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Modeling gas transport in polymer-grafted nanoparti-
cle membranes†

J. Wesley Barnett and Sanat K. Kumar‡

We use coarse-grained Molecular Dynamics simulations to study gas diffusion within nanocom-
posites consisting of matrix-free polymer-grafted nanoparticles. We compare the transport of gas
penetrants in systems using polymer models with and without an angle potential and show that
gas diffusion enhancement occurs in nanocomposite systems only with the angle potential. This
enhancement is related to the free volume in the system, but the cage size experienced by the gas
penetrant seems to be a more relevant indicator of gas diffusion enhancement. The enhancement
seen in our simulations is smaller than that observed in experiments.

1 Introduction
Polymeric membranes are an economically-attractive way to sep-
arate gases in industrial processes and have been used for over
40 years in commercial settings.1–3 Such membranes are used
in the separation of oxygen from air, hydrogen recovery, and the
removal of CO2 from CO2/natural gas mixtures. Polymer mem-
branes are also an option for carbon capture.4–7

Gas transport across polymeric membranes that obey the
solution-diffusion model8 is described using the following rela-
tionship:

J =
P∆p
`

(1)

In this equation J is the flux across the membrane, P is the per-
meability, ∆p is the pressure drop across the membrane, and `

is the membrane thickness. P is a material property specific to
each polymeric membrane. When two gases diffuse across the
membrane in a separation process, the ideal selectivity is defined
as:

αA/B =
PA

PB
(2)

In this equation PA is the permeability of gas A across the mem-
brane, and PB is the permeability of gas B. Thus, the performance
of a polymeric membrane in separating a binary mixture of gases
can be described using both its permeability and selectivity.

By plotting the permeability and selectivity of gas pairs for a
variety of polymers, it is observed that there is an upper limit—
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known as the “Robeson upper bound”.9,10 This upper bound in-
dicates an intrinsic trade-off between selectivity and permeability.
Polymers near the upper bound generally tend to be glassy, and
thus exhibit a sieving mechanism based on the ratio of the gas
particle sizes.11

Significant effort has been devoted to improving the perfor-
mance of gas separation membranes.12–18 One possible pathway
to enhancing permeabilities in polymer membranes is the use of
polymer nanocomposites, specifically combining polymers with
inorganic nanofillers (“mixed matrix membranes”). One advan-
tage to nanofillers is that the mechanical properties of the poly-
mer membrane can be enhanced by their addition.19 Additionally,
in some cases, nanofillers help to slow membrane aging.20

Historically, however, the addition of fillers in many cases sup-
presses gas permeability.21 Most often this permeability suppres-
sion is described using the Maxwell relationship,22,23 where φ

is the volume fraction of filler material, Pφ is the permeability
within the nanocomposite, and Pb is the permeability within the
neat polymer:

Pφ

Pb
=

(
1−φ

1+ φ

2

)
(3)

In this expression the ratio Pφ/Pb is always less than 1.
Gas permeability within polymer membranes has been shown

to be correlated with free volume25,26—an empirically defined
quantity thought to describe the unoccupied spaces between
polymer segments, reflecting the local motion of the chain seg-
ments27—and in contrast to above, in some instances it has been
shown that the addition of nanoparticles can enhance gas perme-
ability by increasing the free volume of the polymer phase.28,29

Maintaining particle dispersion is of key importance in achieving
gas permeability enhancements,30 and the use of polymer-grafted
nanoparticles can prevent aggregation, especially in a matrix-free
system.31 Recent experimental work has shown that poly(methyl
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Fig. 1 Relative gas permeabilities of gases in composite systems rela-
tive to that of neat poly(methyl acrylate) (PMA). Composite systems con-
sisted of spherical silica nanoparticles grafted with PMA. Neat PMA is
presented as the dashed line at Pφ/Pb = 1. Reprinted (adapted) with per-
mission from Reference 24. Copyright 2017 American Chemical Society.

