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Charge polarization near dielectric interfaces and the
multiple-scattering formalism

Jian Qina

Interfacial charge polarization is ubiquitous in systems with sharp dielectric contrast. Fully resolv-
ing the interfacial charges often relies on demanding numerical algorithms to solve the boundary
value problem. The recent development of an analytical multiple-scattering formalism to solve
the interfacial charge polarization problem for particles carrying monopolar, dipolar, and multipo-
lar charges is reviewed. Every term produced in this formalism has a simple interpretation, and
terms for spherical particles can be rapidly evaluated using an image-line construction. Several
practical applications of this formalism are illustrated. A dielectric virial expansion for polarizable
particles based on this formalism is also described. The origins of singular polarization charges for
particles in close contact are explained and evaluated for both dielectric and conducting spheres.

Applying an electrical field to dielectric materials perturbs their
charge distribution and results in a net polarization that quanti-
fies the degree of spatial charge separation.1 For weak fields, the
polarization grows linearly with field strength and is governed by
the dielectric permittivity tensor, which reduces to a scalar con-
stant in isotropic dielectrics. The relative dielectric permittivity
spans a wide numerical range of values:2 it is unity for vacuum,
about 80 for water at room temperature, between 2 and 10 for
most organics, and, for many oxides, falls between 15 and 40.

Interfacial polarization is a unique phenomenon which occurs
near the interfaces between materials with distinct dielectric per-
mittivities. The bulk material on each side of the interface re-
sponds to externally applied fields differently, causing different
degrees of polarization which do not compensate each other re-
sulting in a net surface charge. These net charges at the inter-
face have been extensively investigated over the past few decades,
and remain an attractive topic owing both to practical concerns
and fundamental interests. For example, these bound charges are
relevant in various applications, including the movement of ions
through nanochannels in fuel cells3 and cell membranes,4 self-
assembly of charged particles,5 aggregation of granular materi-
als,6,7 and stability of emulsions and colloidal solutions.8–10 On
the other hand, they are also pertinent to fundamental studies of
electrolyte solutions, such as determining the density profile11,12

and mobility13 of ions near dielectric interfaces, the variation
of dielectric constant in continuum theories14,15 and the surface
tension of ionic solutions.16

In particular, the surface tension of electrolyte solutions has
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attracted significant attention due to its potential relevance to
the Hofmeister effect, and its great importance in biology.17 Un-
like surfactant solutions, the surface tension of aqueous solutions
has been found to exhibit non-trivial dependence on the concen-
tration of electrolytes. Langmuir18 considered Gibbs adsorption
isotherms, and postulated that the initial increase of surface ten-
sion with electrolyte concentration results from ions depletion
near the air-water interface. Wagner,19 and Onsager and Sama-
ras16 applied the Debye-Hückel theory to account for the deple-
tion of ions by repulsive ion-image interactions at the air-water
interface. These theories do not explicitly account for specificities
of the ions, such as ion size and polarizability, and fail to explain
the Hofmeister effect.20 Recent evidence from both simulation21

and experiment22 has suggested that, in some cases, there is an
enhanced concentration of anions near the interface. A modified
Poisson-Boltzmann theory was applied to account for the effects
of ion size and polarizability.23,24 These developments have pro-
vided compelling arguments for incorporating the polarization of
ions and interfaces into more realistic treatments of ionic solu-
tions.

In particulate aggregates, one particularly intriguing phe-
nomenon has been often described as polarization-induced like-
charge attraction.25–27 Depending on the ratio of net charges
carried by particles, and the ratio of dielectric permittivities be-
tween the particles and the medium, it has been found that the
normally repulsive potential between like-charged particles may
become attractive at small inter-particle separation. This essen-
tially arises due to boundary effects, and analogous phenomena
have been observed in colloidal particles near reflective walls.28

Similar effects in many-body particle aggregates may manifest as
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non-additive inter-particle potentials, as was demonstrated ex-
perimentally in colloidal particles.29,30 The impact of such strong
polarization on the cohesive energy of the self-assembled periodic
aggregates of polarizable charged colloidal or granular particles
has also been suggested (Fig. 2).27

In order to efficiently quantify the strength of interfacial charge
polarization, many theoretical and numerical approaches have
been developed. For systems involving sharp dielectric inter-
faces, an induced surface charge density is frequently introduced
to account for the sharp boundary discontinuity.31–34 For sys-
tems involving smoothly varying dielectric permittivities, varia-
tional methods have been developed.35 We focus in this work on
systems involving sharp dielectric discontinuities, for which the
strength of interfacial polarization is controlled by the relative
‘jump’ in permittivity at the interface (see Eq. (1) below).

