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Design of a microfluidic device for the measurement
of the elastic modulus of deformable particles†

Massimiliano M. Villone,∗a Janine K. Nunes,b Yankai Li,b Howard A. Stone,b and Pier
Luca Maffettonea

A microfluidic technique recently proposed in the literature to measure the interfacial tension be-
tween a liquid droplet and an immiscible suspending liquid [Hudson et al., Applied Physics Letters,
2005, 87, 081905], [Cabral and Hudson Lab on a Chip, 2006, 6, 427] is suitably adapted to the
characterization of the elastic modulus of soft particles in a continuous-flow process. A microflu-
idic device consisting of a cylindrical pipe with a reduction in cross-section is designed, and the
deformation and velocity of incompressible elastic particles suspended in a Newtonian liquid are
tracked as they move along the centerline through the constriction. Kinematic and shape informa-
tion is exploited to calculate the particle’s elastic modulus by means of the theory of elastic particle
deformation in extensional flow. The approach is validated for different orders of magnitude of the
elastic capillary number through experiments and numerical simulations.

1 Introduction
Suspensions carrying soft inclusions occur frequently both in na-
ture and scientific/industrial applications: biological cell suspen-
sions,1 suspensions of microgel beads or starch granules,2 and
filled polymers3 are common examples. Of course, the flow prop-
erties of such multiphase systems are strongly influenced by the
mechanical properties of the suspended particles. Hence, being
able to measure material properties can be crucial in order to un-
derstand and control the behavior of the above mentioned suspen-
sions. In addition, biological particles, like cells, can suffer mod-
ifications of their deformability and function depending on their
health state,4,5 thus measuring their mechanical properties can be
a powerful tool to discriminate whether they are healthy or dis-
eased.

In the last twenty years, several methods have been proposed
in the literature for the measurement of the mechanical proper-
ties of elastic particles and biological cells, such as atomic force
microscopy-based techniques,6–10 micropipette aspiration,11 com-
pression between parallel plates,12–15 osmotic compression,16–22

and capillary micromechanics.23–27 However, all the aforemen-
tioned techniques are intrinsically discontinuous, thus quite time-
consuming. Some of them are also quite ‘invasive’ for the investi-
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Università di Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy. Tel: +39 081
7682391; E-mail: massimiliano.villone@unina.it
b Department of Mechanical and Aerospace Engineering, Princeton University, Princeton,
NJ 08544, U.S.A..
† Electronic Supplementary Information (ESI) available: [details of any supplemen-
tary information available should be included here]. See DOI: 10.1039/b000000x/

gated particles, so the measured values of the mechanical proper-
ties can be influenced by the contact with the probe of the measur-
ing instrument. On the other hand, in the very recent years, mi-
crofluidics is proving to be a suitable tool for the measurement of
the mechanical properties of biological cells.28–35 About a decade
ago, Hudson and co-workers developed a continuous-flow non-
invasive microfluidic technique providing almost real-time mea-
surement of the interfacial tension between a liquid droplet and an
immiscible suspending liquid.36,37 Compared to other approaches,
their method offers considerable advantages in terms of device fab-
rication and operation ease, low costs, and high throughput.

In this paper, we design a microfluidic device, based on an adap-
tation of such a technique, for the measurement of the elastic mod-
ulus of deformable particles, and we validate it through numerical
simulations and experiments on homogeneous synthetic particles
with sizes and elasticities in the range of interest for biological
cells.5

2 Device design

In his early theoretical paper studying an initially spherical incom-
pressible elastic particle suspended in a Newtonian fluid undergo-
ing uniaxial extensional flow in the Stokes regime, i.e., with neg-
ligible inertia, Roscoe38 found that the particle deforms until at-
taining a steady-state prolate spheroidal shape with the major axis
oriented along the extensional axis of the flow. The steady-state
deviation of the particle shape from the initial spherical shape can
be quantified by means of the (Taylor) steady-state deformation
parameter
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2 DEVICE DESIGN

D∞ =
L−B
L+B

, (1)

with L and B the major and minor semi-axes of the spheroid, re-
spectively (see Fig. 1a).