acrylate) (PMA) grafted and poly(methyl methacrylate) (PMMA)
grafted silica nanoparticles in a matrix-free system can maintain
particle dispersion and enhance gas permeability relative to that
in the corresponding neat polymer systems. In some cases, gas
permeabilities in the composite material are 8-13 times that of
permeabilities in the corresponding neat melt, depending on the
grafted polymer length (Figure 1).24

Computer simulations allow for the investigation of polymer
nanocomposites and the factors that lead to gas permeability en-
hancement. The permeability of a gas in a polymer or polymer
nanocomposite membrane can be decomposed into the diffusivity
(D) and solubility (S) according to the following relationship:8,32

P = DS (4)

For materials near the glass-transition temperature variations in
the diffusivity dominates this equation and changes in the solubil-
ity can be neglected. The diffusion coefficient of gas particles can
be calculated in computer simulations through its relationship to
the mean-squared displacement (Equation 8).

Coarse-grained computer simulations have shown that it is nec-
essary to carefully select the gas penetrant size and the poly-
mer temperature—or, equivalently, density—in order to model
gas diffusion in separation membranes. That is, gas diffusion
is—empirically—an activated process, and coarse-grained simu-
lations must be set up with the appropriate parameters to capture
this. Zhang, et. al.33, systematically varied the gas particle size
and system temperature and showed that the diffusion coefficient
of gas penetrants falls into three possible regimes, related to the
size of the particle and temperature; only one of these regimes
models the activated diffusion process relevant to experimental
gas separation processes. They showed that transport of gas par-
ticles with diameter d smaller than a critical diameter dc is in a
kinetic regime where D ∼ Te−kd . For gas particles that are of the
same size or larger than the monomer segment size (σ), diffusion

is in a power law regime (D∼ T d−n/g(T )).
Gas transport is only in the activated regime (D∼ Te−Ea(d)/kBT )

for particles with dc < d < σ . Additionally they showed that the
monomer number density (ρ) needs to be larger than a minimum
density (ρc) for gas transport to be in the activated regime and
not the kinetic regime. For their “flexible” model ρc = 0.9 and dc =

0.25σ and for their rigid model (with an added angle potential)
ρc = 1.12 and dc = 0.4σ for gas particle transport to be in the
activated regime.

Zhang, et. al.’s work focused solely on transport in neat melts,
but coarse-grained simulations have also been used to investigate
gas transport in nanocomposites. Gansesan has demonstrated gas
diffusion enhancement in nanocomposites using coarse-grained
kinetic Monte Carlo simulations.34 Those simulations used the
bond-fluctuation model where dynamic asymmetry was enforced
by artificially slowing the chain motion relative to that of the gas
motion. He showed that gas diffusion can be enhanced to 8-10
times of that in a neat melt with the addition of bare particles
to free glassy chains. In that work, gas penetrants were mod-
eled to be the same size as the polymer segments, and thus gas
diffusion is in the power law regime. Additionally, the systems
were modeled in the canonical ensemble (constant N, V, and T)
and nanoparticles were made immobile. Ganesan showed that as
chain rigidity increased, gas penetrant diffusion in the nanocom-
posite became more enhanced relative to that in the neat, which
inspired us to investigate polymer models both with and without
rigid angle potentials.

In this work we use coarse-grained Molecular Dynamics simu-
lations to study the diffusion of gas penetrants within neat poly-
mer systems and nanocomposites consisting of polymer-grafted
nanoparticles. In contrast to Ganesan’s work, we model our sys-
tems in the isothermal-isobaric ensemble (constant N, P, and T)
and allow nanoparticles to move, with particle mobilities natu-
rally arising from the interactions between particles. We use the
same flexible and rigid models in Zhang, et. al.’s study33 and
vary the system pressure in order to meet the minimum densities
required for activated diffusion (see Methods). Additionally we
select dc < d < σ for our systems so that they are always in the
activated diffusion regime. Our model does show enhancement
in gas diffusion in nanocomposites of about 1.3 times that in the
neat melt, still well below experimental observations. We show
how D is related to the fractional free volume in the polymer
phase and propose an explanation on why our model does not
capture the magnitude and chain-length dependence of previous
experimental observations.

