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Poisson ratio mismatch drives low-strain reinforcement in 
elastomeric nanocomposites
Scott M. Smitha and David S. Simmons b*

Introduction of nanoparticulate additives can dramatically impact elastomer mechanical response, with large enhancements 
in modulus, toughness, and strength. Despite the societal importance of these effects, their mechanistic origin remains 
unsettled. Here, using a combination of theory and molecular dynamics simulation, we show that low-strain extensional 
reinforcement of elastomers is driven by a nanoparticulate-jamming-induced suppression in the composite Poisson ratio. 
This suppression forces an increase in rubber volume with extensional deformation, effectively converting a portion of the 
rubber’s bulk modulus into an extensional modulus. A theory describing this effect is shown to interrelate the Poisson ratio 
and modulus across a matrix of simulated elastomeric nanocomposites of varying loading and nanoparticle structure. This 
model provides a design rule for structured nanoparticulates that maximizes elastomer mechanical response via suppression 
of the composite Poisson ratio. It also positions elastomeric nanocomposites as having a qualitatively different character 
than Poisson-ratio-matched plastic nanocomposites, where this mechanism is absent.

Introduction
The last 25 years have seen enormous interest in the properties 
and design of polymer nanocomposites1,2, with a focus on 
mechanical reinforcement of engineering plastics. Despite 
these efforts, the underlying physics of the earliest class of 
synthetic polymer nanocomposites – nanofiller-reinforced 
elastomers – remain poorly understood. The canonical example 
of these materials, rubber filled with carbon black, is one of the 
most societally important polymeric materials, with far-
reaching economic, safety, and environmental impacts. 
Nanoparticulate additives also play a role in mechanical 
reinforcement of next-generation elastomers such as tough 
biomedical hydrogels.3,4 A settled mechanistic understanding of 
reinforcement in these materials would thus be of great value 
in materials design.
Several mechanisms have been proposed to account for filler-
based reinforcement of solid elastomers. The longest-standing 
of these is grounded in classical composite theory, positing that 
hydrodynamic interactions of the filler particles within their 
medium drive an enhancement of composite viscosity or 
modulus.5–7 However, because this approach generally under-
predicts reinforcement at moderate to high filler loadings, these 
models are empirically corrected by introducing the idea that 
fillers induce the formation of non-deforming “bound”8–11,2 or 
“occluded”12–14 rubber domains. These domains, which are 
hypothesized to emerge from rubber-filler attractive 

interactions or from geometrical occlusion of rubber by fillers, 
respectively, are often posited to increase the effective filler 
loading in a loading-dependent manner. From a broader 
perspective, the bound rubber hypothesis is closely related to 
the idea, in nanocomposite plastics and thin films, that 
alterations in bulk mechanical response reflect dramatic 
alterations in polymer dynamics, mechanics, and glass 
formation near the polymer/inorganic interface.1,15,16 In rubber, 
however, there is considerable debate as to whether these 
hypotheses represent a genuine microscopic mechanism or 
simply an empirical correction factor to hydrodynamic models 
derived in a more dilute limit.17,18 
Within the past 15 years, the concept of filler percolation and 
jamming has emerged as an alternate explanation for the 
observed reinforcement in filled rubber.19–24 Jamming is closely 
related to glass formation in that the transition into the jammed 
state is characterized by an onset of dynamic arrest without the 
apparent emergence of long-range order. Conductivity 
measurements suggest that nanofillers indeed form percolated 
networks in highly reinforced rubbers.20,24,25 Moreover, the 
well-known nonlinear strain dependence of filled rubber 
moduli, known as the Payne effect,26,27 is consistent with a yield 
event of this network.19–24 
This alternate perspective suggests, perhaps counterintuitively, 
that nanoparticle-reinforced rubber is mechanistically similar to 
concrete. Concrete corresponds to a cement matrix heavily 
reinforced with a jammed particulate network.28–30 This 
reinforcement effect leads to a much more robust mechanical 
response in concrete than in pure cement binder alone. 
However, this raises a natural question regarding the 
hypothesis of a jamming-based origin of rubber reinforcement. 
Jammed media tend to be relatively weak under tension. For 
this reason, the compressive strength of standard concrete is 
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much greater than its tensile strength. In contrast, filled rubber 
can exhibit dramatic enhancements in modulus, toughness, 
and failure strength under tension. Can this observation be 
reconciled with a jamming-based origin of nanofiller 
reinforcement of rubber? 
This work proposes and tests the idea that the central 
mechanism of extensional low-strain reinforcement of rubber 
by nanofillers is a jamming-driven reduction in the composite 
Poisson ratio. For a broader review of the role of Poisson’s 
ratio in various deforming systems, we review the reader to 
several excellent reviews31,32. This reduction drives an increase 
in rubber volume with deformation, such that elongational 
deformation is resisted by the rubber’s bulk modulus rather 
than simply its Young’s modulus. This scenario is consistent 
with experimental evidence indicating that the low-strain 
Poisson ratios of nanofilled elastomeric composites 
interpolate between the pure rubber limit of an 
incompressible fluid (ν = 0.5)33–35 and the typical Poisson ratio 
of 1/3 for glasses and jammed media (ν = 0.15-0.42,36–38). 
Additional evidence for a jamming-based origin of this effect is 
provided by an observed return to a Poisson ratio of ½ at high 
strains39 coinciding with the onset of the Payne effect, 
consistent with a yield event of a jammed filler network.26,27 
Since bulk moduli are commonly 1000-fold greater than 
Young’s moduli in rubber,40 this proposed enhancement of the 
Young’s modulus by a portion of its bulk modulus can yield 
substantial reinforcement.
This prediction is tested by employing coarse-grained 
molecular dynamics simulations of rubber/nanoparticle 
composites. In order to access a range of reinforcements and of 
composite Poisson ratios, these simulations span several filler 
loadings and structures. Specifically, we employ structured 
fillers comprised of randomly sintered aggregates of 
icosahedral primary particles, as illustrated in Figure 1 
(rendered in VMD41). As described in earlier work, this process 
for constructing sintered aggregates yields structures bearing a 
remarkable resemblance to micrographs ofa highly structured 
nanoparticulate carbon black.42 

