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Ordering of colloidal hard spheres under gravity: From monolayer 
to multilayer 
Ziwei Guo a, Peiyao Wu a and James T. Kindt * a

The phase behaviour of hard spheres confined by a gravitational potential to a thin layer (up to several monolayers) near a 
hard, flat surface is investigated using grand canonical Monte Carlo simulation.  Depending on the strength of the 
gravitational field, the bottom monolayer of spheres may adopt uniform hexagonal order before, during, or after the growth 
of the second layer of particles.  The crossover from ordering with a sparsely populated overlay to ordering with almost one-
third of the system’s particles forming a second layer is observed upon decreasing the dimensionless Péclet number Pe = 
mg/kBT  from 18 to 16.  The particular sensitivity of the nature of the transition to particle size in this range is  interpreted 
in terms of competing influences on the base layer structure by particles in the overlayer: promotion of order through 
increased pressure, versus stabilization of defects through occupation of low-lying sites on top of them.  Simulations of grain 
boundaries between 2-d ordered domains of different orientation are used to correlate the degree of overlayer coverage to 
its effects on grain boundary stiffness as an indicator of defect free energy.  Finally, we examine the structure of the ordered 
phases at coexistence over a range of gravitational strengths and find that orientational ordering of the second monolayer 
occurs along with first-order transition of the base layer at Pe=8 but not at Pe=10. 

1. Introduction
When packed at high enough lateral densities, hard spheres confined 
to a plane undergo a transition to a hexagonally ordered state, in a 
process that has been studied for decades through theory and 
computation.1 Only recently have computer simulations on large 
systems been able to describe this transition unambiguously as a 
two-stage process: a discontinuous transition from a fluid to a 
hexatic liquid crystalline structure followed by a continuous 
transition to a 2-d solid.2  Even more recently, this two-stage process 
has been observed in experiments on monolayers of confined 
spherical colloidal particles.3  Ordered arrays of colloidal particles in 
two and three dimensions may be prepared via a variety of 
routes4  and find applications in optics, electronics, and sensing.4 
Surface tension effects frequently drive colloids to adsorb strongly to 
interfaces between immiscible fluids, forming Pickering emulsions.5-

7 Although colloidal monolayers at hard surfaces or fluid interfaces 
may interact via a wide range of direct and interfacially-mediated 
(e.g. capillary) forces, at high enough lateral densities simple steric 
effects are likely to dominate these interactions and hard-sphere 
(HS) models become relevant.

This work builds on the now well-understood behaviour of the 
ordering transition of HS in a purely 2-d environment to address 
questions about this ordering under a gravitational field for 
sedimented particles. The ordering of sedimented HS in the 
multilayer limit under mild gravitational confinement has been 

studied in depth,8-16 as has the quasi-2d phase behaviour of HS under 
confinement between hard walls.17-20 In systems of sedimenting 
particles, the Péclet number ( , equivalent to  or Pe =  𝑚𝑔𝜎/𝑘𝐵𝑇 𝑔 ∗

) is equivalent to the gravitational potential energy in units of 1/𝑙𝑔 𝑘𝐵

 required to raise the particle by a distance of its diameter .  Using 𝑇 𝜎
the buoyant density of silica spheres in water at 300 K as an example, 
the conversion from Pe to diameter is Pe = 2.06 .  (It has been μm ―4𝜎4

noted9 that an alternate definition of the Péclet number at Pe = (∆
 also appears in the literature15, 16 and gives a value 8 times )𝑔𝑅4/𝑘𝐵𝑇

less.) A recent computational and experimental study21  has been 
made of structure and dynamics of colloidal monolayers under a 
moderate Pe ( 6.3), but like earlier simulation work on the =
subject22  it stopped short of any ordering transitions. Marechal and 
Dijkstra have used grand canonical Monte Carlo simulation to study 
ordering in HS multilayers under gravity, showing among other things 
that simultaneous freezing of the lowest two layers is a first-order 
transition in the range Pe=1-4, but that at Pe=10 the ordering of the 
second layer proceeds continuously after the freezing of the base 
layer,13 a result that was corroborated through experiment.23 

As spheres are added to the system they may either (roughly 
speaking) increase the density of the lowest level at a cost in packing 
entropy or occupy positions on top of this lowest level at a cost in 
gravitational energy.  At high Pe, we do not expect significant 
population above the base layer until the base layer is densely 
packed and in the 2-d solid state.  Thorneywork et al. demonstrated 
this behaviour in showing that monolayers of colloidal spheres with 
Pe=41 undergo two-stage melting at densities close to the transitions 
derived from simulations of of hard disc (HD) systems.3  For more 
weakly confined particles, the lateral pressure in the base layer may 
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be high enough to push particles to the second level before the hard 
disk (HD) ordering transition is reached.  Using results from our 
previous work,24 we can estimate the critical value of Pe at which the 
crossover takes place.  The cost in gravitational energy to add to a 

second layer above a close-packed monolayer is  (=0.816) Pe 2/3 𝑘𝐵

.  The entropic cost to add a particle to a densely packed, ordered 𝑇
monolayer can be estimated from 2-d HD simulations24 where the 
ordering transition occurred at a chemical potential of 12.8 𝑘𝐵𝑇
/molecule.  These are equal when Pe=15.6; we may estimate that 
above this value (which corresponds to 1.66  diameter spherical μm
silica beads in water at 300 K), ordering of the base layer will precede 
population of the overlayer. For particles with Pe below this 
threshold, as increasing numbers of particles accumulate in one or 
more upper layers, their weight will eventually produce enough 
pressure to drive an ordering transition in the base layer (or layers).  
A main goal of this work is to test this prediction through simulation. 