By defining α1 = L/R0 and α2 = B/R0, with R0 the particle ini-
tial radius, the deformation parameter at the steady-state can be
written as

D∞ =
L−B
L+B

=
α1−α2

α1 +α2
. (2)

Due to volume conservation, in uniaxial extensional flow, α2 =

α
−1/2
1 , thus from Eq. (2) we get

α1 =

(
1+D∞

1−D∞

)2/3
. (3)

For small deformations (i.e., for D∞ � 1), Eq. (104) in Roscoe’s
paper gives

α1 ' 1+
5
2

ηε̇

G
, (4)

where η is the ambient liquid viscosity, ε̇ is the extensional flow
strain-rate, and G is the shear elastic modulus of the solid. (We
point out that the Poisson ratio of the material used here is ν = 0.5
due to the incompressibility assumption.) Hence, we can write(

1+D∞

1−D∞

)2/3
' 1+

5
2

ηε̇

G
. (5)

For D∞ � 1, a first-order expansion in series of the left-hand side
of Eq. (5) yields (

1+D∞

1−D∞

)2/3
' 1+

4
3

D∞. (6)

Therefore, by equating the right-hand sides of Eqs. (5) and (6),
we obtain that, when the Reynolds number at the scale of particle
is small and the deformation away from a spherical shape is small,
the quantitative relation between the steady-state deformation and
the material and flow parameters of the system is

D∞ '
15
8

ηε̇

G
. (7)

Roscoe’s theoretical prediction holds for values of the extensional
elastic capillary number Cae =ηε̇/G. 0.3,39 where Cae represents
the ratio of the time scale for particle deformation to the time scale
for the particle to move its diameter or, equivalently, the ratio of
viscous to elastic stresses.

If an elastic bead suspended in a Newtonian liquid is subject to
an abrupt extensional flow, it will reach the D∞-value correspond-
ing to the imposed flow conditions through a shape evolution. By
analogy with liquid droplets,40 the time-dependent ‘driving force’
for such evolution can be identified as the difference between D∞

and the current D-value. For small deformation, we can approxi-
mate the time-dependent changes as

dD
dt∗

= D∞−D, (8)

with t∗ = t/(η/G) a dimensionless time, in which η/G is the char-
acteristic time for particle deformation.38 Equations (7) and (8)

can be rewritten as

η

G
dD
dt

=
15
8

ηε̇

G
−D, (9)

which is conveniently re-expressed as

η

(
15
8

ε̇− dD
dt

)
= GD. (10)

Hence, if one monitors the transient response of an elastic bead
to an uniaxial extensional flow with extensional rate ε̇(t) and
measures the deformation parameter D(t) and its time derivative
dD/dt, a plot of η(15/8ε̇ − dD/dt) versus D should show a linear
trend with a slope corresponding to the particle’s elastic modulus
G. Such a flow measurement then provides a means for measur-
ing G in a continuous-flow process. This argument, which is con-
ceptually analogous to that proposed by Hudson et al. for liquid
droplets,36,37 underlies the design of the microfluidic ‘modulome-
ter’ proposed below.
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Fig. 1 a) Schematic drawing of an elastic particle deformed into a prolate
spheroid. b) Geometry of an initially spherical elastic bead suspended
in a Newtonian liquid flowing through a device consisting of two coaxial
cylindrical tubes.

In Fig. 1, the geometry of the device is depicted: an initially
spherical elastic bead with radius Rp is suspended in a Newtonian
liquid flowing through a cylindrical pipe with radius R1. The entry
channel undergoes an abrupt radial contraction to a narrow cylin-
der of radius R2. For constructive reasons, the junction between
the two coaxial cylindrical tubes may have the shape of a trun-
cated cone with length Lc � 2R1, but, as it will be shown in Sec.
4, Lc can even be zero. A cylindrical coordinate system is set with
the origin at the center of the left base of the wide cylinder Γin
and the axial direction z along the (common) axis of the two cylin-
ders points towards the right base of the narrow cylinder Γout. The
suspending liquid flows in the positive z-direction, i.e., from Γin
to Γout. The particle is initially placed on the device axis. Plac-
ing the particle on the device axis is not a restrictive assumption,
since an elastic particle suspended in a Newtonian liquid flowing
at low Reynolds number through a circular pipe migrates, due to
deformation, transversally to the flow direction from wherever it is
initially located to the pipe axis.41 Hence, provided that the wide
tube is long enough, particles will focus on the axis before reaching
the contraction.