Theory
We consider a rubber matrix forced to deform at a non-native 
Poisson ratio by a jammed network of nanoparticulate fillers. 
How should we expect this material to respond mechanically? 
We begin by writing the total stress tensor as a difference of the 
deviatoric (non-isotropic) stress and the pressure (the isotropic 
stress):
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where I is a 3 by 3 identity matrix. Note that, by definition, the 
deviatoric stress tensor is traceless; that is, the sum of the 
diagonal components σxx + σyy + σzz = 0 and the thermodynamic 
pressure p can be expressed as 
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We first consider the ‘native’ behavior of the matrix material, in 
the case of zero normal pressure at which the material’s volume 
obeys its native Poisson ratio ν0. Its native extensional modulus 
in this case for uniaxial elongation in the x-direction is given by  
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If the imposed uniaxial deformation introduces equal deviatoric 
stress in the normal directions (σyy = σzz), and recalling that the 
deviatoric trace is zero (such that σxx + 2σyy = 0), then under zero 
normal stress, σxx = -2p and Πxx = -3p. Therefore, σxx = 2Πxx/3, 
and the native extensional modulus can be re-written as
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Now, consider a scenario in which the material is forced to 
deform at a non-native Poisson ratio ν. In the present context, 
this modified Poisson ratio is imposed by the presence of a 
jammed filler network embedded within the matrix material; 
more generally, it could be imposed by any means, such as via 
an imposed normal boundary deformation. In this case, the 
effective Young’s modulus Eν can be written as 

Figure 1. Top: unstructured (Np  = 1, left) and representative structured (Np  = 13, 
right) fillers. Bottom: Simulated elastomeric nanocomposites containing Np = 1 (left) 
and Np = 13 (right) aggregates at a filler volume fraction ϕf ≅ 0.34, where the 
crosslinked polymer has been omitted and each particle is colored individually. 
Images rendered in VMD.40 
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where the replacement of (dσxx/dγx) with (2E0 / 3) is consistent 
with the relationship in equation (4). The pressure derivative 
with respect to elongational strain can be expanded via the 
definition of the bulk modulus K, which is a measure of the 
stress required to grow the volume V:

 (6)pK V
V
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In order to obtain a pressure derivative equal to that in (5), we 
rearrange this equation to isolate p before differentiating with 
respect to elongational strain: 
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where p0 and V0 are the pressure and volume under zero normal 
stress, respectively. In the zero-strain limit we can additionally 
employ the relation d(ln(V/V0))/dγx = d(V/V0)/dγx. Integration 
and evaluation of equation (7) then leads to the following form:
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where the latter approximation becomes exact in the zero-
strain limit. Using the definitions of true strain dγx ≡ (1/x) dx and 
Poisson ratio ν ≡ -dγy /dγx = -dγz /dγx, we arrive, for the volume 
derivative in equation (8), at
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where x, y, and z, are the dimensions of the material. Combining 
equations (9) and (8), and (5) now yields an expression for the 
effective Young’s modulus under an imposed Poisson ratio ν:
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Using equation (4) and the relationship σxx = -2p that holds for 
uniaxial extension under zero normal stress, dp0/dγx can be 
expressed as -E0/3. Furthermore, in the zero-strain limit, V/V0 
goes to 1, and the extensional modulus under fixed Poisson 
ratio is written as 

 (11) 0 02E E K    

The physical interpretation of equation (11) is that the 
extensional modulus of a material increases beyond its native 
extensional modulus when a non-native Poisson ratio is 
enforced. Forcing a non-native Poisson ratio leads to a 
contribution from the material’s bulk modulus that grows as the 
difference between the material’s native Poisson ratio ν0 and 
the imposed Poisson ratio ν increases. In essence, use of the 
non-native Poisson ratio forces the material to deviate from its 
preferred volume under strain, incurring an additional energetic 

cost associated with the bulk modulus. On the other hand, if an 
imposed Poisson ratio is equal to the preferred Poisson ratio, 
the native extensional modulus is recovered such the bulk 
modulus term in equation (11) drops out and the equation 
reduces to Eν = E0. 
Equation (11) thus provides a prediction for the effective 
extensional modulus of a neat material forced to deform at a 
non-native Poisson ratio. This would apply, for example, if a 
fixed-Poisson-ratio boundary condition were artificially applied 
in the normal directions. When applied to the more realistic 
scenario of interest here – a non-native Poisson ratio imposed 
by a nanoparticulate filler – one additional factor must be 
introduced to equation (11) to arrive at the composite modulus.  
In this case, introduction of (nearly non-deformable) filler 
nanoparticles can additionally cause localization of strain within 
the rubber domain. This can be accounted for via a strain 
amplification factor f, such that equation (11) then becomes

(12) 0 02cE f E K       

where Ec is the effective extensional modulus of the composite, 
accounting for both Poisson ratio and strain localization effects. 
An effective upper bound for the value of f can be obtained 
from a ‘series’ composite mechanical model (also known as the 
iso-stress model), in which f is given by 1/ϕdef, where ϕdef is the 
volume fraction of the deformable material. In this case ϕdef 
would be given by the volume fraction of rubber within the 
composite. However, because rubber and nanofiller are not 
truly in mechanical series, the true value of f can be expected to 
be between one and this prediction.
Notably, equation (11) resembles the following Lamé 
relationship from the theory of linear elasticity:

 (13) 0 03 1 2E K  

where implicit in the theory is the notion that the material 
deforms at its natural/preferred Poisson ratio. This Lamé 
relation can be inserted into equation (11) to yield a generalized 
Lamé relation that accounts for differences between the 
imposed and native Poisson ratio:  
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This generalized Lamé relation thus accounts for both the native 
properties of the material and for an imposed non-zero-stress 
boundary condition. The central question is now whether this 
type of mismatch between the preferred Poisson ratio of a 
rubber matrix and an alternate value imposed by a jammed 
reinforcing nanoparticles can account for the observed 
reinforcement in a reasonable rubber model. We next employ 
molecular dynamics simulations of a reinforced rubber in an 
effort to answer this question.
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Simulation Methodology
Forcefield

We now seek to test the predictions of equation (12) against 
coarse-grained molecular dynamics simulations of an 
elastomeric nanocomposite. These simulations employ a bead-
spring model of crosslinked polymer that is well-established in 
the literature.43 Each simulation includes a loading-dependent 
number of highly dispersed filler particles, consisting of sintered 
icosahedra, and a fixed amount of polymer: 5000 unentangled44 
polymer chains of length 20 beads each, and 2500 crosslinker 
beads, where the amount of crosslinker is selected to give a 
correct stoichiometric ratio for a network with junctions of 
functionality equal to four. 
Nonbonded interactions are modeled by the 12-6 Lennard-
Jones (LJ) potential, 

 (16) 
12 6

4LJ rE
r r
 
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where r is the distance between non-bonded segments, σ and ε 
are characteristic energy and length scales, and rc is a distance 
cutoff for the potential, beyond which the potential is equal to 
zero. The non-bonded interaction parameters between each 
species are summarized in Table 1.
Bonded polymer interactions are modeled with two different 
potentials, depending on the stage of the simulation. In 
summary, the generation and equilibration phases of the 
simulation employ an unbreakable bond potential, while the 
deformation phase employs a breakable bond. The bond type 
employed during each stage of the simulation is reprised in 
subsequent sections that provide further methodological 

details. The unbreakable bond is modeled as the finitely 
extensible nonlinear elastic (FENE) potential,
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where the spring constant K = 30, and the maximum bond 
extensibility R0 = 1.5. In simulation phases that employ a 
breakable bond, the quartic potential is used:

 (18)
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In equation (18), kq is a spring constant, r0 is the maximum 
extensibility before bond failure, B1 and B2 are distance 
parameters, and E0 is an energy parameter. The values for these 
coefficients yield a potential that closely resembles the FENE 
potential:45,46 Kq = 2351, r0 = 1.5, B1 = -0.7425, B2 = 0, and E0 = 
92.74. Despite this changeover in the nature of the bond, bond 
breaking is generally not observed at the strains reported in this 
study; use of a breakable bond during deformation is 
implemented to enable future extensibility of this work to high 
strains approaching failure.