The phase behaviour of HS confined to a slit pore with hard walls 
has been studied extensively through simulation18-20, 25 and 
experiment17, 26, 27 and bears some similarity to the gravitationally 
confined systems to be modelled here.  Particles held in soft 
confinement near a plane through a harmonic potential28 have also 
been studied.  At high packing density, these systems may adopt 
ordered structures with integer numbers of planar hexagonal 
(triangular) or square arrays; more complex intermediates (e.g. 
buckled structures) are also observed under hard wall confinement, 
while re-entrant melting or phase coexistence is seen under soft 
confinement.  The non-hexagonal packing modes are driven by a 
trade-off between packing efficiently within a plane while 
accommodating multiple layers. In the present system, the broken 
symmetry between layers makes optimization of the packing 
efficiency in the base layer the most important factor, so we expect 
to see only hexagonally symmetric ordered structures.

In this work, we explore gravitationally confined HS monolayers 
and bilayers with a relatively high range of Pe from 6 to 24. Here we 
use the solvent repacking Monte Carlo (SRMC) method,24 along with 
a new extension adapting the simulation under a gravitational 
potential, to study the equilibrium phase diagrams and properties of 
gravitationally confined HS. The effects of overlayer on the 
thermodynamics of disordering are then singled out using studies of 
grain boundary (GB) stiffness. Finally, we address the structural 
nature of ordering in the ordered phase at coexistence in different 
limits.

2. Methods
2.1 Algorithms for grand canonical Monte Carlo under a 
gravitational potential
We treat a monodisperse system of HS whose minimum centre-of-
mass position along  is limited to  by a hard, flat surface in the 𝑧 𝑧 = 0
x-y plane (“floor”) and whose maximum position along  is influenced 𝑧
by a gravitational potential  and limited to  by a 𝑈 = Pe 𝑘𝐵𝑇𝑧 𝑧𝑚𝑎𝑥

second hard wall (“ceiling”).  We wish to establish an equilibrium 
between this system and a reference system of fugacity , which can 𝑓

be characterized as a hypothetical non-interacting system of 
particles in a field-free 3-d space ( ) at a number density  in 𝑈 = 0 𝑓
units of .  𝜎 ―3

2.2 Single particle addition/removal moves
The standard Grand Canonical Monte Carlo algorithm for such a 
system would be inefficient at high Pe and high  because most 𝑧𝑚𝑎𝑥

insertion move attempts would be at heights with low thermal 
population.  Biasing the distribution of insertion attempts by the 
gravitational potential is a natural solution.  Given the normalized 

probability distribution , 𝑃(𝑧) = Pe 𝑒 ―Pe 𝑧 (1 ― 𝑒
―Pe 𝑧𝑚𝑎𝑥)

acceptance probabilities that would appropriately account for the 
bias can be easily constructed: 

                 𝑎𝑐𝑐𝑁→𝑁 + 1 = min (1,
𝑓

𝑉
𝑁 + 1𝑒 ―Pe 𝑧

𝑃(𝑧) ) =  min (1,𝑓
𝑉

𝑁 + 1

(1 ― 𝑒
―Pe 𝑧𝑚𝑎𝑥)
Pe )

(1a)

                                     𝑎𝑐𝑐𝑁 + 1→𝑁 = min (1,𝑓 ―1𝑁 + 1
𝑉

Pe

(1 ― 𝑒
―Pe 𝑧𝑚𝑎𝑥))

(1b)
For a system that is densely packed near  at high Pe, this will 𝑧 = 0
again produce inefficiencies because the insertion moves will be 
concentrated at the most densely packed region.  To increase the 
rate of exchange for the uppermost layer at least, while retaining the 
possibility of inserting into cavities that open up near , we 𝑧 = 0
instead bias insertions according to the gravitational potential but 
over a range determined by a “local floor” using the following steps:
1) A point within the x-y plane is selected at random.
2) The positions of all particles whose x, y coordinates are in a 

cylinder of radius  centered at that point are used to calculate 𝜎
the height  at which a particle falling from  would first 𝑧 𝑧𝑚𝑎𝑥
collide with the existing particles; this is denoted . If there 𝑧𝑓𝑙𝑜𝑜𝑟

are no particles within that cylinder, .  If a particle at 𝑧𝑓𝑙𝑜𝑜𝑟 = 0
 would overlap with an existing particle, the move fails.𝑧𝑚𝑎𝑥

3) The trial  coordinate is selected from the range [ , ], 𝑧 𝑧𝑓𝑙𝑜𝑜𝑟  𝑧𝑚𝑎𝑥

with probability weighted by .𝑒 ―Pe 𝑧

The acceptance probability for insertion moves is then

           (2)𝑎𝑐𝑐𝑁→𝑁 + 1 = min (1,𝑓
𝑉

𝑁 + 1

(𝑒
―Pe 𝑧𝑓𝑙𝑜𝑜𝑟 ― 𝑒

―Pe 𝑧𝑚𝑎𝑥)
Pe )

We note that this move can never insert a particle underneath 
another particle.

For the removal move,
1) One of  particles is selected at random.  The positions of 𝑁 + 1

all particles whose x, y coordinates are in a cylinder of radius  𝜎
centered at that particle’s projection on the x, y plane are used 
to calculate both  and : the positions at which the 𝑧𝑓𝑙𝑜𝑜𝑟 𝑧𝑐𝑒𝑖𝑙𝑖𝑛𝑔
particle would make contact (with walls or other particles) if it 
were to fall or rise without changing lateral position.

2) If  is less than , there is another particle above our 𝑧𝑐𝑒𝑖𝑙𝑖𝑛𝑔 𝑧𝑚𝑎𝑥
trial particle, and the move fails because it could not be reversed 
by an on-top addition and so would violate detailed balance.