2

Page 2 of 10Soft Matter



3 NUMERICAL VALIDATION

3 Numerical validation
3.1 Mathematical model and numerical technique
As we want to verify the validity of the approach described in the
previous section by means of numerical simulations, we need to
provide an adequate mathematical model for the system. Both the
suspended particle and the suspending medium are assumed to be
incompressible, and we also assume that inertia can be neglected
in both phases. Such an assumption is commonly fulfilled in mi-
crofluidic flows due to the characteristic flow velocities and length
scales involved.42 Hence, the mass and momentum balance equa-
tions for the bead and the fluid read

∇ ·u = 0, (11a)

∇ ·T = 0, (11b)

where u is the velocity vector and T is the stress tensor. The latter,
in turn, can be expressed as T =−pI +σ , with p the pressure and
σ the deviatoric contribution to the stress tensor, for which a con-
stitutive equation has to be chosen. For a Newtonian liquid (l), we
write

σ l = 2ηE, (12)

with η the liquid viscosity and E = (∇u+∇uT)/2 the symmetric
part of the velocity gradient tensor ∇u. For the elastic particle (p),
we choose the neo-Hookean constitutive equation, whose velocity-
based formulation is43

5
σp = 2GE, (13)

where the symbol
5
σp ≡ ∂σp/∂ t +u ·∇σp−∇uT ·σp−σp ·∇u indi-

cates the upper-convected time derivative of σp and G the shear
elastic modulus of the incompressible solid.

The balance and constitutive equations given above for the liq-
uid medium and the elastic particle are supplied with the following
boundary conditions on the inlet Γin, outlet Γout, walls Γw, and the
solid-liquid interface Γi:

uz(r) = 2ū

[
1−
(

r
R1

)2
]

on Γin, (14a)

T ·nout =−p̂nout on Γout, (14b)

u = 0 on Γw, (14c)

um = up on Γi, (14d)

T l ·n = T p ·n on Γi. (14e)

Equation (14a), with ū the average velocity of the suspending liq-
uid in the wide entry tube, expresses the parabolic velocity profile
arising from the Poiseuille law44 at the inlet Γin; Eq. (14b), with
p̂ the outlet pressure and nout the outwardly directed unit vector
normal to Γout, is the outflow condition at the device outlet; Eq.
(14c) gives the no-slip condition on the ambient fluid velocity at

the device wall Γw; finally, Eqs. (14d)-(14e), with the subscript ‘l’
denoting the liquid, ‘p’ denoting the particle, and n the unit vector
normal to the solid-liquid interface and directed towards the liq-
uid, express the velocity and stress continuity across the interface
Γi, respectively.

Since both the particle and the suspending medium are inertia-
less, no initial condition on the velocity is required, whereas an
initial condition is needed on the tensor σp in the elastic phase.
We assume that the particle is initially stress-free, which means

σp|t=0 = 0 (15)

The above equations are solved using the arbitrary Lagrangian-
Eulerian finite-element method using well-known stabilization
techniques, namely, SUPG and log-conformation. A detailed de-
scription of our numerical approach for suspensions with de-
formable inclusions is given in Villone et al..45

Given the axial symmetry of the system, the actual computa-
tional domain is two-dimensional. Both the fluid and the solid
particle domains are discretized by a mesh of quadratic triangles.
Mesh elements align on the particle-liquid interface (conforming
geometry). During the simulations, the elements of the mesh pro-
gressively deform because of particle deformation and displace-
ment along the flow direction. In particular, the elements ‘up-
stream’ of the particle are stretched, whereas the elements ‘down-
stream’ of the particle are compressed by its advancement in the
z-direction. Any time the quality of the surface elements in the do-
main becomes unacceptable in terms of a threshold, a remeshing
is performed, and the solution is projected from the old mesh to
the new one, as detailed in Hu et al..46

Convergence tests have been performed in space and time, i.e.,
mesh resolution and time-step have been chosen so as to ensure
invariance of the numerical solution of the equations presented
in this section upon further refinements. Finally, given the model
proposed above, we have verified that the distance between the
wide tube entrance at z = 0 and the initial axial position of the
particle’s geometrical center zp,0 is such that the presence of the
particle does not perturb the suspending liquid velocity profile for
at least a length equal to 2R1 after Γin. In other words, our geom-
etry is suitable to simulate devices whose wide tube’s entrance is
arbitrarily far upstream of the particle. Moreover, we have checked
that the distance between the initial axial position of the particle
zp,0 and the tube contraction is such that the particle can attain its
steady state deformed shape in the wide tube before ‘feeling’ the
effect of the contraction.