Icosahedral filler particles and their aggregates also 
consistent of Lennard-Jones beads held together by bonds. An 
in-house sintering algorithm developed in previous work42 is 
used for building primary particles and connecting them into 
structured aggregates. However, unlike in previous filler 
particle construction, the updated algorithm completely fills 
each particle such that there is no hollow space within the 
icosahedra. Multiple icosahedral ‘shells’, from 1 to n-1 beads 
per edge are fit inside the outermost shell containing n beads 
per edge. This is illustrated in Figure 2 for a primary 
(icosahedral) filler particle with n = 4 beads per edge along the 
outermost/surface shell. Completely filling the particles, 
although more computationally expensive, is required for shape 
preservation: each icosahedra structure is maintained via a 
network of bonds between neighboring beads at several unique 
separation distances. An example of the filler bonding protocol 
for a structured aggregate (containing Np = 5 primary particles) 
is illustrated in Figure 3 and described below. 
The equilibrium length of each bond is key in defining the 
icosahedral shape of the primary particles. After a primary 
particle is generated, an algorithm compares the distance 
between a given bead and every other bead in the icosahedra, 
which consists of a distance comparison between beads in the 
same shell as well as beads in separate shells. If two beads are 
separated by a distance 1.5σ or less, a bond is generated 
between the two beads in the primary particle. The limit of 1.5σ 
is chosen based on empirical evidence that the particles 
adequately retain their shape; the increased computational cost 
of applying a higher cutoff (thereby leading to a greater filler 
bond count) is therefore not necessary. When a separation 
distance less than 1.5σ is identified, a new bond is formed 
between the two beads with an equilibrium distance equal to 
their separation distance set by the nanoparticle generating 

Table 1. Non-bonded LJ parameters for simulated rubber/filler composites.

Interaction Pair ε σ rc

Polymer-Polymer 1.0000 1.0000 2.5σ
Polymer-Filler 1.0000 1.0000 2.5σ

Filler-Filler 1.0000 1.0000 21/6σ

Figure 2. Illustration of the shells of a filled primary (icosahedral) filler particle with n 
= 4 beads per icosahedral edge. The outermost shell contains within it all smaller 
icosahedra from n-1 beads per edge to 1 bead per edge (single bead).
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algorithm. Setting their bonded potential energy minimum 
equal to their geometric separation distance ensures that the 
initially constructed icosahedral shape is the lowest energy 
state. The bead separation distances that result in the 
formation of filler bonds are as follows: (1) 0.9511σ between 
nearest neighbors of adjacent shells, (2) 1.0000σ between 
nearest neighbors of the same shell, and (3) 1.3800σ between 
second-nearest neighbors of adjacent shells. For icosahedral 
particles containing 4 LJ beads per edge, this bonding protocol 
results in a total of 936 bonds formed among 147 LJ beads per 
icosahedra. Additionally, for composite simulations containing 
structured aggregates in which primary particles are sintered 
together, nearest-neighbor beads between the two sintered 
primary particles gain bonds with equilibrium separation 
distance 1.0000σ, and second-nearest neighbors gain bonds 
with equilibrium distance 1.4142σ. 
In the pre-deforming stages of the simulation, filler bonds are 
modeled by a harmonic (unbreakable) potential: 

 (19)2
, ( )bond harm harm eqE k r r 

where Ebond,harm is the harmonic bond energy, kharm is the 
harmonic spring constant, r is the distance between the bonded 
segments, and req is the equilibrium bond length. the typical 
pre-factor of 1/2 observed in Hooke’s law is absorbed by kharm. 
A value of kharm = 4000 is used to represent a relatively stiff filler 
bond. During the deformation phase of the simulation, fillers 
bonds are switched to the breakable quartic potential. The 
quartic potential coefficients for the filler bonds are shown in 
Table 2. The harmonic and quartic bonds used to maintain filler 
shape are modeled to be much stiffer than the imposed 
polymer bonds (the standard FENE potential well resembles a 
harmonic potential with kharm = 500) such that simulated 
deformation is consistent with experiment in that material 
failure resides within the polymer phase. Moreover, the bond 
density, or number of bonds per filler bead, is much greater in 
the fillers than in the polymer.
The matrix of investigated composites spans a range of filler 
loadings and filler structures as quantified by Np, the number of 
primary particles per aggregate. The matrix of simulated 
composites is described in Table 3. While each system contains 
aggregates with a specified Np, a distribution of aggregate 
shapes is incorporated to eliminate bias in the mechanical 
response that may result from a specific filler shape. A detailed 

description of the algorithm developed for generating 
structured filler particles can be found in earlier work.42

Simulations are performed in the Large Scale Atomic/Molecular 
Massively Parallel Simulator (LAMMPS)47 software package, and 
employ reduced LJ units, where the unit of distance σ 
corresponds to approximately 1 - 2 nm in real units.48 
Simulations are performed at a reduced LJ temperature of 1.0, 
which is greater than 2.5Tg for this model polymer.49 Prior work 
on dynamics of similar model polymers at interfaces indicates 
that near-filler polymer dynamics should not be substantially 
altered under these conditions.48,50–52 Combined with the 
absence of filler-filler attractions, this choice also allows for the 
study of reinforcement without appreciable enthalpic adhesion 
between filler particles. Periodic boundary conditions are 
enforced, and the equations of motion are integrated via the 
Velocity-Verlet algorithm53 with a timestep of 0.005τ, where τ 
(the reduced LJ unit of time) is equal to σ(m/ε)1/2. 

Figure 3. Illustration of filler shape preservation that is attained via bonding of 
individual beads with close neighbors within the filler particles/aggregates. The blue 
and green bead overlays are used to illustrate bonding within individual primary 
particles (icosahedra); the blue bead forms bonds with six nearest neighbors (green 
beads), where the bonds are shown as green lines. Additionally, the blue bead bonds 
to other (internal) beads beneath the surface shell that are not visible here. The 
separation distance between intra-shell beads and inter-shell beads is not equal, and 
therefore multiple bonding potentials are required to maintain the preferred 
icosahedral shape. In order to form structured aggregates, individual icosahedra are 
also bonded together through beads at their sintering faces (bonds span two primary 
particles), which is shown in the remaining two green overlays.