3) The acceptance probability for removing the selected particle is 

        (3)𝑎𝑐𝑐𝑁 + 1→𝑁 = min (1,𝑓 ―1𝑁 + 1
𝑉

Pe

(𝑒
―Pe 𝑧𝑓𝑙𝑜𝑜𝑟 ― 𝑒

―Pe 𝑧𝑚𝑎𝑥))
If the removal move fails for either reason (either because the 

particle has another one above it, or because the acceptance 
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probability is less than 1), knowing  and  allows us to 𝑧𝑓𝑙𝑜𝑜𝑟 𝑧𝑐𝑒𝑖𝑙𝑖𝑛𝑔

make a rejection-free move along , translating the particle to a 𝑧
position between these two values with a probability weighted by 

.  This move is appealing in that the effective step size adapts 𝑒 ―Pe 𝑧

automatically both to the local packing environment and the 
gravitational confinement, removing the need to re-optimize the 
step size to sample height distributions efficiently. The thermal 
distribution for an ideal (non-interacting) system under the 
gravitational potential with fugacity defined in this way would be: 

              (4)𝜌3𝑑(𝑥,𝑦,𝑧) = 𝑓exp ( ―𝛽𝑈) = 𝑓exp ( ―Pe 𝑧)
Integrating  over  then yields a number per unit area of 𝜌3𝑑(𝑥,𝑦,𝑧) 𝑧

.  The single-particle on-top insertion and 𝑓(1 ― 𝑒
―Pe 𝑧𝑚𝑎𝑥) Pe

removal moves are in principle valid at any value of Pe, although for 
multilayer systems their ability to converge to the correct ensemble 
of particle numbers and configurations at a given fugacity relies on 
the efficient exchange of particles within and between layers below 
the top layer, through local moves.  

2.3 Solvent Repacking MC Moves under gravitational potential
The SRMC algorithm has been detailed in several publications.24, 29  In 
the present system, the goal of the algorithm is to allow a local region 
of the system to adopt a new packing that might be kinetically 
inaccessible through single-particle moves. Disorder in the base layer 
can be stabilized by the presence of overlayer particles, and so in 
principle trial configurations that allow both layers to be altered 
simultaneously could overcome barriers to structural transitions.

Like in previous work on 2-d systems, a position is randomly 
selected within the system and a set of trial configurations is 
generated in which all particles within a lateral distance rcut are 
replaced with varying numbers of particles, whose positions are 
chosen using the configurational bias MC (CBMC) strategy.30  In the 
present case, we wish to build a configuration of particles that may 
extend to a second layer (or beyond) with guidance from the 
gravitational potential energy. As before, for the i'th particle added 
to the new trial configuration, a number k of positions in x and y are 
generated randomly within the circle of area πrcut

2. For each position, 
the local floor zfloor is calculated as defined above, except that only 
interactions with the previous i-1 particles in the new configuration 
(not with the surrounding “shell” particles that may overlap with trial 
positions) are used for this calculation. The new particle’s z 
coordinate is selected with an exponentially biased distribution ( e-

Pe z) between zfloor and zmax.  Trial positions that overlap shell particles 
are rejected, and one of the remaining positions is selected with a 
probability weighting

𝑃𝑖,𝑗 =  
𝑒 ―𝛽𝑢′𝑖,𝑗(𝑒 ―𝑃𝑒 𝑧𝑓𝑙𝑜𝑜𝑟,𝑖,𝑗 ― 𝑒 ―𝑃𝑒 𝑧𝑚𝑎𝑥)

∑𝑘
𝑗′ = 1𝑒 ―𝛽𝑢′𝑖,𝑗′(𝑒 ―𝑃𝑒 𝑧𝑓𝑙𝑜𝑜𝑟,𝑖,𝑗′ ― 𝑒 ―𝑃𝑒 𝑧𝑚𝑎𝑥)

                                   (5)=  
𝑒

―𝛽𝑢′𝑖,𝑗(𝑒
―𝑃𝑒 𝑧𝑓𝑙𝑜𝑜𝑟,𝑖,𝑗 ― 𝑒

―𝑃𝑒 𝑧𝑚𝑎𝑥)
𝑤𝑖

where u’i,j is an auxiliary potential, derived from a radial distribution 
function, that favours closely packed positions, and a Rosenbluth 
weight wi associated with the placement of the ith particle is 

introduced.  (The same auxiliary potential was used here as in 
previous work.29, 31)  Particle addition is continued until either a 
predetermined maximum is reached or all positions generated are 
invalid (zfloor > zmax).

A complication arises as we need to account for the probability 
of generating a given set of i particle positions in this manner, 
including permutations to the order in which they may be generated.  
If no particle is above any other particle (in the sense that zfloor = 0 for 
all), then the number of permutations equals i factorial. In the event 
that some particles are on top of others, some of these permutations 
violate the ordering requirement for particles to be inserted earlier 
than those that are on top of them.  To sample and count the allowed 
permutations for a given arrangement of i particles, we first count 
the number ntop,i of particles that have no particles below them, 
randomly select one to remove, and continue recounting until a 
single particle is left. The product of ntop,i :

                                      (6)𝑁𝑝𝑒𝑟𝑚,𝑖 = ∏𝑖
𝑖′ = 1𝑛𝑡𝑜𝑝,𝑖′

will equal the number of permutations, and so is used in place of i! 
in expressions for the acceptance probability. The probability 
weighting associated with the configuration ri of i particles within the 
grand canonical ensemble is

                               (7)𝑃(r𝑖) ∝  
𝑓𝑖

Λ𝑖exp ( ―𝑃𝑒 ∑𝑖
𝑖′ = 0𝑧𝑖′)

The probability of generating that given configuration (including 
selecting lateral positions for i particles from an area acav= πrcut

2, 
generating z coordinates from the gravitationally biased distribution 
between zfloor and zmax, and selecting one of k positions according to 
eqn. 7) is:

                     𝛼(r𝑖) = 𝑁𝑝𝑒𝑟𝑚,𝑖∏
𝑖
𝑖′ = 1( 𝑘𝑖′

𝑎𝑐𝑎𝑣)( 𝑃𝑒  𝑒
―𝑃𝑒 𝑧𝑖′

𝑒
―𝑃𝑒 𝑧𝑓𝑙𝑜𝑜𝑟,𝑖′ ― 𝑒

―𝑃𝑒 𝑧𝑚𝑎𝑥)𝑒
―𝛽𝑢′𝑖′ ― 𝑃𝑒 𝑧𝑓𝑙𝑜𝑜𝑟,𝑖′

𝑤𝑖′

(8)
Acceptance probability weightings for moves in biased Monte Carlo 
algorithms should be proportional to the desired weighting within 
the ensemble and inversely proportional to the generation 
probability; dividing eqn. 8 by eqn. 5 yields the acceptance 
probability weighting of the new configuration with i particles:

                               (9)𝜔𝑖 =  
𝑓𝑖

Λ𝑖 
𝑎𝑐𝑎𝑣

𝑖

𝑁𝑝𝑒𝑟𝑚,𝑖∏
𝑖
𝑖′ = 1𝑘𝑖′

 
∏𝑖

𝑖′ = 1𝑤𝑖′

exp ( ― 𝛽𝑈′𝑖)

As in conventional CBMC, all factors in eqn. 9 for the original (old) 
configuration must also be generated, using k-1 “dummy” alternate 
positions for each particle positioned to generate wi,old according to 
eq. 7 and adding new additional “dummy” particles up to the same 
stopping criterion as for the new structure. The acceptance 
probability for choosing one of the new structures is then:

                             (10)𝑎𝑐𝑐 = min ( ∑𝑖𝑚𝑎𝑥
𝑖 = 0 𝜔𝑖

∑𝑖𝑚𝑎𝑥
𝑖′ = 0

𝜔𝑜𝑙𝑑, 𝑖′
,1) 

If the move is accepted, the choice of how many of the particles to 
include in the new filling of the cavity (including the vacant cavity, 
i=0, with weight 1) is made through a random selection with 
probability: 

                                        (11)𝑃(𝑖) =  
𝜔𝑖

∑𝑖𝑚𝑎𝑥
𝑖′ = 0

𝜔𝑖′
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2.4 Implementation of grand canonical Monte Carlo (GCMC) 
simulations
GCMC simulations with varying fugacities f and Péclet numbers Pe 
were carried out through the moves described above using a grid-
based domain decomposition scheme in which the system (a square 
box with periodic boundary conditions in two dimensions, whose size 
depended on the type of simulation as detailed below) is divided into 
n  n sectors.  During each cycle, a new origin for the first sector of 
the grid is selected at random and a series of Monte Carlo moves 
attempts is performed independently on a different processor on 
each sector, with boundary zones of width  between the sectors 1𝜎
kept unchanged (with no particles allowed to enter, leave, or change 
position).  A single cycle consisted of 1000 SRMC repack attempts on 
each sector, each of which was followed by 600 single-particle move 
attempts. The type of single-particle move was randomly selected 
with equal chances of a simple lateral translational move attempt at 
constant z, a single-particle (on-top) insertion attempt, or a single 
particle removal / rejection-free vertical translation move as 
described above.  

To determine the boundaries between ordered and disordered 
phases in systems with Pe numbers ranging from 6 to 24, a simulation 
box of lateral dimensions 100   100  was used, divided laterally  𝜎  𝜎
into 16 sectors for parallel sampling.  At each value of Pe, we use an 
estimation and trial strategy to find the transition point.  Starting 
from an empty box, simulations were performed at widely spaced 
trial fugacities, and the total particle number was monitored until it 
reached a stable level.  This typically was achieved within 5,000-
10,000 MC cycles (with each MC cycle including a total over all 
sectors of 16,000 repacking moves attempts and 9.6   single-106

particle move or insertion/removal attempts).  The base layer 
(defined as particles with , where  represents the 𝑧 < 0.5 𝜎 𝑧 = 0
particle in contact with the hard surface) was visualized using VMD32 
to determine whether it had reached a state of uniform hexagonal 
order.  The structure at the lowest fugacity to yield an ordered state 
was then used as input for a series of simulations at gradually 
decreasing fugacity, until a system was observed in which the 
uniform order of the base layer was lost (melted).  Simulations 
initiated with disordered structures were then performed at smaller 
increases of fugacity (increments of 5-10%) until ordering was 
resumed.  In this way we zeroed in on a transition fugacity value –
where the same fugacity will result in the ordered structures 
remaining ordered and the disordered structures remaining 
disordered over a 10,000 MC cycle trajectory.  Although there is 
some imprecision in this procedure, as the range of the bistable 
regions is finite for a finite equilibration time, the outer limits of this 
range (which we could place by the fugacities at which spontaneous 
transitions were observed) were far narrower than the shifts in the 
transitions from varying Pe. The properties of the two phases at 
coexistence are then approximated from the configurations 
observed at that transition fugacity obtained using different starting 
structures.  To represent the density of the system with a measure 
that reduces to the 2-dimensional area fraction in the limit of a 

monolayer at infinite Pe, the total area fraction   is used, 𝜂𝑡𝑜𝑡 =
𝜋
4

< 𝑁 >
𝐴

representing the mean sum of all projected areas of all spheres in the 
system as fraction of the area of the surface. (This measure can 
exceed 1 because of the possibility of multiple layers).  The area 
fractions  and  of the base layer (particles with ) 𝜂𝑏𝑎𝑠𝑒 𝜂𝑜𝑣𝑒𝑟 𝑧 < 0.5𝜎
and the first overlayer (particles with ) are similarly 0.5𝜎 < 𝑧 < 1.5𝜎
defined.  A list of the transition fugacities and corresponding area 
fractions of ordered and disordered systems obtained in given in 
Table S1 in the Supplementary Information section.

With one exception, the ceiling height was set to ; the 𝑧𝑚𝑎𝑥 = 5𝜎
choice of this maximum is large enough that the density of particles 
at or above this height is close to zero and should have negligible 
effects on the results presented.  In one case, at Pe=8, an additional 
series of simulations was performed using ceiling height  = 0.5𝜎 𝑧𝑚𝑎𝑥

to confine the particles in the system to the first layer, and the 
transition fugacity of such a system (where overlayer formation is 
effectively curtailed) was determined in the same manner as above.  

