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Understanding the mechanical link between oriented
cell division and cerebellar morphogenesis

Emma Lejeune,ab∗ Berkin Dortdivanlioglu,a Ellen Kuhl,c and Christian Linderac

The cerebellum is a tightly folded structure located at the back of the head. Unlike the folds of
the cerebrum, the folds of the cerebellum are aligned such that the external surface appears to
be covered in parallel grooves. Experiments have shown that anchoring center initiation drives
cerebellar foliation. However, the mechanism guiding the location of these anchoring centers,
and subsequently cerebellar morphology, remains poorly understood. In particular, there is no
definitive mechanistic explanation for the preferential emergence of parallel folds instead of an
irregular folding pattern like in the cerebral cortex. Here we use mechanical modeling on the cel-
lular and tissue scales to show that the oriented granule cell division observed in the experimental
setting leads to the characteristic parallel folding pattern of the cerebellum. Specifically, we pro-
pose an agent-based model of cell clones, a strategy for propagating information from our in silico
cell clones to the tissue scale, and an analytical solution backed by numerical results to under-
stand how differential growth between the cerebellar layers drives geometric instability in three
dimensional space on the tissue scale. This proposed mechanical model provides further insight
into the process of anchoring center initiation and establishes a framework for future multiscale
mechanical analysis of developing organs.

1 Introduction
The cerebellum is a major feature of the vertebrate brain and is
important for functions such as coordination, cognition, and mus-
cular activity.1 The fully developed cerebellum exhibits a complex
three-dimensional structure where the folded cerebellar cortex
externally appears as finely spaced parallel grooves, shown in Fig.
1b.2 Understanding the development of these cerebellar folds, re-
ferred to as folia, is an active area of research. Initially, during de-
velopment, the surface of the cerebellum is smooth. The folia of
the cerebellum then arise hierarchically following a tightly coordi-
nated sequence of genetically regulated events.3–5 At the start of
foliation, structures termed anchoring centers form at the base of
each fissure. Once these anchoring centers are established, they
limit granule cell progenitor dispersion, which contributes to the
spatial heterogeneity of different folia.6 Although the importance
of these anchoring centers is known, the mechanism triggering
the location and timing of anchoring center initiation is not fully
understood.5 Recent work has suggested that anchoring center
initiation is driven by tissue-scale mechanical forces that arise
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due to differential growth.7,8 In our previous work, we proposed
growth-induced surface wrinkling as a plausible explanation for
anchoring center initiation.7 This idea follows from many other
examples of mechanical instability driving organ morphogene-
sis,9–12 including in the cerebrum.13–17 However, to the author’s
knowledge, there has been limited exploration of mechanically
driven morphogenesis in the cerebellum to date.7,8,18,19

In this work, we focus on a simple question: how does the
orientation of cell division influence anchoring center initiation?
From the experimental literature, we know that granular cells in
the external granular layer divide preferentially but not exclu-
sively in the anterior-posterior (A-P) direction at a much higher
rate than cells in the internal granular layer.6 What is unknown,
is how specifically this oriented cell division may lead to uniax-
ial folia, particularly in the context of geometric instability driven
by differential growth. Multi-scale mechanical modeling offers a
unique opportunity to explore this link. We approach this prob-
lem with two models. Our first model is an agent-based model
of granule cell progenitor clones where cell growth and division
algorithms are motivated by experimental results from the liter-
ature. We introduce a strategy for post-processing the cellular-
scale agent-based model results such that they feed into the sec-
ond tissue-scale model which treats the cerebellum as a contin-
uum. In our second model, we study the influence of physically
realistic anisotropic growth on surface wrinkling. This is done
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Fig. 1 a) Sagittal section of the brain with the cerebellum highlighted; b)
External view of the cerebellum in the coronal plane, note the anisotropy
in the foliated pattern; c) Illustration of the foliation mechanism: initially
anchoring centers form on an un-patterned surface which subsequently
develops potentially heterogeneous folds with anchoring centers at the
base.

through both incremental stability analysis20 and numerical mod-
eling with isogeometric analysis.21 By approaching this problem
with fully three-dimensional models, we are able to study how
the symmetry of the cerebellum emerges, rather than treating
this symmetry as inherent and only presenting a model in two-
dimensional space. The three-dimensional model also offers a
better platform for future comparison to the developing cerebrum
where different cellular scale behavior leads to different morphol-
ogy on the tissue scale.

The remainder of the paper is organized as follows. In Sec-
tion 2, we discuss our methods for computational modeling of
cell clones, connecting cell clone models to the tissue scale, and
predicting the onset of the wrinkling instability with anisotropic
film growth. In Section 3, we show representative simulation and
analytical results and discuss the implications for cerebellar mor-
phogenesis. Concluding remarks are given in Section 4.