2 Methods
Molecular Dynamics simulations were performed using
LAMMPS.35 All simulations were performed in the isothermal-
isobaric ensemble.36–39 The Lennard-Jones 6-12 potential was
used to model interactions with ε set to 1.0 for nanoparticles,
polymer segments, and gas particles, and thus for all interactions.
The mass (m0) was set to 1.0 for polymer segments, 1.0 for gas
particles, and 125.0 for nanoparticles. (Our previous results
show that the mass of the gas particles do not qualitatively affect
the results obtained.) Polymer segment diameters were defined
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to be σ . Gas penetrant diameters were defined to be 0.5σ .
Nanoparticles were modeled using an expanded Lennard-Jones
potential:

Ei j = 4ε

[(
σi j

ri j−∆i j

)12
−
(

σi j

ri j−∆i j

)6
]

r < rc +∆i j (5)

∆i j was set to (5σi +σ j)/2.0− 1.0 so that nanoparticle diameter
was set to 5σ , where particle i is the nanoparticle with σi = σ

and particle j is a polymer segment, a gas particle, or another
nanoparticle. All interactions were shifted and cut off at rc =

1.12σi j such that only repulsions were included in interactions,
where σi j was defined according to the Lorentz rule, σi j = (σi +

σ j)/2.

Fig. 2 Snapshots of system simulated at P* = 20 for the rigid model. a
Snapshot of a single grafted nanoparticle with the surrounding nanopar-
ticles removed for clarity. Different colors represent individual grafted
chains. The area within the dashed black circle is semi-transparent in
order to see the particle. b System of nanoparticles cut by a plane. Dif-
ferent colors represent nanoparticles and their associated grafted chains.

The bonds connecting beads in chains were modeled using the
finite extensible elastic potential:

UFENE(r) =−0.5KR2
0 ln [1− (r/R0)

2] r < R0 (6)

K was set equal to 30ε/σ2 and R0 set to 1.5σ , where ε is the unit
of energy.40

Neat systems contained 250 polymers each with 40 segments.
Nanocomposite systems contained 32 nanoparticles, each with
30 chains grafted to them, also with 40 segments each. Chains
were grafted to fixed points on the nanoparticle. Each system
contained 100 gas penetrants—thus, we model the tracer limit.
Nanoparticles were arranged in a dilute FCC lattice (no overlaps)
before pressure was turned on immediately to the specified set-
ting below. Particles were allowed to move freely. We do not
know if the final NP structure is a consequence of the initial FCC
lattice on which they were arranged, and hence we do not know
the effect of this starting state on the results reported.

Two models were simulated for both the neat and composite
systems:

1. Model I (flexible). In this model no additional angle poten-

tial was used for the polymers.

2. Model II (rigid angles). This model is identical to Model
I with the exception that a harmonic angle potential was
added for polymers with the following functional form:

Uθ = Kθ (θ −θ0)
2 (7)

Kθ was set equal to 300ε rad−2 and θ0 to 109.5◦. These values
were picked to follow Zhang, et. al.’s model.33,41

It is well known that the Kremer-Grest bead spring model is
extremely coarse grained. Thus, there is no unequivocal means
of assigning what a bead really means. Extensive work shows that
the fully flexible model has a persistence length of 1.3 monomer
diameters. Thus, the monomer diameter is not the Kuhn length,
but something close. The addition of a bond bending potential
causes stiffness to go up; this has been discussed extensively in
our previous work and that of Grest. However, the chains do not
become liquid-crystalline since there are no torsional constraints.