3.2 Numerical results

In order to numerically validate the effectiveness of the device pro-
posed above, we choose the wide tube 1500 µm long and 350 µm in
radius, the narrow tube 600 µm long and 117 µm in radius, and
the junction 60 µm long. Hence, the contraction ratio of the de-
vice R2/R1 is equal to 1/3. It can be verified that, until Lc is
within 10% of 2R1, the contraction can be considered ‘abrupt’,
thus Eq. (10) holds. Concerning the particle, we consider a bead
with a radius of 35 µm and an elastic modulus G = 1 kPa. Fi-
nally, the suspending fluid has a viscosity of 0.6 Pa·s, and enters
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4 EXPERIMENTAL VALIDATION

the device with an average velocity ū = 220 µm/s. Given such
information, the shear elastic capillary number in the wide tube
is Ca = η ū/(2R1G)∼ 1.9×10−4, whereas the confinement ratio of
the particle is β = Rp/R1 = 0.1. Under those conditions, the steady-
state deformed shape of the bead before the contraction does not
depart perceptibly from the initial spherical shape.41

𝐿
𝐵

𝑧$ − 𝑧$,' = 300µm

𝑧$ − 𝑧$,' = 550µm

z

Fig. 2 Sequence of shapes attained by an elastic particle while traveling
along the device axis and travelling through the constriction.

We release the undeformed elastic bead at zp,0 = 1000 µm, then
we monitor in ‘real-time’ how it translates and deforms. In Fig. 2,
we report a sequence of four front-views of the shape attained by
the particle while it travels along the device axis and goes through
the constriction. The first snapshot is taken when the particle is lo-
cated at zp− zp,0 = 300 µm: at that axial position, the deformed
shape is hardly distinguishable from the undeformed spherical
shape, thus the lengths of the semi-axes L and B are very close to
each other. As the bead is displaced along the tube axis, it feels the
increasingly intense extensional flow induced by the pipe’s cross-
sectional reduction, which induces a progressively ‘more prolate’
spheroidal shape, with the major semi-axis L oriented along the
device axis. The last snapshot shown in Fig. 2 is taken at zp− zp,0

= 550 µm.
In Fig. 3a, the deformation parameter D is plotted as a function

of the axial displacement of the particle with respect to the initial
position zp− zp,0. It is evident that, until the particle is far enough
from the tube contraction (zp− zp,0 . 200 µm), its deformation is
negligible, then, as it experiences the extensional flow induced by
the channel cross-sectional reduction, D increases. In the inset in
Fig. 3b, the time needed by the particle to reach an axial position
is reported versus its axial position: t first increases linearly with
zp− zp,0, then, as the particle is affected by the extensional flow,
it accelerates (t increases less than linearly with z). From the data
displayed in Fig. 3a and in the box in Fig. 3b, the axial profile of
the deformation parameter time derivative dD/dt can be obtained
(Fig. 3b). In the box in Fig. 3c, the particle’s axial velocity uz,p is
plotted versus zp− zp,0: ‘far’ from the contraction, uz,p is constant,
then, as the bead feels the extensional field, uz,p increases. The
particle’s axial velocity is used to obtain the axial profile of the
extensional rate ε̇ ' duz,p/dz to which the particle is subjected,
shown in the main Fig. 3c. Of course, so long as the particle does
not feel the extensional field generated by the pipe contraction, ε̇

is null, then, as the bead approaches the contraction, an increase

in ε̇ is detected. Notice that we have equated the local extensional
rate of the fluid ε̇ with the derivative of the particle’s axial velocity
in the axial direction duz,p/dz. Strictly speaking, this would be
correct only if the particle was a tracer, while a slip velocity exists
for a particle of finite dimensions, with the particle lagging the
fluid. However, since the Reynolds number tends to zero and the
particle is on the tube axis, such slip velocity can be neglected.36,37