2 Methods
An overview of the computational framework presented here is
illustrated in Fig. 2. In Section 2.1, we describe the features of
our agent-based cell model that are matched to experimental ob-
servations. Then, in Section 2.2, we describe our procedure for
post-processing the agent-based model to inform macroscale be-
havior. Finally, in Section 2.3, we describe our macroscale model
for understanding the buckled mode shape at the onset of geo-
metric instability.

2.1 Computational modeling of cell clones
Agent-based cell models are a class of computational models
where the actions and interactions of individual cells are pre-
scribed by algorithmic rules. With this structure, collective system
behavior is free to emerge.22 In this work, we use a mechanically
driven agent-based modeling framework where mechanical equi-
librium is maintained by satisfying the peridynamic equation of

motion.23 Further details of this broader framework are available
in Appendix 6.1 and our previous publication.24 In the remain-
der of this section, we will describe the algorithmic rules imple-
mented to capture experimental observations from the literature
related to cell growth and cell division in the external granule
layer of the developing cerebellum.

First, we consider the cell growth algorithm. In the developing
cerebellum, the results of experimental clonal analysis indic ate
that the cells are not growing in sync.6,25 In the computational
setting, synchrony is the default behavior. Therefore, we need to
prescribe cell growth such that cells will grow and divide asyn-
chronously. To do this, we begin each simulation with cells that
are non-uniform initial sizes. Each cell i will have an initial radial
growth value of gi randomly computed as

gmin = 0 gmax =
3
√

2−1.0 gi ∼U (gmin,gmax ) (1)

where gmax is the size at which cells will divide, and U is the
uniform distribution. The growth rate ri of each cell i is then
generated from a probability distribution as

ri ∼N (rmean,rstd) if ri < rmin → ri := rmin (2)

where N is the normal distribution. Radial growth is then ap-
plied to cell i as

gt+1
i = gt

i + ri . (3)

With this algorithm, ri remains constant for the entirety of one
cell cycle, and cells with higher values of ri grow at a faster rate.
The combination of different initial sizes and growth rates leads
to overall asynchronous population growth, which is consistent
with experimental observations. In future work, more specific
and biologically realistic algorithmic rules to describe cell growth
throughout the cell cycle can be implemented in this framework.

In Fig. 3, we show that our chosen algorithm results in asyn-
chronous growth for a population of 200 cells arising from a single
cell. We measure synchrony by adapting a technique available in
the literature that relies only on tracking the change in number of
cells ∆CN.26 We plot ∆CN between step k−1 and k defined as

∆CN = log2 CNk− log2 CNk−1 (4)

and the associated moving maximum over a window equivalent
to one cell cycle. If the cells were dividing perfectly in sync, the
moving maximum of ∆CN would remain equal to 1. From the
plot in Fig. 3, it is clear that the moving maximum decreases
sufficiently such that the growth algorithm is asynchronous.

Next, we consider the cell division algorithm. When cells di-
vide, they divide in a specified direction. In three-dimensional
space, this is represented as a unit vector x. We treat x as a ran-
dom variable drawn from an underlying probability distribution.
Hypothetically, this could be an empirical distribution that follows
directly from experimental data. However, there is presently in-
sufficient information available from experiments to meaningfully
do this. What is known from experiments is that the direction of
cell division in the developing cerebellum is not uniform, and that
the division plane (division angle is the normal vector of the di-
vision plane) is more likely to be perpendicular than parallel to
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Fig. 2 a) Individual instances of cell division angle and growth rate are drawn from probability distributions in a manner consistent with experimentally
observed behavior; b) cells are modeled in an agent-based setting and agent-based simulations are post-processed to convey information to the
macroscale; c) macroscale continuum modeling predicts the buckled mode shape at the onset of geometric instability.
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Fig. 3 Consistent with experimental results, we implement unsynchro-
nized cell population growth with rmean = 0.01, rstd = 0.005, and rmin =

0.001. We test the population level synchrony by examining the change
in cell number per step. 26 Here, we plot the moving maximum with a
window of one average cell cycle.

the anterior-posterior axis though it is not exclusively in a single
orientation. To capture this behavior in a highly simplified man-
ner, we choose a three-dimensional von Mises-Fisher probability
distribution written as

f (x; µ,κ) =
κ

4π sinhκ
exp(κµµµ

T x) (5)

where κ > 0 is the concentration parameter and µ is the mean
direction set as a unit vector µµµ = [1,0,0]T .27 With κ → 0, this ap-
proaches a spherical uniform distribution. The expression 1/

√
κ

is analogous to the standard deviation in a normal distribution.
In the numerical setting, we generate random vectors x with
the Ulrich-Wood algorithm.28,29 To visualize this distribution in a
manner similar to reported experimental observations,6 we plot

the distribution of the division plane for sagittal, coronal, and
transverse cuts with 100,000 simulated random variables in Fig.
4. From comparing Fig. 4 to the experimental results reported in
Legué et al. 6 , we find that a simulated distribution with a value
of κ ≈ 2− 4 is most relevant to the developing cerebellum. In
Section 3, we will show representative simulation results with
different values of κ.