We will review and summarize an analytical, multiple-
scattering formalism developed to resolve the interfacial charge
polarization.36–38 In such a formalism, the electrostatic bound-
ary value problem of many-body particulate systems is solved it-
eratively, which yields a series expansion for the system energy
expressed solely in terms of particle positions. Applying this for-
malism to solve practical problems requires the Green’s function
of the single particles to be known a priori, which can be ana-
lytically resolved only for simple geometries, otherwise requiring
numerical tabulations. For spherical particles, it has been found
that the Green’s function can be rapidly evaluated by an image-
line construction, which was first discovered by Neumann,39 and
then repeatedly discovered in varying contexts.33,36,40–42

In the following, the latest results obtained from the appli-
cation of the multiple-scattering theory combined with the im-
age charges applied to aggregates of spherical particles will be
presented. The model, notation, and structure of the multiple-
scattering formalism will be explained in the next section, which
covers systems with monopolar charges, multipolar charges, and
the application of external fields. Subsequently, the application
of the theory for evaluating the energy of aggregates and for
studying the cohesive energy of colloidal lattices with polariza-
tion contributions will be described, and a dielectric virial expan-
sion for the static dielectric permittivity will be presented. In
these examples, the effects of polarization have revealed them-
selves in unexpected ways. The polarization, however, becomes
strongest when particles form close contact or for conducting par-
ticles whose static dielectric permittivity can be treated as infinite.
We shall review the nature of contact singularity and show how
it can be isolated and combined with numerical approaches to
generate finite results on the cohesive energy of clusters of con-
ducting particles in close contact. A judicious list of unresolved
problems and possible future directions will be noted in the last
section.

1 Energy of polarizable particles
A generic model system is a composite of inclusions embedded
into a dielectrically continuous medium, such as a polymer. The
medium’s static dielectric permittivity is denoted εout. The inclu-
sions may have arbitrary shape, and may be polydisperse. Index-
ing the inclusions by i, we may denote their static dielectric per-

Fig. 1 Interfacial polarization mediated by a single and multiple inter-
faces. The direct static field produced by the source charge Q0 placed
at R0 is g0 = Q0

4πε0εout |r−R0|
. The indirect contribution from a single po-

larized surface is denoted by the one-particle Green’s function g̃, which
can be effectively represented by the total contributions from the Kelvin
image point (orange) and the Neumann image line (green). The exact
form of g̃ is given as Eq. (23). The polarization involving multiple inter-
faces, denoted using the string notation by {α;k · · · ji;β}, is illustrated in
the right. Distance of the Kelvin point to the origin is a2/R0, where R0 is
the distance of the source charge to the center of sphere. The Neumann
image line connects the origin of the sphere to the Kelvin image point.

mittivity by εin,i. For notational simplicity, however, we will drop
the reference to particle index, and denote the internal permittiv-
ity by εin. The generalization of the multiple-scattering treatment
to heterogeneous dielectric particles is straightforward. A set of
free charges indexed by α are distributed in the system, and are
parameterized by position Rα and charge Qα .

The basic question is to find the electrostatic potential for a
given charge distribution. In the absence of a dielectric interface,
the charge distribution is given by Coulomb’s law. In the pres-
ence of interfacial polarization, in general no simple, closed-form
solution is possible. A few known results are discussed in sec. 3.

The multiple-scattering formalism27,36 aims to solve for the po-
tential iteratively, by considering chains of interfacial polarization
with increasing complexity. This approach is generic, and applies
to most linear systems with sharp boundaries. For instance, the
viscosity of suspensions43 in the low-Reynolds number regime44

is a closely analogous problem.