Taking data at the same zp − zp,0 from Fig. 3, a graph of the
quantity η(15/8ε̇ − dD/dt) as a function of the deformation pa-
rameter D can be established. If the theory enunciated in Sec. 2
holds, the points displayed on such a diagram, known as the ‘Tay-
lor’ plot,36,37 must fall along a straight line with a slope equal to
the particle’s elastic modulus G. Indeed, the ‘central’ data set ap-
pearing in Fig. 3.2a can be suitably fitted through a linear function
with null intercept and slope equal to 1009.5 Pa (coefficient of de-
termination R2 = 0.9998), represented by the red dashed line. The
approach proposed in Sec. 2, then, yields a value of the bead elas-
tic modulus less than 1% different from the ‘true’ value of 1 kPa
(namely, the actual input of the simulation). As a further proof,
in Fig. 3.2a, two other series of η(15/8ε̇ − dD/dt)-versus-D data
are displayed: the white diamonds are the outputs of a numerical
simulation with a bead having a modulus of 0.1 kPa and the gray
triangles come from a simulation where the particle has G = 10
kPa (the device geometry and all the operating parameters being
the same). These data sets appearing in Fig. 3.2 can be fitted
through linear functions with null intercept and slopes equal to
100.71 Pa (coefficient of determination R2 = 0.997, see the green
dashed line) and 9998 Pa (R2 = 0.998, cyan dashed line), respec-
tively. Hence, also for particles with an elastic modulus of one or-
der of magnitude lower or higher than the one considered above,
our method returns a ‘measured’ value less than 1% different from
the ‘true’ one. In Fig. 3.2b, the sets of numerical results appear-
ing in Fig. 3.2a are plotted each one scaled by the corresponding
estimated value of the elastic modulus Ĝ. As expected, the three
series of data all collapse on the bisector of the first quadrant of
the Cartesian plane.

4 Experimental validation

4.1 Materials and methods

We produced hydrogel microparticles using a droplet microflu-
idic method (Fig. 5). Using standard photolithography and soft
lithography method,47 polydimethylsiloxane (PDMS, Sylgard 184,
Dow Corning) devices were fabricated containing two focusing
junctions. The inner aqueous phase was a photocrosslinkable
solution composed of 54 vol% poly(ethylene glycol) diacrylate
(PEG-DA, Mn 575 g/mol), 20 vol% 2-dimethylaminoethyl acry-
late (DMAEA), 18 vol% deionized water, 8 vol% 2-hydroxy-2-
methylpropiophenone (PI) and 5 mg/ml fluorescein o-acrylate.
Both oil phases were composed of light mineral oil with 0.5 wt%
Span 80 surfactant.

The flow rates of the inner aqueous phase Q1, the middle oil
phase Q2 and the outer oil phase Q3 were all controlled indepen-
dently by syringe pumps (Harvard Apparatus). The inner phase
formed droplets in the oil phase at the first focusing junction,
which had a concentric geometry to facilitate droplet generation.
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Fig. 3 (a) Axial trend of the deformation parameter D of the elastic particle for the simulation outlined in Fig. 1b. (b) Axial variation of the deformation
parameter time derivative dD/dt; inset: time needed by the particle to reach the axial positions reported on the horizontal axis. (c) Axial trend of the
extensional rate ε̇ experienced by the particle; inset: axial trend of the particle axial velocity uz,p. The constriction goes from zp−zp,0 = 500 µm to 560 µm.
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Fig. 4 (a) Green diamonds, red circles, cyan triangles: Taylor plot of η(15/8ε̇ − dD/dt) versus D for three different G-values. Green, red, cyan lines:
linear fits of the three series of symbols (the slopes are equal to 100.71, 1009.5, 9998 Pa, respectively). (b) Taylor plot of (η/Ĝ)(15/8ε̇−dD/dt) versus
D, with Ĝ the estimated value of the particle shear modulus, for the same data sets as in panel (a).

The size of the droplets was controlled by adjusting Q1/Q2; the
droplet size was maintained at approximately 100 µm. After the
second junction, the droplets flowed along the main channel and
were exposed to a UV light spot approximately 1.4 mm in diameter
using a 20X objective on an inverted fluorescence microscope (Le-
ica DMI4000B). The UV intensity ranged between 21 - 29 mWcm−2

for all experiments. The exposure time of the droplets, ranging
from 150 - 500 ms, was controlled primarily by Q3, where a higher
Q3 resulted in a shorter exposure time of the droplets, and there-
fore, a softer particle.

