, 360.

34 I. Hamley, in Block Copolymers in Solution: Fundamentals and Applications, Wiley 

Online Library, 2012, pp. 105�172.

35 J. Zipfel, J. Berghausen, G. Schmidt, P. Lindner, P. Alexandridis and W. Richtering, 

Macromolecules, 2002, 35, 4064�4074.

36 J. Zipfel, J. Berghausen, G. Schmidt, P. Lindner, P. Alexandridis, M. Tsianou and 

Page 47 of 52 Soft Matter



48

W. Richtering, Phys. Chem. Chem. Phys., 1999, 1, 3905�3910.

37 J.-P. Habas, E. Pavie, A. Lapp and J. Peyrelasse, Rheol. Acta, 2008, 47, 765�776.

38 K. Van Workum and J. J. de Pablo, Phys. Rev. E, 2003, 67, 031601.

39 A. A. Joshi, J. K. Whitmer, O. Guzmán, N. L. Abbott and J. J. de Pablo, Soft Matter, 

2014, 10, 882�893.

40 K. Van Workum and J. J. de Pablo, Phys. Rev. E, 2003, 67, 011505.

41 D. N. Blaschke, J. Appl. Phys., 2017, 122, 145110(1-6).

42 D. Tromans, Int. J. Res. Rev. Appl. Sci., 2011, 6, 462�483.

43 G. R. Barsch, J. Appl. Phys., 1968, 39, 3780�3793.

44 J. M. J. den Toonder, J. A. W. van Dommelen and F. P. T. Baaijens, Model. Simul. 

Mater. Sci. Eng., 1999, 7, 909�928.

45 A. May, K. Aramaki and J. M. Gutiérrez, Langmuir, 2011, 27, 2286�2298.

46 R. Mezzenga, C. Meyer, C. Servais, A. I. Romoscanu, L. Sagalowicz and R. C. 

Hayward, Langmuir, 2005, 21, 3322�3333.

Page 48 of 52Soft Matter



49

47 L. Sagalowicz, R. Mezzenga and M. E. Leser, Curr. Opin. Colloid Interface Sci., 

2006, 11, 224�229.

48 J. F. Nye, Physical properties of crystals�: their representation by tensors and 

matrices, Clarendon Press, 1985.

49 W. Voigt, Ann. Phys., 1889, 274, 573�587.

50 S. L. Deore and S. N. Kale, Syst. Rev. Pharm., 2017, 8, 39�47.

51 M. K. SHARMA and D. O. SHAH, in ACS Symposium Series, American Chemical 

Society , 1985, pp. 1�18.

52 R. Goetz, R. Lipowsky and R. Diger Goetz, J. Chem. Phys., 1998, 108, 7397�7409.

53 W. Callister and D. Rethwisch, Materials Science and Engineering, an Introduction, 

John Wiley & Sons, 8th editio., 2014.

54 J. N. Israelachvili, Intermolecular and Surface Forces., Academic, London, 1992.

55 J. R. Barber, Elasticity, Springer, 2010.

56 B. A. Smith, E. T. Samulski, L.-P. Yu and M. A. Winnik, Phys. Rev. Lett., 1984, 52, 

45�48.

Page 49 of 52 Soft Matter



50

57 A. K. Fritzsche and F. P. Price, Polym. Eng. Sci., 1974, 14, 401�412.

58 B. W. Henry and B. W. Lawrence, Proc. R. Soc. London. Ser. A, Contain. Pap. a 

Math. Phys. Character, 1913, 88, 428�438.

59 P. Alexandridis, U. Olsson and B. Lindman, J. Phys. Chem., 1996, 100, 280�288.

60 J. Lauger, R. Linemann and W. Richtering, Rheol. Acta, 1995, 34, 132�136.

61 M. Lukaschek, D. A. Grabowski and C. Schmidt, Langmuir, 1995, 11, 3590�3594.

62 Q. Chang and Q. Chang, Colloid Interface Chem. Water Qual. Control, 2016, 79�

136.

63 C. Daniel, I. W. Hamley, M. Wilhelm and W. Mingvanish, Rheol. Acta, 2001, 40, 

39�48.

64 C. Rodriguez-Abreu, D. P. Acharya, K. Aramaki and H. Kunieda, Colloids Surfaces 

A Physicochem. Eng. Asp., 2005, 269, 59�66.

65 I. Masalova, A. Y. Malkin and R. Foudazi, Appl. Rheol.

66 R. Foudazi, S. Qavi, I. Masalova and A. Y. Malkin, Adv. Colloid Interface Sci., 2015, 

220, 78�91.

Page 50 of 52Soft Matter



51

67 R. Foudazi, I. Masalova and A. Y. Malkin, J. Rheol., 2012, 56, 1299�1314.

68 K. Hyun, S. H. Kim, K. H. Ahn and S. J. Lee, J. Nonnewton. Fluid Mech., 2002, 107, 

51�65.

69 N. Phan-Thien, M. Safari-Ardi and A. Morales-Patino, Rheol. Acta, 1997, 36, 38�

48.

70 T. Mason, J. Bibette and D. Weitz, Phys. Rev. Lett., 1995, 75, 2051�2054.

71 T. Mason and D. Weitz, Phys. Rev. Lett., 1995, 75, 2770�2773.

72 R. J. Ketz, R. K. Prud�homme and W. W. Graessley, Rheol. Acta, 1988, 27, 531�

539.

73 M. Laurati, G. Petekidis, N. Koumakis, F. Cardinaux, A. B. Schofield, J. M. Brader, 

M. Fuchs and S. U. Egelhaaf, J. Chem. Phys., 2009, 130, 134907.

74 P. Sollich, Phys. Rev. E, 1998, 58, 738�759.

75 L. Bohlin, J. Colloid Interface Sci., 1980, 74, 423�434.

76 D. Gabriele, B. de Cindio and P. D�Antona, Rheol. Acta, 2001, 40, 120�127.

Page 51 of 52 Soft Matter



Page 52 of 52Soft Matter