1.1 Boundary condition

The primary task is to solve Poisson’s equation, for given free
charge distribution ρ(r), with spatially varying dielectric permit-
tivity, ∇ · ε(r)∇φ(r) = −ρ(r) subject to the boundary condition
governed by Gauss’s law, where the dielectric permittivity ε(r)

is a constant εout outside, and εin inside the particles. The elec-
trostatic potential φ(r) and the tangential component of the field
E(r)≡−∇φ(r) are continuous at the interface. The normal com-
ponent of the field is discontinuous, and is governed by the rela-
tive values of the permittivity on the two sides of the interface. In
the absence of the free surface charge, the boundary condition is

εinEin · n̂= εoutEout · n̂, (1)

where n̂ is the normal to the interface.

The potential generated by a single point source Q0 at position
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R0 near a particle inclusion can be written symbolically as

φ(r) = gi(r;R0,Q0), (2)

where gi is the Green’s function for the boundary of the particle
with index i. In the absence of the boundary, the Green’s function
reads

g0(r;R0,Q0) =
Q0

4πε0εout|r−R0|
. (3)

In the presence of the boundary, the Green’s function can be writ-
ten as a sum of contributions from the free charge and that from
the induced, bound surface charges, i.e.,

gi(r;R0,Q0) = g0(r;R0,Q0)+
1

4πε0εout

∫
∂Ωi

ds
σ(s)

|r−r(s)|
. (4)

Above, ε0 is the vacuum permittivity, ds is the surface element on
the boundary ∂Ωi, σ(s) is the surface charge density induced by
free charge Q0 placed at R0, and r(s) is the spatial coordinate
of the element s. The position of source charge Ri is assumed to
be outside the inclusion; the opposite case can be treated nearly
identically.33,36

Since the first term in Eq. (4) is smooth everywhere except at
the source, in order to match the boundary condition Eq. (1) the
surface charge density has to be introduced and adjusted accord-
ing to the source position R0. In typical numerical approaches,
the surface charge density is discretized, and is used to convert
Eq. (1) into a vector identity, the number of entries in the vector
being the same as the number of surface elements,31,32 or and
the number of basis modes used.25,26,45 Inverting the linear sys-
tem gives the surface charge density. Alternatively, the following
will show that the surface charge can be formally and iteratively
solved by using a multiple-scattering formalism.

1.2 Multiple-scattering for a point source

Consider first how the interface is polarized by the free charge Q0

at R0. The zeroth order field is given by the potential φ0(r) =

g0(r;R0,Q0) and the electric field is E0 = −∇φ0. The induced
surface charge density at this order is given by σ0 = (εin−εout)E0 ·
n̂. The potential generated by this surface charge

φ1(r) =
1

4πε0εout

∫
∂Ωi

ds
σ0(s)

|r−r(s)|
(5)

produces the additional fieldE1 =−∇φ1(r). The fieldE1 induces
the next order of polarization charge σ1 = ε0(εin − εout)E1 · n̂,
where the normal n̂ relates to the surface element by n̂= ds/ds.
In terms of potential φ1, the surface charge can be equivalently
written as σ1 = −ε0(εin− εout)∇n̂φ1(r). This procedure may con-
tinue iteratively, up to infinite number of polarizations, i.e. by
scattering.

The resulting surface charge density, which satisfies the bound-
ary condition and is needed by Eq. (4), is the sum

σ = σ0 +σ1 + · · · (6)

Note that the (n + 1)th order surface charge density σn+1 is
uniquely determined by the term from the previous order of scat-

tering σn, which is ultimately traced back to σ0. As a result, the
total charge density is uniquely determined by the source, R0

and Q0. Formally, we may write Eq. (4), the potential generated
by the source and the polarized interface ∂Ωi as

gi(r;R0,Q0) = g0(r;R0,Q0)+ g̃i(r;R0,Q0), (7)

the second term g̃i reflecting the contributions from induced sur-
face charges, whose exact expression will be provided in sec. 3
(Eq. (23)). Since Poisson’s equation is linear, the potential gen-
erated by an ensemble of charges near a single interface is the
superposition of individual contributions.