The particles were collected off-chip and washed multiple times
in 1 wt% aqueous Tween 80 solution in a series of centrifugation
and resuspension steps to remove the oil and unreacted monomer
solution. The particles were then washed and resuspended in 0.1

wt% aqueous Tween 80. The particles were stored in 0.1 wt%
aqueous Tween 80 for at least 30 hours before testing. Final par-
ticle radii, after swelling, ranged from 50 - 125 µm. Immediately
before testing, glycerol suspensions were prepared by mixing a 1
- 4 wt% aqueous particle suspension in glycerol (BDH), where the
final viscosities of the suspending medium ranged from 0.4 - 0.9
Pa·s. Viscosity was measured with a stress-controlled rheometer
(Anton Paar MCR 301). Glycerol solutions were chosen as the sus-
pending media because of the high viscosity required to achieve
the range of elastic capillary numbers needed for these measure-
ments, and because the refractive index closely matched that of
the PMMA walls of the device. All reagents were obtained from
Sigma-Aldrich unless otherwise stated.

For the ‘modulometer’ device, concentric cylinders were fab-

5
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4.2 Experimental results 4 EXPERIMENTAL VALIDATION

Fig. 5 On-the-fly generation of microparticles in a two-stage microfluidic
device. (a) Bright-field microscope image of a section of the microfluidic
channel showing monomer droplet generation in oil with the UV exposure
region indicated by the yellow circle. Representative images of particles
produced at exposure times of (b) 202, (c) 272, and (d) 371 ms. Scale bars
represent 250 µm.

Fig. 6 Sketch of PMMA concentric cylinder device, showing the three
main regions, labeled 1-3. On the right is an expanded illustration of the
measurement region showing the particle deformations, where L1, B1 and
Z1 represent the major and minor semi-axes and the axial position of the
undeformed particle. Ln, Bn and Zn represent the major and minor semi-
axes and the axial position of the deformed particle immediately upstream
of the constriction, and u is the instantaneous particle velocity.

ricated in polymethylmethacrylate (PMMA) using CNC micro-
milling. Each device consisted of three main regions (see Fig. 6).
Region 1 is a separate module that can be inserted 3 mm into the
main large channel, containing five inlet holes for connecting to
the needles and tubing. Region 2 is a large radius cylindrical chan-
nel, with R1 = 1.5 mm and length = 15 mm. The channel has an
abrupt 90 degree radial contraction, i.e., Lc = 0, to a small radius
cylindrical channel, R2 = 100 µm and length = 800 µm (region 3 in
Fig. 6). Thus, the contraction ratio of the device R2/R1 is 1/15. A
27-gauge needle, inner radius 105 µm, was inserted in the central
inlet hole and connected via polyethylene tubing to the syringe
containing the particle suspension. The surrounding four inlets
were connected to the glycerol solutions. We used this configura-
tion to try to ensure that only one particle entered the device at a
time and flowed approximately in the center of the channel. We
observed that the particles in the suspension flowed individually as

they approached the constriction, however many flowed off center
such that they only came into focus immediately before entering
the smaller channel. These events could not be used to determine
G.

Fig. 7 Tracking the coordinates of the four vertices of the particle at equal
time intervals during flow. Flow is from left to right. Scale bar represents
100 µm.

The flow rates of the particle suspension (central inlet) and
the glycerol solutions (surrounding inlets) were controlled by sy-
ringe pumps (Harvard Apparatus), and the particle deformations
immediately upstream of the contraction were recorded with a
high-speed camera (Phantom V9.1, Vision Research) mounted on
an inverted microscope (Leica DMI4000B) using a 10X objective
(1.063 µm/pixel). Images were processed using the i-Speed Suite
by Olympus, which tracked the coordinates of four vertices of the
particles in each frame (Fig. 7) to determine particle velocities and
the deformation parameter D as a function of position. We limited
our analysis to small deformations (D ≤ 0.16 for the softest par-
ticles tested). Image sequences from 3 particles per batch were
processed. We recall that, assuming that the elastic material is in-
compressible, the Poisson’s ratio ν = 0.5, thus G = EY/3, where EY

is Young’s modulus.
Separately, the Young’s moduli EY of the particles in water were

measured using a Piuma Nanoindenter (Optics 11). A single force
curve was generated per particle for at least 4 particles in the
batch, and an average EY per particle batch was determined.