2.2 Connecting the results of the cell clone model to the tis-
sue scale model

On the tissue scale, we treat the cerebellum as a continuum. In
our continuum model, we implement tissue growth simply as a
growth-induced deformation gradient F. To do this, we adapt
our recently proposed technique of computing an approximate
deformation gradient F from the results of a discrete agent-based
model.30 The basic set up for this approach is illustrated in Fig.
2b. We compute F from our agent-based model by tracking the
change in position of cells from the start to end of the simula-
tion. Essentially, we treat all cells that are present at the start
of the simulation as fiducial markers. When the fiducial marker
cells divide, fiducial marker status is passed to one of the result-
ing daughter cells at random. This is shown in Fig. 2b where
the darker cells represent the fiducial marker cells. We analyze
the change in position of these cells in a post-processing step as
follows.

For each fiducial marker j in j = {1 . . .m}, consider all marker
pairs j−k that connect marker j to markers k in k = {1 . . .m} , k 6=
j. With these n = m(m− 1)/2 pairs, we consider pair-connecting
stretch vectors λλλ 0 at the start of the simulation and λλλ t at each
subsequent simulation step t. Then, we define an array of initial
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Fig. 4 Consistent with experimental results, we implement a non-uniform division direction distribution. For a three-dimensional von Mises-Fischer
distribution with µ = [1,0,0]2 and κ = 2.0, we examine the distribution of observed division planes projected onto two-dimensional cuts in the sagittal,
coronal, and transverse directions. In the lower row, “horizontal” refers to division planes with angles 0◦− 30◦, “oblique” refers to division planes with
angles 30◦−60◦, and “vertical” refers to division planes with angles 60◦−90◦ in the two-dimensional axis of the cut. The solid red line in the upper plots
is proportional to the empirical probability density of the simulated distribution. The information is presented this way such that it is possible to roughly
compare the chosen simulation distribution to experimentally observed behavior. 6

stretch vectors ΛΛΛ0 and an array of current stretch vectors ΛΛΛt as

ΛΛΛ0 = [λλλ 1
0 λλλ

2
0 . . .λλλ

n
0] ΛΛΛt = [λλλ 1

t λλλ
2
t . . .λλλ

n
t ] (6)

where both arrays have dimension 3 × n. Then, we introduce
the approximate growth-induced deformation gradient at step t
Ft with dimension 3×3 to relate these two matrices as

FtΛΛΛ0 = ΛΛΛt . (7)

This results in an over-determined system of equations where we
can solve for the best-fit for Ft as

Ft = ΛΛΛtΛΛΛ
T
0 (ΛΛΛ0ΛΛΛ

T
0 )
−1 . (8)

Notably, this simple post-processing procedure relies only on the
ability to track the change in position of cell centers. This means
that it can be readily applied to other agent-based models. Future
advances in experimental techniques and cell tracking methodol-
ogy may eventually allow this procedure to be applied directly to
experimental data.31

2.3 Tissue scale modeling of the wrinkling instability

On the tissue scale, we treat the developing cerebellum as a con-
tinuous block of material. The goal is to understand the onset of
geometric instability driven by the compression that arises due to
differential growth between the internal and external layers. This
is similar to our previous work, where we modeled the cerebellum
as a two-dimensional tri-layer system where the top layer repre-

sented the external granular layer, the intermediate layer repre-
sented the Purkinje cell layer, and the bottom layer represented
the internal granule cell layer.7 In our previous work, we showed
that wrinkling will occur with the external granular layer acting
as a film and the combined soft Purkinje layer and internal gran-
ular layer acting as a substrate. In this paper we are interested
in understanding buckling behavior in the full three-dimensional
case, without making the limiting assumption that the buckling
mode must be uniaxial. To do this, we model the cerebellum as a
three-dimensional bi-layer where the film represents the rapidly
growing external granular layer and the substrate approximates
the combined internal layers, with a combined stiffness lower
than the stiffness of the film, illustrated in Fig. 2. Then, we
study this system analytically via an incremental stability analysis
and numerically by tracking the stability of isogeometric analysis
(IGA) simulations. In this work, we are concerned with the onset
of the instability and the initial buckling pattern, and we do not
delve into post-buckling behavior. In this regime, we can study
the onset of the instability with an elastic material model while
the assumption of elastic material behavior is likely violated in
the post-buckling regime.8,18