Table 2. Quartic bond parameters for the polymer and filler bonding potentials. The filler aggregates contain several bond types parameters: one 
type for every unique equilibrium LJ bead separation distance less than 1.5σ.

Phase req kq B1 B2 r0 E0

Polymer 0.9609 2351.0000 -0.7425 0.0000 1.5000 92.7400
Filler 0.9511 -4513.4062 -1.2700 -0.9920 1.4902 451.5171

Filler 1.0000 -5765.8867 -1.1180 -1.0560 1.5391 520.6378
Filler 1.3800 -7166.4613 -1.0300 -1.1359 1.9191 629.8370
Filler 1.4142 -6610.8126 -1.0150 -1.1598 1.9533 587.0767
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A multi-step preparation procedure is employed in order to 
generate configurations in which the fillers are highly dispersed 
in a model rubber matrix. In an initial simulation stage, the 
polymer-filler interactions are turned entirely off such that 
fillers and polymer chains equilibrate separately within a shared 
box of fixed volume without interacting. This volume is chosen 
by an estimation of the composite volume under constant zero 
pressure. During this stage, filler dynamics obey a Langevin 
thermostat, and the temperature of the fillers is increased to 
100 fold greater than the polymer temperature to promote 
faster and more efficient generation of the random filler 
configuration. Specifically, at the level of primary icosahedral 
filler particles, the filler is roughly 100 times more massive than 
the polymer Kuhn segments, and an equal increase in filler 
temperature generates a filler velocity comparable to the 
polymer velocity, which enables faster generation of the filler 
configuration using a shared time step with the polymer chains 
(0.005τ). This phase is executed for a period of 2625τ (where τ 
is the LJ unit of time), after which the filler positions are fixed. 
With their positions fixed, the fillers are ‘grown’ into the 
polymer matrix by gradually turning on polymer-filler 
nonbonded interactions over a period of 6785τ, such that the 
polymer and filler no longer occupy the same space. To correct 
for potential deviations in the preferred volume at constant 
zero pressure, the system is then briefly equilibrated, with both 
polymer and filler degrees of freedom subject to time 
integration, under constant zero pressure using a Nose-Hoover 
barostat for 2000τ. Next, with the fillers fixed in place, the 
polymer component of the nanocomposite is equilibrated 
under constant volume for a period of 105τ at a temperature of 
1.0 using a Nose-Hoover thermostat. At this temperature, the 
equilibration period is roughly 10 fold longer than the chain 
end-to-end relaxation time.42 This is sufficient to permit the 
polymer melt to obtain its equilibrium state within the 
constraints imposed by the fixed filler particles.
Following equilibration, the polymer melt is crosslinked using a 
well-established end-linking strategy54,55 over a period of 2500τ. 
End-linking produces a network of strands that are equal in 
length to the precursor chains, which, in this case, generates a 
network of monodisperse strands of length 20 Kuhn segments. 
The crosslinking phase has been described in detail in previously 
published work.42

After this crosslinking stage, the system is subject to another 
equilibration period (6250τ) at fixed temperature and pressure 
(via a Nose-Hoover thermostat and barostat), with both chains 
and fillers included in time integration. This permits short-range 

motion of the filler particles within the cross-linked matrix to 
relieve any unfavorable short-ranged interactions between 
fillers. Given that (a) the primary filler size is of the order of the 
strand gyration radius, and (b) the fillers are given only a brief 
time to relocate, long-range aggregation is hindered, and the 
nanocomposite is therefore expected to retain a highly 
dispersed filler configuration. During the final 5000τ of short-
range filler network relaxation, all chemical bonds, both in the 
polymer network and within the fillers, are switched from 
unbreakable (FENE potential for polymers, harmonic for fillers) 
to breakable (quartic potential) in order to simulate a more 
realistic scenario of nanocomposite deformation. Example 
images (rendered in VMD41) of the highly dispersed filler 
configurations achieved in these simulations are shown in 
Figure 1.
From each equilibrated nanocomposite configuration, 50 
thermally random configurations are generated by assigning 
new random velocities to the polymer and filler and performing 
a simulation for 100τ at constant temperature (1.0 LJ units) and 
pressure (0.0), using a Nose-Hoover thermostat and barostat. 
This ‘forked’ simulation allows for improved statistical sampling 
over thermal noise in the stress tensor during deformation. 
Each thermally randomized configuration is then stretched 
uniaxially at a rate of 5∙10-5/τ, with both filler and polymer 
degrees of freedom subject to time integration. This rate has 
been chosen based on a prior investigation42 that located the 
regime of strain-rate independence in the stress response for 
this crosslinked polymer model. The rate used in this study is at 
the onset of the rate-independence, such that the mechanical 

Table 3. Number of simulated filler aggregates in each nanocomposite 
containing filler volume fraction ϕf and filler structure Np. Here, ϕf is shown 
as an average over the 50 simulated configurations of each composite and 
over the various Np. Cells containing a “-“ were not simulated due to low 
number of fillers that would be involved, which would lead to poor statistical 
sampling (less than 30 aggregates).  

ϕf Np

1 3 5 7 9 11 13
0.046 48 - - - - - -
0.087 96 32 - - - - -
0.125 144 48 - - - - -
0.190 240 80 48 48 34 - -
0.261 360 120 72 51 40 33 -
0.320 480 160 96 69 53 44 37
0.415 720 240 144 103 80 65 55
0.455 839 280 168 120 93 76 -
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response at the chosen strain rate is dominated primarily by the 
rubbery plateau rather than by high-frequency dynamics. 
Constant zero pressure boundary conditions are imposed in the 
directions normal to deformation using a Nose-Hoover 
barostat. This allows the normal dimensions to respond 
dynamically to the imposed strain, as would be expected in a 
traditional tensile test in which a sample’s volume is set by its 
Poisson ratio.

Results

The 

stress-strain behavior of the simulated rubbery composites is 
shown in Figure 4, where true stress σx = F/A, in which the 
extensional force F is divided by the instantaneous cross-
sectional area A, and true strain γx = ln(Lx / Lx,0), where Lx is the 
current length and Lx,0 is the initial length. Qualitatively, these 
composites exhibit a reinforcement effect that increases with 
structure Np, or the number of primary icosahedra per 
nanoparticle (aggregate), and this trend is consistent across a 
wide range of loadings. Moreover, they exhibit a modest 
softening of the modulus with increasing strain, which is 
consistent with the Payne effect26,27 observed in experimental 
filled rubbers.