Flexible systems were simulated at P* = 5, 10, 15, 20, 24, 28,
32, 36 (P∗= Pσ3/ε). Rigid systems were simulated at P* = 5, 10,
15, 20, 24, and 28. Each system was simulated with the reduced
temperature set to 1.0 (T∗= kBT/ε). A reduced timestep of ∆τ =
0.012 (τ = t

√
ε/m0/σ) was used for the flexible systems, and a

reduced timestep of ∆τ = 0.006 was used for the rigid systems.
After pressure was turned on for each system, bond swapping

was attempted every 5 steps for 1.2x105τ in order to speed up
equilibration.42 From there, each system was equilibrated ad-
ditionally between 1.2x105τ and 2.5x106τ until the volume of
the system equilibrated. Production runs were performed for
1.08x106τ.

We additionally performed a series of simulations of Model II
composite systems with a varying number of segments on each
grafted chain, simulating systems with 5 segments per chain up to
70 segments per chain, at 5-segment increments. These systems
were simulated at P* = 20. Bond swapping was not performed for
these systems, since for this model bond swapping only occurred
∼ 0.0001% of the time, compared to ∼ 1% for Model I.

Diffusion coefficients of gas penetrants were calculated using
the mean-squared displacement of the gas penetrants (Einstein
relationship), using the MSD values from the last 1.2x104τ of each
simulation, ensuring that the gas has reached the diffusion regime
(Figures S5 and S6):

D = 〈(r(t)− r(0))2〉/6t (8)

Given that we have performed only one long simulation in each
case, we first verify that a plot of 〈(r(t)−r(0))2〉

t assumes a time-
independent plateau. An error estimate then corresponds to the
uncertainty in this long-time plateau. We find typical estimates
to be less than 20% in all cases, which therefore represents a
conservative error bar for the diffusivity data.

The “partial” molar volume of adding a nanoparticle to a neat
system and then grafting it was calculated as follows:

∆V =
Vcomp−Vneat

Nnp
(9)

Vcomp is the volume of the composite system, Vneat is the volume of
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the neat system scaled to the same number of polymer segments
as the composite system, and Nnp is the number of nanoparticles
in the composite system.

The polymer phase segment number density (ρpoly) was de-
termined by first calculating the segment–segment radial density
function for the nanocomposite systems (Figures S1-S4). The
density at large distances is the bulk polymer density (ρbulk). This
bulk density includes volume occupied by the nanoparticles for
the nanocomposite system which needs to be removed since we
are only interested in the polymer phase density:

ρpoly = ρbulk
V

Vpoly
= ρbulk

V
V −Vnp

(10)

Here V is the average volume of the entire system, Vpoly is the
volume of the polymer phase, and Vnp is the total volume of all
nanoparticles in the system determined as:

Vnp = Nnp
4
3

π

((
5σ

2

)3
+

30
2

(
σ

2

)3
)

(11)

The first term is the hard core volume of a nanoparticle itself,
which we use since only repulsions are present in the simulation
and any error introduced into the volume would be minimal be-
cause only 32 particles are present. The second term comes from
the thirty points on each nanoparticle’s surface where polymer
chains are grafted which are approximately one-half the volume
of a polymer segment. The graft points are in this calculation
since they are not present in the neat melt.

The fractional free volume of the polymer phase was defined
as follows using the volume occupied by polymer chains (Vo,poly)
and the polymer phase volume (Vpoly):43

FFV = 1−
Vo,poly

Vpoly
= 1−

Vvdw,total −Vnp

V −Vnp
(12)

where Vvdw,total is the summation of the van der Waals volumes
of all particles in the system, Vnp is defined in Equation 11, and
V is the average volume of the entire system. Typically Vo,poly is
set equal to the summation of the van der Waals volume of all
polymer segments multiplied by some prefactor. Here we set the
prefactor to 1 and therefore Vo,poly equals the summation of the
van der Waals volume of all polymer segments.