To systematically study the GB stiffness and its dependence on 
system composition and Pe under controllable conditions, ordered 
grains of spheres are set up in a pair of parallel stripes making two 
parallel GBs aligned with the  direction in a square simulation box 𝑥
(side length 200 𝜎) as in previous work.29, 31  Equilibration and 
production periods consisted of at least 5000 and 20000 MC cycles, 
respectively.

2.5 Analysis of orientational and translational order 
At each value of Pe, the complex hexagonal bond orientation order 
parameter  was determined for all particles in the base layer (Ψ6 

); for systems with Pe=6, 8, and 10 the order parameter was 𝑧 < 0.5𝜎
also determined separately for particles in the first overlayer (

).0.5𝜎 < 𝑧 < 1.5𝜎

                    (12)Ψ6(𝑟𝑗) =
1
𝑁𝑗

∑𝑁𝑗

𝑘 = 1𝑒𝑖6𝜃𝑗𝑘

Here the number of neighbours Nj is defined as the number of 
particles within the same layer (base layer or first overlayer) with 
projected distance from particle j in the x-y plane less than 1.5 , and  𝜎

 is the angle between the y axis and the x-y projection of the bond 𝜃𝑗𝑘

vector between particle j and its  neighbour.  𝑘𝑡ℎ

Selected systems were prepared in the ordered phase and 
equilibrated at the transition fugacity in a larger simulation box (

) to reduce finite size effects calculation of translational 350𝜎350𝜎
order correlation function following a procedure given in a previous 
study.24 The direction of translational correlation vector is chosen 
based on the orientation of the domain, to obtain the longest 
possible correlation length. 

2.6 Grain Boundary detection and calculation of grain boundary 
stiffness
To detect the two GB’s positions along the x dimension from 
simulations of bicrystals, we divide the simulation box into a 
100100 grid, which has been confirmed to be fine enough for 
calculating interfacial stiffness in our previous study.29, 31  The 
orientation of the hexagon formed by six neighbours of particle  can 𝑗
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be calculated by , which is a value varied from 0 to 𝜃6 = arg (Ψ6)/6
60 due to the symmetry of hexagon, using only particles in the base 
layer. The orientation of the grain domain can be quantified by 
averaging all the  of particles belonging to the domain.  Here in all 𝜃6

cases GB were constructed with grain misorientation (difference 
between the two grains’ orientation angles) of 30° and inclination 
(angle between the GB and grain orientations) of 15°.  Smoothing 
over local pockets of disorder is achieved by taking the average of   𝜃6

in each grid and the four nearest grid squares of the same x 
coordinate to represent the orientation of each grid square. The 
height h of the grain boundary is then the y coordinate of the grid 
square with  closest to the mean of the  values of the two grains, 𝜃6 𝜃6

defined as the “edge point”, and the GB is represented as a sequence 
of segments connecting “edge points”

The capillary fluctuation method (CFM) is applied here in the 
same way as in previous work to calculate GB stiffness.29, 31 The GB 
positions along the y direction determined as described in previous 
section are treated as a function of position along the  direction and 𝑥
frame : . The mean value of h(x,t) at each t is subtracted off to 𝑡 ℎ(𝑥,𝑡)
yield the fluctuation at that frame: , which 𝛿ℎ(𝑥,𝑡) = ℎ(𝑥,𝑡) ― 〈ℎ(𝑡)〉𝑥

can be converted to  by Fourier Transform (F.T.) with wave 𝛿ℎ(𝑘,𝑡)
number =  ( ) in Fourier Spectrum. The 𝑘 2𝜋𝑚 𝐿 𝑚 =  0, ± 1, ± 2, …
trajectory-averaged square of intensities are related to 〈|𝛿ℎ(𝑘)|2〉𝑡 

the stiffness  according to the CFM as:33 Γ

    (13)log(〈|𝛿ℎ(𝑘)|2〉𝐿) = ―2log (𝑘) +  log (
𝑘𝐵𝑇

Γ )
In practice, a linear fit of eqn. 13 with a fixed slope –2 is used to find 
stiffness  from the y-intercept, excluding points with  higher Γ |𝑚|
than 15, which the CFM as a continuum-based model is not expected 
to fit.  In ordered systems with Pe=10 and below, convergence in GB 
fluctuation statistics was not reliable and so is not reported.

3. Results and discussion
We will first show how the point of transition of the base layer from 
fluid to ordered phase depends on the degree of gravitational 
confinement as represented by Péclet number Pe. The second 
section will focus on interpreting these trends through consideration 
of the effect of overlayer particles on the ordering of the base layer, 
which can be studied more directly by examining the property of 
grain boundary stiffness at packings above the phase boundary.  
Finally, the evolution of the nature of the ordered phase near 
coexistence will be considered, including both lateral translational 
correlations and the degree to which the second and third layers 
order in concert with the base layer. 

3.1 Crossover from ordering before stacking to ordering with 
overlayer present
We first studied the phase transition points of gravitationally 
confined HS under different Pe.  As predicted, we see a shift in 
behaviour from an ordering transition that precedes population of  
overlayer sites (at high Pe) to an ordering transition that occurs with 
significant overlayer population (at low Pe).  The transition appears 
to take place in the range of Pe between 16 and 18, close to our 

estimate (explained in the Introduction section) of 15.6.  As shown in 
Fig. 1, the ordering transition for sedimented HS with relatively high 
Pe (18 and 24) takes place at a total area fraction  shifted only 𝜼𝒕𝒐𝒕

slightly from the HD system, since the occupancy of the overlayer is 
low, (see Fig. 2) and since the vertical fluctuations in the base layer 
are small.  Upon decreasing the Pe from 18 to 16,  at the 𝜼𝒕𝒐𝒕

transition is dramatically increased, reflecting the presence of a 
significant (~37%) overlayer. On further lowering of Pe from 16 to 6, 

 at the transition gradually increases, reflecting the need for 𝜼𝒕𝒐𝒕

more and more particles in the upper layers to exert sufficient 
pressure on the base layer to drive the transition. 