Figure 5. Ratio of tangent moduli for elastomer composites—containing a 
particular filler loading and level of filler structure—to that of the neat 
rubber, plotted vs filler volume fraction ϕf. The tangent moduli ratios are 
taken at a strain of (A) γx = 0.049; (B) γx = 0.068; (C) γx = 0.086. The horizontal 
black dotted line represents the neat rubber limit. Symbols retain their 
meaning from Figure 4 and lines are guides to the eye.
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Figure 4. Representative (true) stress-strain curves of rubbery composites 
containing filler volume fractions ϕf of (A) 0.125, (B) 0.261, and (C) 0.415. Neat 
rubber is shown as a reference in each plot and is represented by solid black 
circles. The other curves represent various filler structures: Np = 1 (solid blue 
diamonds); Np = 3 (solid orange squares); Np = 5 (solid purple triangles); Np = 7 
(solid red circles); Np = 9 (hollow blue diamonds); Np = 11 (hollow green squares); 
Np = 13 (hollow black triangles). Straight lines connecting symbols are included as 
a guide to the eye.  

0.00

0.01

0.02

0.03

0.04

0.05

0 0.03 0.06 0.09 0.12 0.15 0.18

σ x

γx

(A)

0.00

0.03

0.06

0.09

0.12

0.15

0 0.03 0.06 0.09 0.12 0.15 0.18

σ x

γx

(B)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0 0.03 0.06 0.09 0.12 0.15 0.18

σ x

γx

(C)

Page 7 of 16 Soft Matter



ARTICLE Journal Name

8 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

Please do not adjust margins

In order to better quantify this reinforcement effect, we 
compute the instantaneous (tangent) composite moduli Ec.  As 
shown in Figure 5A-C, the extensional modulus exhibits a 
strongly nonlinear enhancement with increasing filler content, 
with more structured nanoparticles yielding greater 
reinforcement at fixed nanoparticle loading. These data are 
qualitatively comparable to trends in reinforcement observed 
in experimental rubber/nanofiller composites.56,57 Notably, the 
extensional moduli increase by as much as a factor of 10-20 
relative to the neat rubber, particularly in highly loaded 
composites containing highly structured fillers. The observed 
increase is much greater than early predictions of modulus 
enhancement from the Einstein or Guth equations. What is this 
origin of this large reinforcement effect? 
Test of occluded rubber hypothesis

We first test the long-standing proposition, summarized in the 
introduction, that the formation of non-deforming rubber 

domains introduced by the addition of filler is responsible for 
anomalously large elastomer reinforcement effects such as 
those reported above. This hypothesis proposes that the 
reduced fraction of deforming rubber leads to a strain 
amplification effect that yields an effective stiffening of the 
composite.
As noted above, in our simulations, interactions between the 
polymer and filler have been chosen such that interfacial glassy 
rubber is not present. Therefore, the only form of non-
deforming rubber domains that could exist in these systems are 
hypothesized “occluded rubber” domains, or rubber that is 
posited to be geometrically trapped within highly structured 
filler aggregates. This occluded rubber hypothesis was 
formulated on the basis of electron microscopy images from 
Medalia,12–14 who suggested that the crevices of highly 
structured carbon black aggregates could potentially house 
rubber domains that are shielded from deformation, thereby 
leading to a modulus increase via a reduction in the amount of 
deformable material. 
To test for the presence of occluded rubber domains, we 
compute the x-component (uniaxial stretching direction) of the 
end-to-end vectors Ree,x for each of the 5000 strands that make 
up the crosslinked network. For each composite with filler 
loading ϕf and structure Np, Ree,x is computed continuously in 
time, such that a distribution of end-to-end vectors is 
established at all strains throughout the low-strain regime 
investigated. In order to improve sampling statistics, Ree,x 
histograms are computed for each of 12 parallel deformation 
simulations and a mean histogram is computed by averaging 
over individual histogram bins. Averaged histograms are then 
area-normalized to yield a probability distribution and fit with 
two variations of a Gaussian functional form, which is described 
in more detail below. This process is performed for all simulated 
composites and at several strains in order to understand the 
effect of filler structure on the evolution of network strand 
statistics with increasing (global) elongation.
The most probable scenario in which occluded rubber would 
cause pronounced strain amplification (and therefore a 
modulus enhancement) would be in a simulation of a composite 
containing a highly loaded, highly structured filler. A composite 
with loading ϕf = 0.417 and structure Np = 13 is thus chosen as 
the test case for this hypothesis. In simulation, the moduli are 
compared at γx = 0.166 (the highest true strain probed), as 
differences in strand conformations would be most prominent 
under large deformations wherein the deforming network 
strands are far from their equilibrium (unperturbed) state. The 
distribution of Ree,x distances is shown in Figure 6. The 
distribution reveals a narrow peak that is centered at Ree,x = 0; 
this peak is attributed to a small fraction of network strands that 
form loops during crosslinking. The crosslinking strategy for this 
investigation links terminal segments of precursor strands to a 
shared crosslinking segment, such that loop formation leads to 
small separation distances between terminal segments of 
network strands and therefore small end-to-end distances. At 
larger end-to-end distances (|Ree,x| > 3), another distribution is 
observed in Figure 6, which corresponds to strands that do not 
participate in loops and are expected to deform under an 

Figure 6. Two-population fit to the distribution of end-to-end distances of 
network strands. (A) Blue circles represent the probability distribution of end-to-
end vectors of the network strands in the x-direction for a composite with ϕf = 
0.417 and structure Np = 13 at a true strain of γx = 0.166. The dashed purple line 
is a Gaussian fit to the fraction of strands that are elastically ineffective due to 
loop formation during crosslinking. The Gaussian fit to loops takes the following 
parameters: r = 0.021, sloop = 0.844. The dashed black line is a Gaussian fit to the 
remaining fraction of strands that are not loops. The Gaussian fit to non-loops 
takes the following parameters: snon-loop = 3.844. (B) The solid black line is the sum 
of the two Gaussian fits in comparison to the actual data shown as blue circles.  
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imposed global composite extension. In analyzing this data, we 
assume Gaussian chain statistics, such that the total probability 
distribution P(Ree,x) of end-to-end distances can be represented 
as the sum of two Gaussian probability distributions: 
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where the first term represents a Gaussian distribution for 
loops, and the second term represents a Gaussian distribution 
for the deforming strands (the remaining strands that are non-
loops). In equation (20), r is the fraction of network strands 
participating in loops, sloop is the standard deviation of the 
Gaussian fit to the population of loops, and sdef is the standard 
deviation of the Gaussian fit to the population of deforming 
network strands. Since the fraction of strands that participate in 
loops is constant (no new loops form during extension) and the 
loops are non-deforming, the values of r and sloop are pre-
determined at all non-zero strains by using their respective fit 
values obtained to a fit at zero-strain (before deformation). The 
standard deviation of the deforming strand population sdef is left 
as a free parameter since it is dependent on the global 
composite strain. 