3 Results and Discussion
3.1 Polymer segment mean-squared displacements

The mean-squared displacements (MSD) of polymer segments
(Figure 3) show that for the lowest reduced pressures studied the
neat systems transition from the ballistic regime to the diffusive
regime (MSD∼ τ). The neat flexible systems with P*≤ 15 and the
neat rigid system with P* = 5 are diffusive by 106τ. Since some
systems are not diffusive on the time scale of the simulations, we
cannot guarantee that the systems are fully equilibrated. This is
the case especially for P* ≥ 20 for flexible systems, and P* ≥ 10
for rigid systems.

The MSDs of the flexible systems show that the polymers be-
come glassier as P* increases with the sub-diffusive region (MSD
∼ τx;x < 1) extending to longer time scales for higher pressures.

101 102 103 104 105 106
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100

101

102

103

104
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~ 
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5
10
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24
28
32
36

101 102 103 104 105 10610 2
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M
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~ 

b
5
10
15
20
24
28

Fig. 3 Mean-squared displacements of polymer segments in neat sys-
tems (solid) and nanocomposite systems (dashed) for flexible (a) and
rigid (b) systems. Legend indicates reduced pressure (P*) of each sys-
tem.

However, there is still some slow relaxation occurring even at P*
= 36, with segment MSDs beginning to increase at the longest
time scales probed (τ ∼ 105− 106). For the rigid model we see
that systems with P* ≥ 15 have a segment MSD that remains
constant even at longer time scales (τ ∼ 105) and show little re-
laxation even at 105τ−106τ.

The non-Gaussian parameters (α(τ) = 3
5
〈∆r4〉
〈∆r2〉2 −1) of the poly-

mer segments indicate that the crossover from sub-diffusive to
diffusive motion is pushed to longer time scales as P* is increased
(Figure 4), indicated by the peak in α.44 The degree of non-
Gaussian motion, or sub-diffusive motion—indicated by the mag-
nitude of the peak—also increases as P* is increased. For P* ≥
15 for the rigid model (Figure 4b) the peak of α has not yet been
reached in the time scale of the simulations.

3.2 Diffusion coefficients
We calculated the diffusion coefficient of the gas particles by us-
ing their mean-squared displacements (Equation 8) in the diffu-
sive regime. As P* increases, D, as expected, decreases as well
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Fig. 4 Non-Gaussian parameter (α(τ) = 3
5
〈∆r4〉
〈∆r2〉2 − 1) of polymer seg-

ments for flexible systems (a) and rigid systems (b). Legends indicate
reduced pressure, P*.

(Figure 5a) in both the flexible (model I) and rigid (model II)
models. The diffusivity of the gas penetrants within the rigid an-
gle systems is also less than that of systems which use the flexible
model by several orders of magnitude. This is can be explained,
in part, to the slower segmental motion of the chains in the rigid
systems compared to the flexible systems (Figure 3).27

While gas diffusion in the rigid systems is suppressed relative
to that in the flexible systems, we are interested in how chain
rigidity affects D when going from neat to composite systems.
Systems without the added angle potential—the flexible model—
require P* ≥ 24 in order to meet the minimum density needed to
exhibit activated gas diffusion (filled points in Figure 5b).

For flexible systems which meet the minimum density required
for activated diffusion, D is suppressed when going from the neat
system to the composite system. In fact, D in the flexible compos-
ite systems is suppressed to about 40% of its value in the flexible
neat systems, which is inconsistent with the Maxwell model. For
all systems studied, the volume fraction of the nanoparticles is
around 5 to 6% and the Maxwell model predicts that the D in the
composite should be between 96 and 97% of that in the neat.
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Fig. 5 Diffusion coefficients for systems with chain length 40 at the
reduced pressures (P*) simulated (a) and diffusion coefficients of the
nanocomposite systems with chain length 40 relative to the neat sys-
tems as a function of P* (b), for both the flexible and rigid models. Filled
symbols indicate those systems which meet the minimum density for ac-
tivated diffusion. 33

In contrast, D is enhanced in the rigid angle systems when com-
paring the nanocomposite systems to the neat ones for P* ≥ 20.
Although P* = 15 meets the minimum density requirement for ac-
tivated diffusion for the rigid model, it does not exhibit the same
enhancement of diffusivity. We can conjecture, that even though
the gas diffusion is activated in this system, there is a compet-
ing effect of the presence of the nanoparticles which block the
gas penetrants. The diffusion suppression (Dcomp/Dneat = 0.92)
is consistent with the Maxwell prediction (0.97).