Fig. 1 Phase diagram of gravitationally confined HS systems with different Pe. The dash 
line is drawn only to guide the eyes to indicate the phase boundaries. The data of HD is 
obtained from previous work.24
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Fig. 2 Percentage of number of base layer particles at phase transition in ordered phase 
with different Pe. 
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Fig. 3 Mean squared order parameters of base layer particles versus total area 〈|Ψ6|2〉 

fraction tot near phase transitions at different Pe. 

Fig. 4 Phase diagram of gravitationally confined HS systems with different Pe plotted 
again the base layer area fraction . The lines are drawn only to guide the eyes to 𝜂𝑏𝑎𝑠𝑒

indicate the phase boundary in disordered phase (black dash line), and ordered phase 
(red solid line). The data of HD is obtained from previous work.24

3.2 Overlayer effects on phase and interface stability
The base layer of HS in the sedimented system differs from the 
simple HD system in two potentially important ways: the presence of 
an overlayer and the fluctuations in height (position along ) that 𝑧
allow the spheres to approach each other with lateral distances less 
than their diameter.  Over the range of Pe investigated, the 
boundaries of the ordering transition remain close to the HD limit, in 
terms of the shift in base layer hexagonal order parameter  (Fig. Ψ6

3) as well as the nominal area fraction  of the base layer (Fig. 4).  𝜂𝑏𝑎𝑠𝑒

To distinguish effects of the overlayer from those of the fluctuations, 
we have simulated the Pe = 8 system under conditions where 
particles are restricted to a height  = 0.5  (corresponding to a 𝑧𝑚𝑎𝑥 𝜎
hard ceiling at a height 1.5  above the floor).  This restriction 𝜎
prevents formation of an overlayer while allowing considerable 
thermal height fluctuations. The transition boundary is shifted to 
higher area fraction (cross and square marks in Fig. 4) relative to the 

HD limit, as expected given the effective softening34 of the lateral 
excluded area restrictions due to fluctuations in . This shift is 𝑧
qualitatively consistent with the shifts in phase boundaries observed 
for HS confined between parallel walls in the absence of a 
gravitational field.19  In contrast, when the ceiling is not present, it is 
noteworthy that the area fraction of the ordered base monolayer at 
the phase boundary barely changes in the range from Pe=6 to 
Pe=12.8, remaining near =0.735.  (For comparison, the value of 𝜂𝑏𝑎𝑠𝑒

 for a monolayer formed by the (111) face of an FCC crystal at 𝜂𝑏𝑎𝑠𝑒

the bulk HS freezing point, with volume fraction from simulations35 
determined to equal 0.545, is =0.739.)   It appears that the doubling 
in the degree of direct gravitational confinement on the base layer 
particles and the decrease in the number of particles above the base 
layer are compensating for each other to produce a consistent 
packing density in the ordered monolayer at coexistence.  This trend 
is consistent with previous GCMC study that found of similar lattice 
parameters across ordered phases observed at the transition in the 
range Pe=1 to 4.13
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Fig. 6 Stiffness of grain boundaries (assessed using base layer only) with different Pe. The 
data for HD is obtained from previous work.29
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Fig. 7 Excess overlayer particles per unit length of GB at different Pe.

Fig. 8 The hexagonal bond order parameter of spheres in base layer (blue circle) and 
second layer (red triangle) with (a) Pe=6; (b) Pe=8; and (c) Pe=10. 

A related form of compensation is evident in the height 
distribution of the base layer, shown in Fig. 5, for particles of 
different Pe under conditions with the same base area fraction (𝑏𝑎𝑠𝑒

0.755, well above the ordering transition). The height distribution 
broadens as expected when Pe is reduced from 100 to 50 to 24, as 
gravitational confinement is weakened, then remains approximately 
unchanged as Pe decreases by another factor of 2. Is this 
compensation to be expected?  In a simplified scenario (neglecting 
any specific effects of overlayer particles on the base layer packing 
behaviour) the lateral pressure within the base layer could be 
assumed to depend solely on .  If enough particles are present 𝜂𝑏𝑎𝑠𝑒

in the overlayer so that lateral and vertical forces are coupled, this 
lateral pressure would be expected to be approximately equal to the 
pressure in the  direction.  The pressure on the floor can be equated 𝑧
to  times the number density at  (corresponding to particles 𝑘𝐵𝑇 𝑧 = 0
whose center is 0.5 above the hard surface).13  Interestingly, even 
though the height distributions look remarkably similar over the 
range from Pe=12.8 to Pe=24, the pressure on the floor (as indicated 
by the density at )  shows a spread of about 20%.  This indicates 𝑧 = 0
that there are subtleties that modulate the dependence of lateral 
pressure on  and/or that the lateral pressure does not equal the 𝜂𝑏𝑎𝑠𝑒

normal pressure.  (It would in fact be surprising if the lateral pressure 
were to equal the normal pressure exactly near a phase coexistence 
in a thin sedimented system: the lateral pressures of two coexisting 
phases must be equal to minimize the free energy of the two-phase 
system, and unless the two phases have the exact same , they 𝑡𝑜𝑡

will not have the same normal pressure.)  Still, to a first 
approximation the combination of the direct effect of gravity on the 
base layer particles and the pressure due to the weight of the 
overlayers produces a similar height distribution at a given , 𝜂𝑏𝑎𝑠𝑒

which in turn would be expected to produce a similar effective 2-d 
equation of state for the base layer over different values of Pe – 
absent specific perturbations to the ordering process from overlayer 
particles.  The non-specific effect of increasing overlayer coverage 
therefore should be expected to favour ordering through its effects 
on base layer pressure.