First, we define the deformation gradient F = ∇Xϕ where ϕ

maps points from the undeformed configuration X to the de-
formed configuration x. In the analytical setting, F is homoge-
neously applied to the whole bi-layer domain through essential
boundary conditions. In the numerical setting, we multiplica-
tively decompose the deformation gradient as F = FeFg where
Fe is the elastic component and Fg is the growth component, and
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Fig. 5 Illustration of growing cell populations with non-synchronous growth and von Mises-Fisher division angle distributions. After the second round
of cell division (4 daughter cells) all future daughter cell generations are plotted with the same color. As κ increases, population growth becomes more
uni-directional anisotropic. This figure illustrates in silico clonal analysis.

apply Fg either homogeneously to both film and substrate (analo-
gous to the compression at the boundaries case) or exclusively to
the film. In our incremental stability analysis, we study the system
where both the film and substrate experiences in-plane compres-
sion such that homogeneous elastic deformation of the system is
simply defined as F. Because this is not entirely identical to the
case of differential growth,32 we compare the incremental sta-
bility analysis to numerical results that reflect both the case of
homogeneous compression and the case of differential growth in
Section 3.2. Based on the agent-based simulations that will be
discussed in more detail in Section 3.1, we focus on transversely
isotropic compression.

To begin the incremental stability analysis, we consider a per-
turbation u defined as an incremental deformation superimposed
on a finite deformation x.20 The finite deformation x is defined
such that it already satisfies the equilibrium equations. The de-

formation gradient including u is written as

F̄ =
∂ (x+u)

∂X
= F+

∂u
∂X

→ δF =
∂u
∂X

. (9)

We then obtain a first order approximation of the incremental free
energy using a power series expansion around δF as

ψ̄(F̄) = ψ(F)+
∂ψ

∂F
: δF+O(δ 2) (10)

where ψ is the free energy function for an incompressible Neo-
Hookean material defined as

ψ(F) =W (F)− pG(J) (11)

with W (F) as the elastic contribution, J = detF, and p as the
Lagrange multiplier included to enforce incompressibility. Ne-
glecting the higher order terms in eqn. (10) and accounting for
p→ p+δ p in eqn. (11), the constitutive relation is derived from
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Fig. 6 Plots of the components of approximate deformation gradient Fxx, Fyy, and Fzz with respect to approximate volume change detF for varying
κ. Each simulation begins with a 3× 3× 3 block of cells and ends once the number of cells has doubled. Each curve represents the average of 300
simulations and off-diagonal terms are not plotted because they average to 0.

the free energy ψ̄(F̄) as

P̄ =
∂ψ̄

∂F
(12)

where P̄ is the first order approximation of the first Piola-
Kirchhoff stress tensor for the perturbed deformation. The total
first Piola-Kirchhoff stress is then defined as P̄ = P+δP, and com-
puting the increment δP results in the equation

δP =
∂ 2W
∂F2 : δF−δ pF−T + pF−T

δFT F−T (13)

where the incompressibility of the material (typical for modeling
soft biological tissue) results in the constraint

δJ = tr(F−T
δF) = 0 . (14)

By definition, DivP = 0 is automatically satisfied by the solution
x. Therefore, the governing equilibrium equation can be concisely
written as

DivδP = 0 . (15)

Given this set up, we assume a general form of the solution in the
film for u and p as

u1 = AerX3 sin(k X1)cos(ρ X2)

u2 = BerX3 cos(k X1)sin(ρ X2)

u3 =CerX3 cos(k X1)cos(ρ X2)

p = µDerX3 cos(k X1)cos(ρ X2) .

(16)

The exponential dependence in the X3 direction allows the sinu-
soidal perturbation to decay in the substrate as X3 →−∞. Then,
we use eqn. (15), eqn. (14), and the appropriate boundary con-
ditions to solve numerically for strain and mode shape at the on-
set of the instability for a given film-substrate stiffness ratio, film
thickness h, and a desired form of F. Further details of this pro-
cedure are given in Appendix 6.2. Representative results of this
analysis are presented in Section 3.2. As noted previously, the
compression case is not perfectly equivalent to the differential
growth case. To address this, we also conduct numerical simu-
lations using isogeometric analysis where the instability is driven
by inhomogeneous differential growth33 and compare the results
of these simulations to our analytical solution.

3 Results and discussion
There are two main results from implementing our models. First,
in a manner consistent with predictions from experimental ob-
servations,6 we are able to demonstrate that oriented cell divi-
sion leads to anisotropic population growth. These results are
presented in Section 3.1. Second, we are able to show that the
anisotropic growth that arises from oriented cell division leads to
a uniaxial mode of geometric instability consistent with cerebellar
morphology. These results are presented in Section 3.2.

3.1 Oriented cell division leads to three-dimensional
anisotropic population growth

In Section 2.1, we introduced our agent-based model with asyn-
chronous growth and oriented cell division. In Fig. 5, we show
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the qualitative results of simulations where a population of cells
arises from a single initial cell. In this figure, we plot all of the
daughter cells that arise from the first four cells with the same
color to maintain an analogy to experimental clonal analysis.
From these qualitative results, it is already clear that as the under-
lying probability distribution of cell division angle becomes more
oriented, modeled by increasing κ, population growth becomes
more uni-directional anisotropic.