Although there is a slight diffusion enhancement for Model II
for P* ≥ 20, it is much smaller than in the experiments where dif-
fusion enhancements of 8-13 are observed (Figure 1). One possi-
ble explanation is the systems we simulated are on the “edges” of
the volcano, and we need to vary the chain length in order to get
to the volcano’s “peak”. The experimental gas permeability en-
hancement peak is seen when the brush height of the chains is on
the order of the radius of the nanoparticle. However, the brush
height for the N=40 systems is approximately 1.4 times that of
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the nanoparticle radius, which means we are already close to the
peak in the volcano plot.

Nevertheless, we varied the length of the graft chains at P*
= 20 in order to investigate the graft length-dependence of D.
When we vary the chain length for the grafted chains at P* = 20,
we observe the same values of gas diffusion enhancement as the
system with 40 segments per chain (Figure S8†). In other words,
diffusion in the nanocomposites is enhanced only to about 1.3
times of that in the neat melt, no matter the chain length. Thus,
our model does not capture the graft length-dependence of D seen
in previous experiments (Figure 1). It also does not capture the
magnitude of the experimental enhancement.

One possible explanation is that our model does not have
enough chemical detail in order to capture the non-monotonic
graft length-dependence of D. Recent work using broadband
dielectric spectroscopy of PMA-grafted silica nanoparticles has
shown that there is a small monotonic decrease in segmental re-
laxation time as the length of graft chains is increased.45 How-
ever, the secondary relaxations of the PMA grafts follow the
non-monotonic trend of the previously reported experimental en-
hancement in gas diffusion. These secondary relaxations are
fastest at the peak of the volcano plot in Figure 1, showing a clear
correlation between the two quantities.

Our model does not have side groups, and the secondary relax-
ations in the experiment are assigned to the rotations of the car-
boxymethyl groups in PMA. Thus, it may be necessary to model
side groups in order to accurately capture the gas diffusion en-
hancement of the experimental PMA-grafted nanoparticles. We
also note that the enhancement of D we observe in our simula-
tions is only for glassy systems, but PMA is rubbery at the condi-
tions of the experiment where gas diffusion was enhanced. Inter-
estingly, that same study showed that the density at the peak of
the volcano plot is also at a minimum, and we now turn our at-
tention to discuss the polymer phase densities in our simulations
to examine if this could explain the disagreement between our
simulations and the experiments in Figure 1.

3.3 Polymer phase segmental densities

Previous experimental work has shown that segmental density
plays an important role in gas diffusion and that lower segmental
densities may be correlated with higher gas diffusivities. Thus,
we investigate the polymer-phase density (ρ) of each system sim-
ulated. The density of the polymer segments in the polymer phase
of each system increases as P* increases (Figure 6a). This is ex-
pected and desired since we used increasing P* to simulate above
the minimum ρ in order to be in the correct parameter space that
results in activated gas diffusion. Even though ρ of each sys-
tem increases with increasing P*, the ρ of composites is lower
than that of their respective neat systems for both the flexible and
rigid models. In other words, the addition of nanoparticles and
the process of grafting the free chains to them decreases ρ in all
systems.