To better understand other effects of overlayer coverage on 
ordering, we turn to the behaviour of grain boundaries, locally 
disordered regions that separate ordered domains with differently 
oriented lattices in a polycrystalline system.  The fluid phase at the 
phase transition in HD2  and similar36 2-d systems has some 
resemblance to a polycrystalline mosaic of locally hexagonal grains 
with different orientation.  In fact, the local hexagonal order is nearly 
as high as in the fully ordered phase (see Fig. 3) and the correlation 
length associated with this order is about 60 times the particle 
diameter for HD systems.  Properties of GB might therefore be 
expected to reflect the factors that control where and how the 
transition takes place.  (GB properties also influence the rate of grain 
coarsening,29, 37-39 and are essential for understanding the dynamics 
of sedimented systems at packings above the ordering transition.)  
We have compared the (quasi-1d) GB stiffness, which is a measure of 
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the free energy per unit length associated with the GB presence, at 
different Pe with the HD system (Fig. 6).   In the HD limit of a fully 2-
d system (Pe=), GB stiffness increases sharply with increasing area 
fraction above the transition.29  This dependence is weaker over a 
range of Pe in the regime from  =0.8 to  = 1.1, reflecting the 𝜂𝑡𝑜𝑡 𝜂𝑡𝑜𝑡

fact that most added particles join the overlayer and only indirectly 
influence the base layer packing. Moreover, since the local 
arrangement of the base layer deviates from close-packing at the GB 
and features larger cavities than are present in the bulk, overlayer 
particles that occupy sites atop these cavities will have lower  𝑧
coordinates and therefore lower potential energy than those 
occupying sites above the ordered regions.  Counting all overlayer 
particles, we find a positive excess number of overlayer particles per 
unit length of the GB, confirming that overlayer particles tend to 
partition towards the GB and thereby stabilize it.  In this way, they 
are analogous to impurities in mixed systems that similarly reduce 
GB stiffness.31, 38 (A kinetic effect on the GB mobility due to overlayer 
particles, analogous to Zener pinning,40-42 is also possible but was not 
explored in the present study.)  Snapshots that visualize only those 
overlayer particles in the range , which is excluded 0.5𝜎 < 𝑧 < 0.8𝜎
to particles atop closely packed hexagonal regions of the base layer, 
highlights the enrichment of the GB in these particles (see supporting 
information, Fig. S1).  So, in addition to a collective pro-ordering 
effect of overlayer particles from their influence on the base layer’s 
pressure, we see a pro-disordering effect from individual overlayer 
particles’ affinity for defect sites.

Fig. 7 shows that (except for Pe=16 and Pe=18) this excess follows 
a regular trend with increasing coverage of the overlayer.  The excess 
number ∆N/L increases with overlayer coverage at low  because 𝜂𝑜𝑣𝑒𝑟

more particles become available to occupy the GB sites. The excess 
reaches a plateau as these extra-stable sites presumably become 
saturated.  The excess number then starts to decrease as the 
overlayer approaches 40% monolayer coverage, as lateral packing 
pressure within the overlayer grows and tends to suppress local 
density fluctuations.  

The anomalies in Fig. 7 at Pe=16 and Pe=18 can be attributed to 
the fact that in the regime  =0.1-0.4 that favors high excess 𝜂𝑜𝑣𝑒𝑟

numbers at the GB (for reasons described in the previous paragraph) 
these systems are still close to their order-disorder transitions.  Close 
to the transition point, the free energy cost of local melting in the 
base layer is relatively low.  Overlayer particles that migrate to GB 
sites and stabilize non-hexagonal arrangements in the base layer can 
contribute to pre-melting, increasing the number of advantageous 
sites. In contrast, the common behaviour at higher Pe suggests that 
the overlayer particles are simply occupying sites determined by the 
intrinsic structure of the GB; the pressure in the base layer is too high 
to allow a significant number of additional defects to be formed.  Pre-
melting at the GB and an expanded zone of enrichment of overlayer 
particles can be seen in snapshots with Pe=16 and 18 (Fig. S1), in 
contrast to the localized distribution of packing defects and of 
overlayer particles at Pe=20.

The tendency for a partial overlayer to stabilize disordered 
packing arrangements in the base layer is a reasonable explanation 
for why  at the transition jumps from 0.75 at Pe=18 to over 1.1 at 𝜂𝑡𝑜𝑡

Pe=16 (Fig. 1).  The same total pressure on the floor would be 
achieved with an increase only to =0.84.  Such an increase would 𝜂𝑡𝑜𝑡

at the same time raise  to approximately 0.1, a condition that 𝜂𝑜𝑣𝑒𝑟

strongly stabilizes defects in the base layer (Fig. 7) and so would 
suppress ordering.   The ordered phase does not become stable until 

=0.38, and even in the ordered phase the GB stiffness is 𝜂𝑜𝑣𝑒𝑟

especially low at Pe=16 indicating a susceptibility to local disorder 
(Fig. 6).

3.3 Structure of ordered phase
The translational correlation function (Fig. S2) shows that the 
ordered phase at phase coexistence for Pe = 24 is almost the same 
as HD, with correlations decaying over a length scale of 10’s of 
particle diameters as characteristic of the hexatic phase.2  At Pe=16, 
even though the area packing fraction of the base layer of the 
ordered phase is much higher (>0.74) than for the HD system, decay 
of the translational order can still be observed, with a somewhat 
longer length scale.  At Pe=6, the yet weaker decay in translational 
order correlation makes it difficult to identify whether the system is 
hexatic with a correlation length approaching the scale of the box 

Fig. 9 Snapshot of spheres in the second layer  in a system with Pe =6 at fugacity (a) ; (b) 1.5 ; and (c)  which are in ordered 1.45 ×  108 5 ×  108 1.8 ×  108

phase near coexistence. The corresponding total area fractions  are 2.216, 2.229 and 2.257 respectively. Spheres are colour-coded by order parameter  𝜂𝑡𝑜𝑡 Ψ3

with respect to the spheres in the base layer, represented by the color map shown in the inset in (c); the x and y axes represent the real and imaginary part of 
, respectively. Ψ3
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size (350 particle diameters) or a 2-d solid with a power law 
correlation function.  In either case, it is likely that the cooperative 
ordering of the second layer (see following section) contributes to 
the increased order in the base layer.