4.2 Experimental results
Snapshots of a soft hydrogel particle translating along the center
of the large radius channel as it approaches the contraction are
displayed in Fig. 8a-g (see also video S1 online, recorded at 5000
fps and played back at 50 fps). Along the centerline and far from
the contraction, the axial flow velocity is approximately constant,
however, near the contraction, i.e., in the field of view of Fig. 8a-g,
the fluid accelerates as it approaches and flows through the con-
traction (see inset in Fig. 8h), causing an extensional flow field
(Fig. 8h). Due to the extensional flow gradient, the particle elon-
gates increasingly with position, with its major axis aligned in the
direction of flow. The relationship between the deformation pa-
rameter and position, evaluated similar to the numerical simula-
tions in Sec. 3.2, is shown in Fig. 8i. The particle deforms linearly
with increasing extensional rate (Fig. 8i inset). The experimen-
tally observed axial trends for ε̇, D and dD/dt are consistent with

6

Page 6 of 10Soft Matter



4 EXPERIMENTAL VALIDATION 4.2 Experimental results

Fig. 8 Example of a typical experimental result. (a-g) Time sequence of a translating hydrogel particle (see also corresponding video S1 online),
showing the deformed shape as the particle approaches the contraction, where the extensional rate ε̇ ranges from 16.7− 118 s−1. Flow is from top to
bottom. Scale bars represent 100 µm. The blurred circle near the constriction is a mark on the outer surface of the device and does not affect the flow.
(h-j) Corresponding axial trends for the hydrogel particle in each frame (a-g) where (h) is ε̇, with an inset showing the axial flow velocity u, (i) is the
deformation parameter D, with an inset showing the relationship between D and ε̇, and (j) is dD/dt, with an inset showing the time taken by the particle
to reach the corresponding axial position. The constriction starts at z = 340 µm. (k) Taylor plot of the deformation; dashed line is the linear fit with a
slope G = 580 Pa. Green diamonds are the outcomes of a numerical simulation with G = 580 Pa and the same parameters as the experiment as inputs.
The slope of the green line is 578.8 Pa.
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4.2 Experimental results 4 EXPERIMENTAL VALIDATION

Fig. 9 Deformation plots for particles produced from different exposure
times tUV. ◦ represents 202 ms, � represents 205 ms, � represents 217 ms,
4 represents 272 ms, and × represents 297 ms. Dashed lines indicate lin-
ear fits to the respective data sets. Inset: plot of (η/Ĝ)(15/8ε̇ − dD/dt)
versus D, with Ĝ the estimated value of the particle shear modulus, for the
same data sets as in the main figure.

Table 1 Comparison of the moduli of particles produced from different UV
exposure times tUV, measured using the ’modulometer’ and nanoinden-
tation. *Soft particles did not remain spherical during indentation, so EY
could not be determined by this method.

tUV (ms) G (kPa) EY/3 (kPa)
‘modulometer’ nanoindentation

202 0.5 ± 0.1 *
205 1.6 ± 0.3 *
217 2.5 ± 0.2 3.2 ± 0.3
272 6.4 ± 0.6 7.0 ± 1.3
297 9 ± 2 23 ± 2

the theory and numerical results described herein (compare to Fig.
3). A Taylor plot of η(15/8ε̇ − dD/dt) versus D can be generated
for the particle, and the modulus can be determined from the slope
(Fig. 8k). The straight line with null intercept of best fit (coeffi-
cient of determination R2 = 0.9912) has a slope of 580 Pa. An
estimation of the Reynolds number in the wide tube Re = 2ρ ūR1/η

gives 0.01, thus the model assumption of negligible inertia is ful-
filled, while the shear elastic capillary number in the wide tube is
Ca = η ū/(2R1G) ∼ 7× 10−4, which is comparable with the values
considered in the previous section. As a further validation, we re-
port in Fig. 8k also the results of a numerical simulation where
the inputted value of the particle modulus is 580 Pa and the other
parameters are chosen as to mimic the experiment (see the green
diamonds). A fair quantitative agreement is found and the slope
of the regression line referring to numerical data is 578.8 Pa.