For the flexible systems the density in the composite polymer
phase is 1.5% to 2.0% lower than than the neat polymer-phase
density (Figure 6b). Although these systems do experience a

slight decrease in polymer phase segmental density when going
from neat to composite, it is presumably not enough to overcome
the effect of tortuosity and enhance diffusion in the composite.
As stated above, the diffusion coefficient actually decreases in the
composite flexible systems compared to the neat flexible systems,
even beyond what the Maxwell model predicts.
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Fig. 7 a The ratio of the size of the diameter of the gas particle, 0.5σ ,
to the magnitude of the segmental motion, as determined by the plateau
of the mean-squared displacement of the segments (〈u2〉, see Figure 3)
as a function of the gas particle’s diffusion coefficient. Thus, larger val-
ues on the x-axis indicate smaller cage sizes for the gas penetrants. The
plateau value is only available systems in the vicinity of the glass tran-
sition, which is systems with P* = 36 for the flexible model and P* ≥ 15
for the rigid model, which are shown from left to right in the figure. b
The relative diffusivity (Dcomp/Dneat ) plotted against the relative cage size
(
√
〈u2〉comp/

√
〈u2〉neat ). System P*, from left to right: flexible – 36; rigid –

15, 20 ,24, 28

The rigid systems’ polymer-phase density also decreases for the
activated diffusion simulations of the composite systems. At P* =
5, which does not exhibit activated diffusion for the rigid model,
there is little difference in the polymer-phase density when com-
pared to the flexible model. At P* = 10 the density is already
2.5% lower than that of the neat system. For systems with P* >
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10, the polymer-phase density for the rigid systems remains rel-
atively constant. All four of those systems are about 3.3% lower
in density in the composite systems compared to the neat sys-
tems. In comparison, experimental observations show a negligi-
ble decrease at the edges of the volcano plot in Figure 1 and show
about a 2% decrease at the peak of the volcano where diffusion
is enhanced the most.45 Thus, the lowering of the polymer phase
density in our simulations coincides with the enhancement of dif-
fusion of the gas penetrants, but it over-represents the decrease
in density when compared to experiments.

3.4 Fractional free volumes and partial molar volumes

The fractional free volumes (FFV) of the polymer phase—
calculated using Equation 12—show a similar trend. Higher re-
duced pressures give lower polymer-phase FFV’s (Figure 6c). The
FFV of flexible composite systems decreases relative to flexible
neat systems (Figure 6d). Conversely, rigid composite systems
show a relative increase in the FFV at higher reduced pressures,
with relative FFV’s slightly above 1.03 for P* > 10. In addition to
comparing FFV’s, we calculated the “partial” molar volume (PMV)
of adding a single nanoparticle to the neat system and grafting
chains to it (Equation 9). The volume of a single nanoparticle cal-
culated using Equation 11 is approximately 73σ3. For the flexible
systems the PMV is approximately between 80 and 83σ3 (Fig-
ure S7a†). Thus the change in volume (V ) of the system when
going from the flexible neat system to the flexible composite sys-
tem is largely dominated by the addition of the nanoparticles.

The rigid model, however, shows a much larger increase in the
system volume when going from neat to composite. For P* = 5,
the PMV is nearly the same as the flexible model, but at P* = 10
there is already a PMV of approximately 93σ3. The PMV of the
activated diffusion systems (P* ≥ 15) remains relatively constant
between 100 and 102σ3. Thus, going from the system of free
chains to a system of polymer-grafted nanoparticles results in the
change of V equal to 1.4 times that of a nanoparticle per grafted
nanoparticle (101σ3/73σ3 = 1.4) for systems using the rigid angle
model. In other words, the difference in volume of the composite
and neat systems includes both the volume of the nanoparticles as
well as additional “free” volume. Systems with more free volume
generally show an increase in diffusivity. P* = 15 for the rigid
model is the exception which we discuss below.

3.5 Cage sizes

The one outlier here in this discussion thus far is P* = 15 in the
rigid model. It meets the ρc requirement for activated gas diffu-
sion, and it has a polymer-phase density similar to systems with
P* ≥ 20 which all exhibit gas penetrant diffusion enhancement.
However, gas diffusion is not enhanced in this system and the
diffusion suppression is consistent with the Maxwell model.