As the gravitational force is lowered, the density along the  axis 𝑧
becomes more uniform, so that one might anticipate the equilibrium 
ordering transition at the surface to evolve from a quasi-2d process 
to a collective 3-d freezing that extends farther from the wall.  As Pe

 , one might envision that the loss of the density gradient along   →0 𝑧
would lead to continued expansion of this cooperativity, culminating 
in a bulk-like transition35 between fluid at a volume fraction of 0.494  
into a many-layered crystal at volume fractions 0.545. On the other 
hand, the presence of a wall has been shown to induce ordering 
below the bulk freezing pressure (prefreezing) in HS systems even in 
the absence of gravity,43, 44 suggesting that under reduced gravity the 
onset of ordering will always remain local to the surface.  Marechal 
and Dijkstra have found that at Pe=10, the base layer freezes without 
collective ordering of the second layer,13 and our results are 
consistent with that conclusion, showing no discontinuity in the 
second layer order parameter at the transition point for the base 
layer (Fig. 8c).  At Pe=8 and Pe=6 we see signs of simultaneous 
discontinuity in the order parameter of the first two layers, 
suggesting collective freezing, similar to that seen in simulations at 
Pe=2, 3, and 4 by Marechal and Dijkstra13 (who also detect 
simultaneous ordering in the third layer at Pe=1).  Particles in the 
second layer can populate either of two equivalently oriented 
lattices of trigonal holes formed by the base layer.  To distinguish 
between those lattices, we calculate the  order parameter using Ψ3

the x-y projection of vectors connecting second-layer particles with 
the nearest three base layer particles.  

                                     (14)Ψ3(𝑟𝑗) =
1
𝑁𝑗

∑𝑁𝑗

𝑘 = 1𝑒𝑖3𝜃𝑗𝑘

A colour map of the second layer for ordered Pe=6 systems at and 
above coexistence is shown in Fig. 9.  These snapshots show that the 
second layer has only short-ranged translational order, with domains 
that grow gradually with increasing above the transition.  Note 𝜂𝑡𝑜𝑡 
that these domains behave as stable equilibrium structures, with 
individual regions growing, shrinking, and changing shape over the 
course of each trajectory without apparent growth in average 
domain size.  

Finally we compare results with the experiments by Ramsteiner 
et al.23 Experimental images of sedimented silica microspheres 
(Pe=7) taken after 6 hours of equilibration show less order than the 
simulation model with Pe =6 at the same overall particle loadings.  

Figure 2 from ref. 23 shows grains of the order of 10s of particle 

diameters in dimension in the base layer at a loading of N/A=4.2    ―2

( =3.3).  Domains in the second layer are well correlated with 𝜂𝑡𝑜𝑡

those in the base layer, without evidence of the competition 
between dual lattices highlighted here in Fig. 9.  The third layer shows 

little hexagonal order until higher loadings of N/A = 4.9     and 5.3  ―2

.   In the present simulations at Pe=6, at =3.23 the base layer  ―2 𝜂𝑡𝑜𝑡

(Fig. 10c) and second layer (data not shown) are monocrystalline 
while the third layer shows both HCP-like and FCC-like packing 
patterns,45, 46 which are easily visualized in Fig. 10 by displaying only 
the first and third layers and noting where they coincide (ABA 
packing pattern characteristic of HCP) or are offset (ABC packing 
pattern characteristic of FCC).  The boundaries between the domains 
in the third layer sometimes take the form of a double row of 
particles arranged as a row of squares; this feature be seen both in 
Fig. 10 in the present study and in Fig. 2 from ref. 23 at a higher 

particle loading of N/A = 5.3 .  Discrepancies between simulation  ―2

and experiment could arise from kinetic trapping of defects, from 
polydispersity or anisotropy effects in the real particles, or from 
periodic boundary artifacts in the simulations.  Further simulation 
studies incorporating more realistic dynamics along with equilibrium 
properties in direct comparison with experiment will be needed to 
clarify the origins of these discrepancies.

4. Conclusions
Grand canonical Monte Carlo simulations of hard spheres confined 
by gravity on a flat hard surface have been carried out over a range 
of conditions to characterize how the 2-d ordering transition evolves 
when height fluctuations and overlayer effects are introduced. We 
have demonstrated that between Pe=18 and Pe=16, the transition 
shifts rapidly from a slightly perturbed 2-d ordering with a sparsely 
populated overlayer to a transition with a nearly 50% occupied 
second layer.  Effects from the overlayer are complex, in that it is 
both a source of pressure to the base layer, favouring ordered dense 

Fig. 10 Snapshot of spheres in base layer (blue) and third layer (red) in a system with Pe =6 at fugacity (a) ; (b) ; and (c) . The spheres 1 ×  1010 5 ×  1010 1 ×  1011

in second and fourth layer are omitted for clarification. The corresponding total area fraction  is 2.866, 3.113 and 3.232, respectively.𝜂𝑡𝑜𝑡
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packing structure, and a source of stabilization for defect sites in the 
base layer.  The latter effect is clearly evident from the tendency of 
overlayer particles to segregate towards grain boundaries in a 
bicrystalline model system.  As the second layer is even more fully 
formed at the transition for lower Pe, its influence reverts to more of 
a mean-field blanket from above, but then becomes again involved 
in simultaneous ordering with the base layer below Pe=10.  

In principle, the large shift in behaviour between Pe=18 and 
Pe=16 could be controllable in experimental systems through 
modest variations in solvent density or centrifugal strength.  On the 
other hand, polydispersity will mean that particles spanning a range 
of Péclet numbers are likely to be present; the difference in particle 
diameters between Pe=18 and Pe=16 is less than 3%.  This 
polydispersity could blunt the impact of these sharp changes, but 
may also introduce other phenomena of interest, and will be a topic 
of interest for future studies using well-established Monte Carlo 
methods.47, 48 
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