The individual fits to the non-deforming loop population and 
deforming strands population are shown in Figure 6A. The value 
of r is 0.021, which suggests that the fraction of strands 
participating in loops is small – of order a few percent. The total 
(summed) fit to the distribution is shown in Figure 6B. The total 
fit is in excellent agreement with the data for distances |Ree,x| 
less than 8-10. The disagreement between the fit and data in 
the tails of the distribution is a consequence of the finite 
extensibility of real polymer chains; the Gaussian 
approximation over-predicts the probability of very large end-
to-end distances. Nevertheless, the breakdown of the two-term 
(total) Gaussian fit occurs beyond two standard deviations of 
the deforming strand population fit (sdef = 3.844). Therefore, the 
supposition of two populations of network strands (non-
deforming loops and deforming strands) is highly 
representative of the distribution of end-to-end vectors. 
If occluded rubber were the primary origin for the observed 
reinforcement in the composites with highly structured fillers, 
then a successful fit to these data would require a third 
population of strands. In addition to a population of deforming 
strands and a small population of non-deforming loops, there 
would also exist a population of non-deforming ‘occluded’ 
network strands. Thus, under the occluded rubber hypothesis, 
the total probability distribution of end-to-end vectors would 
be represented with the following functional form: 
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Here, the first term represents the population of non-deforming 
loops, the second term represents the population of deforming 
network strands, and the third term represents the population 
of non-deforming, occluded strands. For clarity, discussions will 
use the following notation for these fits: the Gaussian fit to the 
loop population is Gloop (which adopts a pre-determined loop 
fraction rloop and standard deviation sloop from the zero strain, 2-
term Gaussian fit previously discussed), the Gaussian fit to the 
deforming rubber population is Gdef (with a deforming rubber 
fraction equal to rdef and standard deviation sdef;), and the 
Gaussian fit to the occluded rubber population is Gocc (with an 
occluded rubber fraction equal to (1 – rloop – rdef) and standard 
deviation socc equal to the zero-strain standard deviation of the 
population of non-loops).
As described above, within the occluded rubber hypothesis, 
filled elastomers are argued to possess a (loading dependent) 
fraction of non-deforming rubber sufficient to yield the 
observed modulus as a consequence of strain amplification 
within a series (iso-stress) model. This approach is commonly 
used to ‘correct’ the Guth equation, which predicts the modulus 
enhancement as a function of filler loading: 

 (22)214.1 2.5 1c r eff effE E    

where Ec and Er are the composite and neat rubber tangent 
extensional modulus, and eff is an effective filler volume 
fraction, taken as the sum of the true filler volume fraction  
and an occluded rubber fraction occ. Here, occluded rubber is 
treated as a fitting parameter, which is adjusted to achieve 
agreement between the Guth equation and measured moduli. 
In order to test this hypothesis, we thus first back-calculate the 
value of ϕocc inferred by this approach. At γx = 0.166, the 
composite modulus is 16.4 times greater than the neat rubber 
modulus. In order for the Guth equation to capture a moduli 
ratio of 16.4, an effective filler loading of eff = 0.961 would be 
required. With a true filler loading  = 0.417, the occluded 
rubber fraction occ of the total composite would be 0.544. This 
hypothesis therefore anticipates that only 3.9% of the 
composite (or 6.7% of the rubber fraction of the composite) 
would be responsible for all deformation. We thus employ 
these fractions to obtain the r values in equation (21): 6.7% of 
the strands are treated as deforming; the fraction of loops is 
assumed to remain constant from the previous (two-
population) assessment (rloop = 0.021 and sloop = 0.844) since the 
choice of hypothesis (two populations vs three populations of 
strands) has no influence on the crosslinking behavior; and the 
remaining fraction of strands are treated as occluded. The 
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standard deviation of the occluded strands socc is held constant 
with elongation to reflect the posited non-participation of these 
strands in deformation and is taken as the standard deviation of 
the distribution of non-loops at zero-strain (unperturbed) from 
the two-term Gaussian fit (which gives a value of socc = 3.23).  
The standard deviation of the deforming rubber distribution sdef 
is determined as follows: at a true (global composite) strain of 
γx = 0.166, the engineering strain γe is 0.18. Since only 3.9% of 
the material in the composite is deformable under the occluded 
rubber hypothesis, the deforming strands experience an 
amplified engineering strain equal to γe = 0.18/0.039 = 4.56.  
Thus, when the composite is extended to an engineering strain 

of 0.18, the average length of the deforming strands at this 
global strain, recalling that the average zero-strain 
(unperturbed) strand length Ree,x0 = 3.23, must be Ree,x = 17.9 if 
this model is to account for the observed overall modulus. A 
value of 17.9 is thus employed for the standard deviation of the 
deforming (and highly strain amplified) population sdef. 
The results for this three-population model are shown in Figure 
7. This model evidently underpredicts the end-to-end distance 
at low/medium strand lengths, and overpredicts the end-to-end 
distance at high strand length (in the distribution tails). Overall, 
the data suggest that there is not an appreciable population of 
non-deforming rubber beyond covalent loops, nor is there a 

Figure 7. Three-population fit to the distribution of end-to-end distances of 
network strands as predicted by the occluded rubber hypothesis. (a) Blue circles 
represent the probability distribution of end-to-end vectors of the network 
strands in the x-direction for a composite with ϕf = 0.417 and structure Np = 13 
at a true strain of γx = 0.166. The dashed purple line is a Gaussian fit to the 
fraction of strands that are elastically ineffective due to loop formation during 
crosslinking. The Gaussian fit to loops takes the following parameters: r = 0.021, 
sloop = 0.844. These parameters are identical to the two-term fit parameters for 
the loop population. The black dashed line represents the hypothesize occluded 
rubber population, with an occluded rubber fraction of 0.916 and standard 
deviation socc = 3.23. The green dashed line represents the Gaussian fit to the 
deforming population of network strands. The fraction of deforming strands rdef  
= 0.067 and the standard deviation of the distribution of deforming strands is 
sdef  = 17.9. (b) the black solid line is the total 3-population fit (sum of all 
population fits from (a)) relative to the actual data, shown as blue circles.  
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Figure 8. Poisson ratio as a function of strain for the nanocomposites with 
filler loadings ϕf of (A) 0.125, (B) 0.261, and (C) 0.415. Symbols represent 
varying degrees of structure Np and retain their meaning from Figure 5. 
Straight lines between symbols are a guide to the eye. The horizontal black 
dotted line corresponds to the limit of volume conservation during 
deformation. 
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small population of highly strain amplified, deforming rubber. 
These distributions of end-to-end strand lengths indicate that 
these model systems contain no population of non-deforming 
rubber beyond network defects. Evidently, the occluded rubber 
hypothesis does not explain the modulus enhancement in these 
simulated elastomeric nanocomposites.
Reinforcement by Poisson ratio mismatch