Next, we quantitatively investigate our agent-based model with
the method described in Section 2.2. To do this, we begin with a
3×3×3 block of 27 cells, and then grow and divide the cells ac-
cording to the prescribed rules until the cell population has dou-
bled. By tracking the change in position of these cells, we are
able to compute an approximate deformation gradient F at every
step of the simulation. For an individual simulation, the discrete
nature of cell division and the non-uniform growth rates will lead
to changes in F that are generally neither smooth nor monotonic.
However, when we consider average behavior across several sim-
ulations, we can clearly observe smooth and monotonic changes
in F as the cell population grows. This averaged behavior is most
physically relevant to propagating information from the cellular
scale to the tissue scale.

In Fig. 6, we show quantitatively how population growth is
influenced by oriented cell division. In the plot where κ = 0.0, we
see that Fxx = Fyy = Fzz. Therefore, population growth is isotropic
and F can be represented as

F = I+η e1⊗ e1 +η e2⊗ e2 +η e3⊗ e3 (17)

where η is a constant. When κ is high, for example the plot where
κ = 16.0, population growth approaches transverse isotropy and

Fig. 8 This plot shows the values of pairs of compressive strain (εxx,εyy)

at the onset of the instability from both the linear stability analysis (red line
labeled l.s.a) and representative numerical results. For the numerical re-
sults, “case 1” refers to film growth only with growth in the e3 direction,
“case 2” refers to film growth only with no growth in the e3 direction, “case
3” refers to film and substrate growth with growth in the e3 direction, and
“case 4” refers to film and substrate growth with no growth in the e3 di-
rection. The numerical results are obtained via eigenvalue analysis in
isogeometric analysis simulations. 33,34 The dashed lines highlight the
symmetry in both the analytical and numerical solutions. The qualita-
tively representative results pictured are for stiffness ratio E f /Es = 10 and
εyy > εxx, εxx = εyy, and εxx > εyy clockwise. In our model of the cerebellum,
the uniaxial mode will arise for all scenarios where εxx > εyy.

F can be represented as

F = I+η e1⊗ e1 (18)

where I is the identity tensor, η is a constant, and e1 is a basis
vector. However, the behavior that most closely resembles that of
the developing cerebellum is observed in an intermediate range
of κ values. In Fig. 6, κ = 1.0, κ = 2.0, κ = 4.0, and κ = 6.0
are representative intermediate values. For these cases, popula-
tion growth is neither fully isotropic nor transversely isotropic.
Instead, F is best represented as

F = I+aη e1⊗ e1 +bη e2⊗ e2 +bη e3⊗ e3 (19)

where a and b are constants with a > b.
In Fig. 7, we plot Fxx, Fyy, and Fzz and the bi-layer system

compressive strain equivalent ratio εxx/εyy with respect to 1/
√

κ

at the end of multiple simulations. In this plot, we can clearly see
the transition between transversely isotropic (1/

√
κ is small) and

isotropic (1/
√

κ is large) growth. Since we are most interested in
κ within the range κ ≈ 2−4, we are clearly most interested in the
corresponding intermediate ranges of εxx/εyy. The results in this
section lead us to consider how the physically relevant form of F
represented in eqn. (19) will manifest itself on the macroscale.
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Fig. 9 a) The cell division angle is draw from a probability distribution chosen to appear similar to the experimental results in Legué et al. 6 ; b) Illustrated
results of a single simulation with the division angle drawn from the distribution shown in (a); c) A plot of the components of F generated with the same
method as the results shown in Fig. 6; d) The results of a tissue scale isogeometric analysis simulation where the growth induced deformation gradient
shown in (c) is applied to the outer layer of a cylindrically curved domain.

3.2 Oriented cell division with asynchronous cell growth
leads to a uniaxial buckling mode

From Section 3.1, we generate a transversely isotropic tensor F
driven by oriented cell division. Now, we are prepared to in-
vestigate the buckled shape of the system at the onset of the in-
stability for physically relevant ratios of equivalent compressive
strain εxx/εyy. In Section 2.3, we described our methodology for
computing the buckled shape at the onset of the instability for
a three-dimensional bilayer system with anisotropic growth. In
Fig. 8, we show the results of the analysis. When compression
is equi-biaxial, the buckled shape has a characteristic checker-
board pattern. Otherwise, the uniaxially buckled shape is the first
to emerge. This is consistent with results reported in the litera-
ture.35–37 In the context of cerebellar morphogenesis, this result
is striking because it shows that even for “intermediate” ratios of
εxx/εyy, equivalent to the growth described in eqn. (19), the buck-
led shape at the onset of the instability is uniaxial. Specifically, a
uniaxial mode with wrinkles perpendicular to the dominant di-
rection of colony expansion will arise. Furthermore, the tissue-
scale analysis shows that if all the cells grew perfectly in sync,
the uniaxial mode may not develop because the buckling insta-
bility could be triggered by the entire cell population doubling in
size before a cell division event would have the opportunity to
produce population scale anisotropy. Our multi-scale model di-
rectly ties the observed pattern of oriented cell division with pre-
dominant division plane perpendicular to the anterior-posterior
direction6 to the characteristic oriented parallel grooves of the
cerebellum.