We produced particles with different crosslink densities by ad-
justing the UV exposure time tUV of the monomer solution droplets.
The Taylor plot in Fig. 9 compares particles prepared with different

tUV. The magnitude of the slopes in Fig. 9 increases with increas-
ing tUV, which is consistent with the production of a more highly
crosslinked particle when exposed to UV light for longer times.
The more crosslinked the particle, the smaller the deformations
observed before the particles entered the narrow region of the de-
vice. The moduli of the particles were determined from the slopes
and compared to the Young’s moduli EY measured by nanoinden-
tation, as displayed in Table 1. Though we were unable to measure
EY by nanoindentation for the two softest particle compositions in
this study, tUV = 202 and 340 ms, due to experimental challenges
with the nanoindentation technique, we find that the nanoinden-
tation data is consistent for tUV = 217 and 272 ms. The maximum D
measured for particles produced at tUV = 297 ms was 0.03; for this
batch of particles, the difference between the ‘modulometer’ and
nanoindentation results may be the result of an insufficient range
of D leading to an imprecise determination of G. For particles pro-
duced with tUV > 297 ms, the total observable change in L and B
before entering the narrow region was ≤ 2 pixels, so G could not
be precisely determined. Larger extensional rates than those that
were achievable with our setup would be required to deform the
more highly crosslinked particles. On the other hand, the results
suggest that our method is effective for ‘softer’ particles, i.e., those
produced with tUV = 217 and 272 ms, and, as such, warrants further
testing and validation.

Our theory assumes that inertia is negligible, particles are small
with respect to the radius of the device, and their deformation is
small too (in particular, that the extensional elastic capillary num-
ber is ≤ 0.3). Even with these assumptions, the ‘modulometer’ has
the potential to probe a large range of particle sizes and moduli,
so long as devices can be fabricated to satisfy Rp/R1 � 1 and the
geometry (with the appropriate flow rates) can produce the nec-
essary extensional rates to sufficiently deform the particle, i.e., to
provide a small but measurable D. In addition, the viscosity of the
continuous medium can be selected to satisfy Cae ≤ 0.3, and adjust
the characteristic time for particle deformation.

A remark on the major sources of error in determining G by
this method: the main measurement errors include the image res-
olution, and thus our ability to detect the x,y coordinates of the
vertices of the ellipse to the nearest pixel ∼1 µm, the video capture
frame rate, which determines the smallest time interval, 0.2 ms,
which is less than 5% of the time interval between frames used
to track the deformation, and experimental error in our viscosity
measurement, also ∼5%. The second major potential source of er-
rors stems from the theoretical assumptions that may not always
match our experimental conditions. For example, the theory ne-
glects wall interactions and approximates the motion of the elastic
particle, e.g., the particle may lag the fluid slightly. Also, the par-
ticle may not deform to an exactly symmetrical ellipsoidal shape.
The theory also assumes incompressibility; based on literature re-
sults where the Poisson ratio of bulk PEG-DA hydrogels were mea-
sured to be 0.45 - 0.5,48 we think it is reasonable to assume the
particles are incompressible, but there may be a small potential
source of error in applying the theory if the Poisson ratio is not
exactly 0.5. In addition, in contrast to the theory, we observed that
the intercept is not zero in some data plots, as for example, the red
diamonds in Fig. 9. This observation can be traced to small initial
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non-zero D of the particles at the start of the data collection. In
other words, a small error, Dactual, allows shifting of the data so
that the data would have an intercept of zero. The shift does not
affect our ability to use the slope to determine G.

5 Conclusions
In this paper, we explain how to adapt a microfluidic technique re-
cently proposed in the literature36,37 for the measurement of the
interfacial tension between a liquid droplet and an immiscible sus-
pending liquid to the determination of the elastic modulus of soft
particles. We design a microfluidic device consisting of a cylindri-
cal pipe with a radial contraction and, by tracking the deformation
and velocity of particles suspended in a Newtonian fluid as they
go through the constriction, we perform a measurement of their
elastic modulus. We validate our approach for different orders of
magnitude of the bead elastic modulus through finite-element nu-
merical simulations and experiments. The microfluidic technique
proposed in this paper has numerous advantageous aspects, as it
is non-invasive, easy to implement, and provides continuous and
almost real-time measurements of a particle’s mechanical proper-
ties. Since experimental testing of the technique is provided for
synthetic elastic particles with size- and elasticity-values in the
range of interest for biological cells, the application of the mod-
ulometer could be extended to biomechanical measurements. On
the other hand, it has to be considered that in the mathematical
model underlying the device operation it is assumed that the par-
ticle is made of an incompressible homogeneous elastic material,
which could not always be the case for biological cells.
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