One metric that possibly explains this outlier is the cage size
experienced by the gas penetrants.27,46 The square root of the
plateau of the mean-squared displacement of polymer segments
(
√
〈u2〉) is a method for calculating the cage size for a gas pen-

etrant. This plateau value is only available for systems that are
beyond the glass transition, which in this case are P* ≥ 15 for the

rigid model and only P* = 36 for the flexible model. Figure 7a
shows the diffusion coefficient of the gas penetrant as a function
of the gas particle’s size divided by

√
〈u2〉. Only two points are

available for the flexible model—one for the composite system at
P* = 36, and the other for the neat system at the same P*. No-
tably the composite system’s

√
〈u2〉 is slightly smaller than that of

the neat system.

All of the rigid model’s points seem to fall on a single curve, in-
dicating that as

√
〈u2〉 gets smaller, D of the gas increases. Specif-

ically, diffusion is enhanced in the nanocomposite systems when√
〈u2〉 is larger than its corresponding neat system. We note that√
〈u2〉 for P* = 15 for the rigid model—in the upper left of Fig-

ure 7a is approximately the same for the neat and composite sys-
tems.

This can be more clearly seen in Figure 7b where
the relative diffusivity (Dcomp/Dneat) and relative cage sizes
(
√
〈u2〉comp/

√
〈u2〉neat) are plotted. The cage size of the flexi-

ble composite system (
√
〈u2〉comp) at P* = 36 is smaller than the

cage size of the neat system (
√
〈u2〉neat) at the same P*. Then

looking at P* = 15 for the rigid model,
√
〈u2〉comp is only slightly

larger than
√
〈u2〉neat , and is not larger enough to overcome the

tortuosity effect of the nanoparticles. In contrast, systems with
P* ≥ 20 are all enhanced (upper right of Figure 7b) and have√
〈u2〉comp around 1% to 2% times larger than

√
〈u2〉neat . Meng

et. al.27 showed that the ratio of the size of the gas penetrant to
the cage size is linearly related to the diffusivity. In agreement
with that, we have shown that the size of the cage may be a more
relevant descriptor of the diffusion of the gas than the polymer
phase density, at least in the rigid model, since the polymer phase
density is the same for the system with P* = 15 (which shows dif-
fusion suppression) as those with P* ≥ 20 (which show diffusion
enhancement).

4 Conclusion

We have shown that the diffusion of gas penetrants is enhanced
in coarse-grained simulations of polymer-grafted nanoparticles
when compared to their neat analogues. This enhancement only
occurs in glassy systems using a rigid angle potential and at
a high enough density. Additionally we did not observe any
diffusivity dependence on the graft length. This conflicts with
previous experimental observations of both glassy and rubbery
polymer (PMA and PMMA) grafted nanoparticles. This discrep-
ancy is potentially due to side groups not being present in our
coarse-grained models. Although there is an inverse correla-
tion between the polymer-phase density and penetrant diffusiv-
ity in our simulations—in agreement with previously reported
experiments—the one quantity that most fully describes the dif-
fusion enhancement in our simulations is the size of the cage ex-
perienced by the gas penetrant.
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Fig. 6 a Segmental densities of the polymer in the polymer phase for each system at the P* simulated. b Segmental densities of the polymer in the
composite system in the polymer phrase, relative to that of the neat systems as a function of P*, for both the flexible and rigid models. Filled symbols
indicate those systems which meet the minimum density for activated diffusion. c Fractional free volume in the polymer phase for each system at the
P*’s simulated. d Fractional free volume of the polymer in the composite system in the polymer phrase, relative to that of the neat systems as a function
of P*, for both the flexible and rigid models. Filled symbols indicate those systems which meet the minimum density for activated diffusion.

1–9 | 9

Page 9 of 9 Soft Matter