In Fig. 9, we show the results of using our computational
framework to more specifically simulate the developing cerebel-
lum. First, we randomly generate cell division plane orientations
to match the experimental observations detailed in Legué et al. 6 .
Then, we run multiple agent-based simulations and compute the
growth induced deformation gradient F. Finally, we implement

the growth induced deformation F in a tissue scale isogeomet-
ric analysis model of a cylindrically curved domain. In Fig. 9d,
we simulate a small amount of post-buckling deformation, essen-
tially the initiation of cerebellar folds. These results strengthen
the connection between experimentally observed oriented cell di-
vision and cerebellar morphogenesis.

4 Conclusion

The main objective of this work was to explore the connection
between oriented cell division and and cerebellar morphology. To
do this, we began in Section 2.1 with an agent-based cell model
where the algorithms for cell growth and division are selected
to capture experimentally observed behavior. Then, in Section
2.2, we introduced a strategy for propagating the results of our
agent-based model to a macroscale continuum model. Finally,
in Section 2.3, we introduced our solution method for analyzing
the buckled shape of the cerebellar cortex given the anisotropic
film growth driven by oriented cell division. From this analy-
sis, we found that physically realistic oriented cell division leads
to a macroscale uniaxial first instability mode that is consistent
with the morphology of the cerebellum. Notably, this is true even
though physically realistic oriented cell division does not lead to
entirely uni-directional anisotropic growth.

The ideas presented here are a starting point for future com-
putational investigation. In particular, here we only consider in-
stability initiation in our tissue-scale investigation. Further ex-
ploration of substantial post-buckling behavior is a challenging
and compelling problem. Notably, once the initial instability is
established, anchoring centers form at the base of each fissure
and significant coordinated change on the cellular scale occurs.5

Therefore, additional non-linear mechanisms must be included in
the computational model to properly capture the full formation
and post-buckling evolution of cerebellar folds. Though elastic
instability likely explains the initiation of folds, elastic deforma-
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tion alone likely cannot explain the full process of cerebellar mor-
phogenesis. Future work will build on this initial computational
framework to move significantly beyond instability initiation.

In future work, the agent-based model could be adapted to cap-
ture a more physiological cell behavior through calibration with
further experimental data and through the incorporation of addi-
tional physical phenomena such as cell migration and the occur-
rence of multiple cell shapes and types with extracellular fibers.
On the continuum scale, further multiphysics38–40 computational
analysis with a tri-layer exact geometry with material anisotropy
would also enhance our conclusions and our understanding of the
mechanics driving cerebellar morphogenesis. Beyond the physi-
ological case, this multi-scale modeling framework could be used
to understand how genetically driven changes that are known to
influence cell growth and cell division subsequently alter cere-
bellar morphogenesis in the pathological case. Ultimately, ad-
vanced future work can take advantage of the freedom provided
by the computational setting to implement coupled simulations
across multiple scales and explore the post-buckling behavior of
the developing cerebellum on the macroscopic scale as an emer-
gent property of cellular division on the microscopic scale.

5 Acknowledgments
Financial support for this research was provided by the National
Science Foundation Graduate Research Fellowship under Grant
No. DGE-114747 and the the National Science Foundation CA-
REER Award CMMI-1553638. This support is gratefully acknowl-
edged.

6 Appendix
The purpose of the appendix is to provide further detail to the
models introduced in Section 2. Further information relevant to
Section 2.1 is provided in Section 6.1, and further information
relevant to Section 2.3 is provided in Section 6.2.

6.1 Agent-based cell model

Here we elaborate on the agent-based model introduced in Sec-
tion 2.1. We briefly provide the set of equations necessary to
implement our model. The mechanical components of the agent-
based model are based on peridynamics, a theoretical and com-
putational framework that is implemented numerically as a mesh-
free method where each node represents an individual cell.41,42

Further information is also available in our prior work and in the
broader peridynamics literature.24,43–46

To begin, we introduce the concept of baseline cell interaction
distance δ ∗ defined as

δ
∗
j = 2(1+gj)δ0 r0 . (20)

where g is radial growth, r0 is initial radius, and δ0 is a constant
chosen such that cells only interact with their immediate neigh-
bors. Then, we define the horizon of node j, Hj, as

Hj = {k | ||yj−yk||< δ
∗
j } . (21)

where yj is the position of node j in the current configuration. We

also introduce the concept of dual horizon H ′ as

H ′
j = {k | j ∈Hk} . (22)