We next test the hypothesis, quantified by equation (12), that 
the Poisson ratio mismatch between the rubber matrix and a 
jammed filler network leads to reinforcement of the extensional 
modulus by a fraction of the matrix bulk modulus. To do so, we 
first consider whether the Poisson ratio of these composites 

behaves in the manner anticipated by this theory: 
enhancements in modulus should generally accompany a 
reduction in composite Poisson ratio. In Figure 8, the Poisson 
ratio is plotted as a function of elongational strain for the same 
nanocomposites for which stress-strain curves were shown in 
Figure 4. Similar to the trend in extensional modulus, for a given 
loading, there exists a monotonic trend in the Poisson ratio 
suppression with structure Np: as structure increases, the 
Poisson ratio of the rubbery composite decreases. This trend 
becomes more pronounced at higher loadings. When we replot 
these data in Figure 9 to show the filler-loading-dependence of 
the Poisson ratio at fixed strain, a striking similarity emerges 
with the corresponding modulus enhancement shown in Figure 
5. As the composite modulus increases, the composite Poisson 
ratio is increasingly suppressed below ν = 0.5, the ideal limit of 
volume conservation under deformation (which is the typical 
assumption for ν in neat rubber). At low loadings, the Poisson 
ratio nearly obeys the expected value for neat rubber, and the 
extensional modulus does not see appreciable reinforcement. 
However, at higher loadings, particularly with higher structures, 
the Poisson ratio is reduced to values as low as 0.44, and this 
drop in Poisson ratio is accompanied by substantial 
enhancement in the extensional modulus. Put another way, the 
composites undergo greater volume growth on extension in 
more highly reinforced (greater extensional modulus) cases. 
In order to more quantitatively test the relationship between 
Poisson ratio suppression and enhanced modulus predicted by 
equation (12), we must first obtain values for the strain 
amplification factor f in equation (12). The value of f should in 
general be bounded between one and the series model 
prediction of one over the rubber volume fraction. Instead of 
relying upon either of these models, here we employ data 
directly from the end-to-end vector analysis described above. 
Specifically, we define a molecular-level polymer strain as 
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where Ree,x is the x-component of the end-to-end vector of a 
network strand at some non-zero global strain (i.e. after 
mechanical deformation has started), Ree,x,0 is the x-component 
of the end-to-end vector of a network strand at time t = 0 (before 
stretching), and angle brackets indicate an ensemble average. For 
each filled system, a strain amplification factor f is computed by 
taking the ratio of the molecular strain in the composite (at a 
particular global strain) to the molecular strain in the neat rubber 
(at the same global strain): 

 (24),

, ,

ee x

ee x neat

R

R

f





Representative strain-amplification factors as a function of 
global strain are shown in Figure 10A. For a given composite, f 
is roughly constant in strain, which is to be expected within the 
linear regime. To capture the general behavior throughout this 
regime, we employ a strain averaged value of f, in which an 
average of f over the range γx = 4-18% is used to compute a mean 

Figure 9.  Poisson ratios of the same systems shown in Figure 5 as a function 
of ϕf. The Poisson ratios are taken at a strain of (A) γx = 0.049; (B) γx = 0.068; 
(C) γx = 0.086. The horizontal black line in each plot represents the ideal limit 
of volume conservation (ν = 0.5).
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amplification factor. Representative strain-averaged f values are 
shown Figure 10B for composites with varying filler structure Np 
at constant loading. Again contrary to the occluded rubber 
hypothesis, there is not a clear trend in increasing strain-
amplification with structure, at least within the range of 
structures probed in these simulations. As shown in Figure 10C, 
however, there is a weak trend towards greater strain 
amplification with increasing nanoparticle loading.
Employing these measured values of f, we now replot the data 
in Figure 5 and Figure 9 in the manner suggested by equation 
(12). Specifically, if the hypothesis of a Poisson-ratio-mediated, 

jamming-driven reinforcement effect is correct, these data 
should exhibit a linear relationship between the quotient Eν/f 
and the quantity 2(ν0-ν), with intercept equal to the native 
extensional modulus of the neat rubber E0 and slope given by 
the bulk modulus of rubber K. As shown by  Figure 11, the data 
indeed conform to this relationship, using the (strain-
dependent) native extensional modulus measured from direct 
simulation of the neat rubber. Here, the neat rubber bulk 
modulus K is employed as an adjustable parameter (the only 

Figure 10. (A) Strain amplification factor as a function of global strain for 
composites with loading ϕf = 0.415 over a range of structures (Np = 1-13) 
Symbols retain their meaning from Figure 5, and straight lines between 
symbols are a guide to the eye. (B) Strain-averaged strain amplification 
factors for the same composites in (A). (C) strain-averaged strain 
amplification factors for unstructured fillers (Np = 1) at every simulated 
loading. Error bars indicate ± 1 standard deviation from the mean. Horizontal 
dashed black lines represent the limit of no strain amplification.

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

0 0.03 0.06 0.09 0.12 0.15 0.18

f

γx

(A)

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

0 3 6 9 12 15

< 
f >

Np

(B)

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

0 0.1 0.2 0.3 0.4 0.5

< 
f >

ϕf

(C)

Figure 11. Collapse to equation (12) of data from elastomer composites over all 
nanofillers loadings and structures simulated (blue circles), at representative 
strains (A) γx = 0.049, (B) γx = 0.068, and (C) γx = 0.086. A linear best fit line (solid 
red) is constrained at the y-intercept to equal the native neat rubber extensional 
modulus E0. Dashed red lines reflect a 95% confidence interval for the fit value of 
K. Insets in (a) indicate the location of the systems pictured in Figure 1 within these 
data.
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adjustable parameter in the model). Are the resulting fit values 
consistent with the bulk modulus of the neat rubber? 
To answer this question, the fit values of K must be compared 
to the zero-strain (i.e. equilibrium) bulk modulus K0 of the neat 
rubber. To make this comparison, we compute the equilibrium 
bulk modulus in another set of simulations from the fluctuation-
dissipation theorem for isothermal compressibility, which 
relates the compressibility (and therefore the bulk modulus) to 
fluctuations in system volume at fixed particle number:58 