The discrete form of the equation of motion at static equilibrium
is then written as

0 = ∑
k∈H ′

j

fjk(yj,yk)∆Vk − ∑
k∈Hj

fkj(yj,yk)∆Vk (23)

where ∆V is the growth adjusted nodal volume defined as

∆Vj = (1+gj)
n
∆V 0

j (24)

and f is the force density. The remainder of the equations in this
appendix are introduced in order to define force density, analo-
gous to defining a constitutive law. We define the stretch free
separation distance between nodes as

||ξjk||= (1+gj)rj +(1+gk)rk (25)

where r is cell radius and g is radial growth. Then, we define the
stretch between nodes j and k as

sjk =
||yk−yj||− ||ξjk||

||ξjk||
(26)

which is used to define bond damage γjk as

γjk =

{
1 if s < smax

0 otherwise
(27)

where smax is the maximum allowable stretch. This enters the
influence function ω as

ωjk = γjk . (28)

We then define horizon weighted volume m as

mj = ∑
k∈Hj

ωjk ||ξjk||2 ∆Vk . (29)

We define bond elongation e as

ejk = ||yk−yj||− ||ξjk|| (30)

dilation θ as
θj =

n
mj

∑
k∈Hj

ωjk ||ξjk||ejk ∆Vk (31)

and deviatoric bond elongation ed as

ed
jk = ejk−

θj ||ξjk||
n

(32)

where n = 3 is the dimension. Then, we define the magnitude of
force density that arises at node k due to node j as

tkj =
nκ θj

mj
ωjk ||ξjk|| +

n(n+2)µ

mj
ωjk ed

jk (33)

where κ and µ are the Lamé parameters. Finally, force density is
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computed as

fjk(yj,yk) = tjk ·
yk−yj

||yk−yj||

fkj(yj,yk) = tkj ·
−(yk−yj)

||yk−yj||
.

(34)

In Table 1 we list the parameters chosen for the simulations pre-
sented in Section 3.1 of this paper. After every step of algorithmi-
cally applied cell behavior (i.e. cell growth or cell division), the
entire system is relaxed back to mechanical equilibrium defined
by eqn. (23) using an adaptive dynamic relaxation procedure.47

parameter value source
E 1 kPa plausible value
ν 0.45 nearly incompressible material
r0 10 µm approximate cell size
δ0 1.05 horizon size parameter
sßmax 1.15 fixed value consistent with previous

work24

Table 1 Parameters used to implement the cellular scale simulations.

6.2 Incremental stability analysis of a three-dimensional
Neo-Hookean bilayer under anisotropic compression

The equations governing the instability problem for the bilayer
are derived from the exact solutions to the incremental equations
of equilibrium in the neighborhood of a finite solution. As intro-
duced in eqn. (11), the contributions to free energy function of a
neo-Hookean material are simply defined as

W (F) =
µ

2
(F : F−3) and G = J−1. (35)

Here we consider the uniform stretches λ , η , and γ in the X1,
X2, and X3 directions, respectively. The deformation gradient F is
defined as

F = λ e1⊗ e1 +η e2⊗ e2 + γ e3⊗ e3 (36)

and the first Piola-Kirchhoff stress P is computed as P = µF−
pF−T in the homogeneously deformed state prior to the onset of
the instability. The incremental first Piola-Kirchhoff stress δP is
defined in eqn. (13) as δP = ∂ 2W

∂F2 : δF− δ pF−T + pF−T δFT F−T .
The equilibrium equation DivδP = 0 is written in terms of F de-
fined in eqn. (36) as

p+λ 2µ

λ 2 u1,11−
δ p,1

λ
+µ u1,22 + p

u2,12

λη
+µ u1,33 + p

u3,13

λγ
= 0

µ u2,11 + p
u1,21

λη
+

p+η2µ

η2 u2,22−
δ p,2

η
+µ u2,33 + p

u3,23

ηγ
= 0

µ u3,11 + p
u1,31

λγ
+µ u3,22 + p

u2,32

ηγ
+

p+ γ2µ

γ2 u3,33−
δ p,3

γ
= 0

(37)
and the incompressibility constraint is written as

u1,1

λ
+

u2,2

η
+

u3,3

γ
= 0 . (38)

The Lagrange multiplier p is determined by the traction-free sur-
face condition P33 = 0, specifically P33 = µγ − pγ−1 = 0, which
leads to p = µγ2. The form of the infinitesimal perturbations in
the film u and δ p are then given as

u1
f = (A1

fer1X3 +A2
fer2X3 +A3

fer3X3 +A4
fer4X3)sin(k X1)cos(ρ X2)

u2
f = (B1

fer1X3 +B2
fer2X3 +B3

fer3X3 +B4
fer4X3)cos(k X1)sin(ρ X2)

u3
f = (C1

fer1X3 +C2
fer2X3 +C3

fer3X3 +C4
fer4X3)cos(k X1)cos(ρ X2)

δ pf = µ f (D1
fer1X3 +D2

fer2X3 +D3
fer3X3 +D4

fer4X3)

cos(k X1)cos(ρ X2) .
(39)

Then, we insert the perturbations given in eqn. (39) into the equi-
librium equation eqn. (37) and the incompressibility constraint in
eqn. (38), and solve for the non trivial solutions of r. The non
trivial solutions of r are

r1 =

√
γ2(

k2

λ 2 +
ρ2

η2 ) r2 =
√

k2 +ρ2

r3 =−r2 r4 =−r1 .

(40)

Substituting eqn. (39) including all solutions of r into the in-
cremental equilibrium equation, eqn. (37), we are left with the
unknown coefficients A2

f, A3
f, B2

f, B3
f, D1

f, and D4
f. For the film

(0≤ X3 ≤ h) with the shear modulus µ f , we enforce δP = 0 at the
surface X3 = h due to the traction free boundary condition as

M̃

A2
f

B2
f

D1
f

= Ñ

A3
f

B3
f

D4
f

 (41)

where

M =


r2 +

γ2k2

r2λ 2
γ2ρk
r2λη

− 2 r1k
α1λ

kργ2

r2λη
r2 +

ρ2γ2

r2η2 − 2ρr1
α1η

− 2kγ

λ
− 2ργ

η

2r2
1

α1γ
− 1

γ

 (42)

N =


r3 +

γ2k2

r3λ 2
γ2ρk
r3λη

− 2 r4k
α4λ

kργ2

r3λη
r3 +

ρ2γ2

r3η2 − 2ρr4
α4η

− 2kγ

λ
− 2ργ

η

2r2
4

α4γ
− 1

γ


M̃ = ME1 with E1 = diag(er2h,er2h,er1h)

Ñ = NE2 with E2 = diag(er3h,er3h,er4h)

α1 = r2
1−ρ2−k2 and α4 = r2

4−ρ2−k2. Next, we compute u1
f, u2

f,
and u3

f at the film-substrate interface X3 = 0+. Using eqn. (41),
we write it in terms of [A2

f, B2
f, D1

f]T asu1
f

u2
f

u3
f

= TTT (KKK +LLLS)

A2
f

B2
f

D1
f

 (43)
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where

KKK =

 1 0 −k
α1λ

0 1 −ρ

α1 η
−γk
r2λ

−γρ

r2η

r1
α1γ



LLL =

 1 0 −k
α4λ

0 1 −ρ

α4 η
−γk
r3λ

−γρ

r3η

r4
α4γ



T =

 sin(k X1)cos(ρ X2) 0 0
0 cos(k X1)sin(ρ X2) 0
0 0 cos(k X1)cos(ρ X2)


S = Ñ−1M̃ .

(44)
Using eqn. (41) and eqn. (43), we relate the incremental first
Piola-Kirchhoff stress at the film-substrate interface X3 = 0 to the
perturbations as δP13

f

δP23
f

δP33
f

= µ f TGGGT−1

u1
f

u2
f

u3
f

 (45)

where GGG = (M+NS)(K+LS)−1. Turning now to the substrate
with shear modulus µs, we take advantage of the assumption that
the substrate is an infinite half-space. The general solution in
eqn. (39) will apply to the substrate with r3 = 0 and r4 = 0 since
the perturbations are required to vanish as X3 →−∞. Similar to
eqn. (45), the incremental first Piola-Kirchhoff stress at the film-
substrate interface X3 = 0− is written asδP13

s

δP23
s

δP33
s

= µsTMMMK−1T−1

u1
s

u2
s

u3
s

 . (46)

Finally, we enforce the condition that the traction and the per-
turbations must be consistent across the film-substrate interface
X3 = 0+ and X3 = 0−, i.e. the relationshipu1

s

u2
s

u3
s

=

u1
f

u2
f

u3
f

 (47)

must hold which allows us to subsequently equate eqn. (45) and
eqn. (46) as

(
MMMK−1− µ f

µs
GGG
)u1

f

u2
f

u3
f

= Q

u1
f

u2
f

u3
f

= 0 . (48)

The eigenvalue problem to detect the onset of the instability and
the associated buckled mode is then defined as det(Q) = 0. The
first eigenmode is calculated by minimizing the critical strain
εxx = 1−λ over all possible values of k and ρ that satisfy det(Q) =

0, given the applied directional stretch η defined in eqn. (36).
In Fig. (8), we observe that the critical strain is associated with
uniaxial sinusoidal wrinkling in the dominant direction of applied

compression, i.e. k/ρ → ∞. It is only when λ = η that the equi-
biaxial instability mode arises.
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Three-dimensional multiscale modeling shows that oriented cell division leads to a 
mechanical instability that can initiate cerebellar foliation. 
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