 (25)22

V
K kT

V V




where V is the volume, k and T are the Boltzmann constant and 
temperature, respectively, and brackets indicate an ensemble 
or long-time average. This determination is made from 
quiescent simulations held at constant pressure employing a 
Nose-Hoover thermostat and barostat, which yields 
fluctuations consistent with the canonical ensemble.59 The 
temperature T and pressure P are damped every 2τ, and the 
instantaneous volume is measured every 25τ. The comparison 
between the zero-strain bulk modulus K0 and the fit values of K 
is shown over a range of strains in Figure 12. This comparison is 
complicated by the fact that K0 is computed in an unperturbed 
system, whereas the fit values of the bulk moduli describe the 
resistance of the system to volume deformation after some 
nonzero combination of both elongational and volume strain. 
Nevertheless, the resulting strain-dependent fit values of K 
recover the zero-strain neat rubber bulk modulus at all strains 
below ~8%. Beyond 8%, an observed strain-softening in the fit 
values of K can be understood from the expected reduction in 
the density of van der Waals interactions as the rubber’s density 
drops in filled elastomers with Poisson ratio less than 0.5 and its 
molecular packing is perturbed from its equilibrium state. 
These findings support a scenario wherein a jammed filler 
network forces a reduction in the composite Poisson ratio from 
its rubber-preferred value of nearly ½. The resulting growth in 

rubber volume with strain leads to an enhancement of the 
composite elongational modulus by a portion of the rubber bulk 
modulus, with some strain-softening of the bulk modulus 
modestly weakening this effect at higher strains. 
Direct evidence of reinforcement driven by a Poisson ratio 
mismatch between the rubber and jammed filler is provided in 
Figure 13. In the y-direction (normal to the stretching direction), 
a stress balance develops between the polymer and jammed 
filler in which the partial stresses within the two phases offset 
one another in order to maintain constant zero normal stress. 
The partial pressure of the filler ∆pyy, filler increases 
monotonically with elongational strain, while the partial 
pressure of the polymer ∆pyy, poly is opposite in sign and roughly 
equal in magnitude to ∆pyy, filler. In other words, during uniaxial 
extension, the jammed filler network pushes outward against 
contractile tension emerging from the rubber matrix’s bulk 
modulus. The reason for this behavior can be explained from 
the perspective of the Poisson ratio: jammed filler deforms with 
a Poisson ratio of about one-third, and therefore does not 
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Figure 13.  Partial pressure along the y-dimension of the (a) filler and (b) polymer 
in a highly loaded (ϕf = 0.415) rubbery composite. The y-dimension is orthogonal to 
the direction of elongation (x-direction). Symbols retain their meaning from Figure 
5, and straight lines connecting symbols are a guide to the eye. 
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contract laterally at the same rate preferred by the rubber 
(Poisson ratio of about ½). This ultimately leads to a composite 
Poisson ratio that is less than that of the neat rubber because 
the jammed filler phase does not allow the rubber to contract 
as it would in its native state. As the structure of the filler 
increases, the magnitude of the filler and polymer partial 
pressures also increases for a given elongational strain. 

Discussion and Conclusions
The precise mechanism of low-strain reinforcement in 
nanofilled elastomers has remained an unsettled question with 
considerable fundamental and practical implications for the 
better part of a century. Here we show that this phenomenon 
cannot be understood as emerging from a reduction in the 
fraction of deforming rubber due to geometric occlusion– a 
major extant hypothesis in the field. Instead, our results are 
consistent with a scenario wherein jamming or network 
formation of the filler particles causes the reinforced elastomer 
to reflect an amalgam of two solids – an elastomeric matrix with 
a jammed interpenetrating nanoparticulate network. The key 
feature of this coexistence of two solids at low strains is the 
mismatch in their preferred Poisson ratio. Since the Poisson 
ratio ultimately governs the normal boundary conditions of the 
material during extensional deformation, the composite must 
reflect a compromise between these two preferred values. This 
forces the volume of the rubber to grow beyond its preferred 
value during elongational deformation, supplementing its 
extensional modulus with a fraction of its (much higher) bulk 
modulus. 
This viewpoint suggests that the filled rubber matrix’s key 
property at low strain is its liquid-like character (preference for 
volume conservation), rather than its elastomeric nature. In 
particular, this model suggests that even a non-crosslinked, 
liquid matrix should yield a solid-like extensional response 
under high filler loading – a predicted consequence of a Poisson 
ratio mismatch with the jammed filler, which effectively 
converts the liquid matrix’s bulk modulus into a composite 
extensional modulus. Indeed, prior experimental work has 
demonstrated that even low molecular-weight oils exhibit solid-
like reinforcement upon loading with nanoparticulates,23,60 
consistent with this proposition. On the other hand, this effect 
cannot apply in nearly Poisson-ratio-matched composites such 
as concrete and filled glassy polymers; it is unique to 
reinforcement of elastomers and liquids. In essence, these 
findings indicate that elastomers are more naturally amenable 
to nanoparticulate reinforcement than plastics. 
Because this reinforcement mechanism emerges from the 
formation of a coexisting ‘nanogranular solid’ within the 
elastomer, it is naturally favored by filler structures promoting 
percolation and jamming. Objects with structures that are less 
compact tend to percolate and jam at lower volume fractions, 
suggesting that such structures will tend to favor reinforcement 
via this mechanism. Simulation results are consistent with this 
expectation, with greater reinforcement observed with more 
rarified nanoparticle structures at fixed loading. 

Here we have designed our simulations to exclude a role for 
bound surface rubber – a proposed phenomenon in which 
reinforcement is driven by an enhancement in the mechanical 
properties of near-particle rubber, typically linked to an 
interfacial enhancement in the rubber glass transition 
temperature Tg

15. At temperatures closer to Tg and/or with 
stronger polymer/filler interactions than those probed here, 
this may play an important complementary role along with 
nanoparticulate jamming. In that scenario, polymer/nanofiller 
interfacial area would be expected to play an important role 
together with particle structure. Exploration of this possibility 
should be an emphasis of future work.
We have presented a rigorous theoretical framework for 
Poisson-ratio-mismatch-mediated reinforcement in the low 
strain limit. This model can be understood as a generalized form 
of the Lamé relation in that an extensional modulus can be 
predicted – from knowledge of the bulk modulus and native and 
imposed Poisson ratios – for a broader class of materials and/or 
deformation scenarios in which a non-native Poisson ratio is 
enforced/imposed. Equation (12) thus provides a design rule for 
the formulation of highly reinforced elastomeric 
nanocomposites: fillers that drive larger suppressions in 
composite Poisson ratio can generally be expected to yield 
larger enhancements in the composite modulus. This result is 
consistent with an experimental study finding larger Poisson 
ratio suppressions in more highly reinforced composites.39 
Ultimately, these findings support the premise that 
reinforcement in rubber/filler composites is primarily driven by 
a filler jamming effect, and they point towards the possibility of 
geometrically engineering nanofillers to maximize elastomer 
Poisson ratio suppression and the resulting mechanical 
reinforcement. 
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