When multiple interfaces are present, every interface is not
only polarized by the source charge, but also by the induced
surface charges from all the other interfaces. The complete po-
tential should include contributions from an arbitrary number of
surfaces, and from arbitrary scattering trajectories. The contri-
butions from one source term and the multiple, primary surface
scattering is given by

g0(r;R0,Q0)+∑
i

g̃i(r;R0,Q0), (8)

in which the summation is over all the interfaces. The contribu-
tion from the secondary surface scattering is given by

∑
j, j 6=i

∑
i

g̃ j ◦ g̃i(r(s j);R0,Q0). (9)

Here, r(s j) is the spatial coordinate of the surface element on
the j-th surface. By the nature of consecutive scattering, j has
to be distinct from i. The operator ‘◦’ implies the integration
over the surface charges on the jth surface induced by those on
the surface i. The exact expression for the composite Green’s
function g̃ j ◦ g̃i will be given in sec. 3 (Eq. (25)) after the ex-
act form of the single surface Green’s function g̃, Eq. (23), is in-
troduced. The current section is focused on the structure of the
multiple-scattering formalism, so the algebraic details is deliber-
ately avoided. To simplify the notation, we write the above in
terms of the string notation, as follows

∑
j, j 6=i

∑
i
{r; ji;0}. (10)

The implication of the above is identical to Eq. (9). Similarly, the
tertiary contribution to potential can be written

∑
k,k 6= j

∑
j, j 6=i

∑
i
{r;k ji;0}. (11)

The higher order terms can be constructed by analogy. The total
potential at position r generated by the source charge and by all
the polarized surfaces is obtained by collecting contributions from
all orders of surface scattering, i.e.,

φ(r;R0,Q0) = {r;0}+∑
i
{r; i;0}+ ∑

j, j 6=i
∑

i
{r; ji;0}

+ ∑
k,k 6= j

∑
j, j 6=i

∑
i
{r;k ji;0}+ · · · (12)
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This series expansion formally solves the boundary value prob-
lem for the potential generated by one point source, the essence
of which is to express the total Green’s function using those of
individual surfaces.

1.3 Polarization energy

The potentials produced by different point charges are additive.
For an ensemble of charges, the total potential at position r is
simply the summation of terms similar to Eq. (12) due to all the
charges. The total energy is the summation of products between
all the free charges and the potential evaluated on them. For
concreteness, we denote the free charges by α, β , etc. The total
energy can thus be written

E =
1
2 ∑

α

Qα ∑
β

φ(Rα ;Rβ ,Qβ ) (13)

The ranges of both α and β are not restricted. The factor 1/2 ac-
counts for the over-counting in the pair-wise interaction between
dissimilar charges.

By using the explicit expansion of the potential from single
charges, Eq. (12), the total energy can be ordered by the num-
ber of surface scatterings involved. We may write

E = E1 +E2 +E3 +E4 · · · · (14)

Above, E1 and E2 etc. represent the one-body, two-body energies
that involve no surface scattering. The higher order terms En,
with n≥ 3, involve n−2 surface scatterings.

The string notation for electrostatic potential evaluated at the
position r introduced above can be generalized to evaluate the
energy. For instance, the typical term in the summation, Eq. (13),
Qα φ(Rα ;Rβ ,Qβ ), may be written for brevity as

{α;β}+∑
i
{α; i;β}+∑

j
∑

i
{α; ji;β}+ · · · (15)

where the electrostatic potentially is naturally evaluated at the
position Rα . The above expressions include all types of interac-
tions between charges α and β mediated by an arbitrary combi-
nation of intermediate surface polarizations indexed with i, j etc.
In terms of the string notation introduced above, these terms are
transparently given by:

E1 =
1
2 ∑

α

{α;α}

E2 =
1
2 ∑

α

∑
β

{α;β}

E3 =
1
2 ∑

α

∑
i

∑
β

{α; i;β}

E4 =
1
2 ∑

α

∑
j
∑

i
∑
β

{α; ji;β} (16)

· · ·

Note that the neighboring indices are implicitly assumed to be dif-

Fig. 2 The contribution to the cohesive energy of a periodic lattice of
polarizable ionic aggregates due to interfacial charge polarization. The
Madelung’s constant 46 contains contributions from different levels of po-
larization interactions, E3 and E4 in Eq. (16), that vary with the relative
permittivity of particle εin and medium εout. 27 Only results for the NaCl
type lattice are shown, and similar effects are expected for other lattices.
Reproduced with permission from Fig. 4 of ref. 27.

ferent. The term E1 can be interpreted as the minimum order of
solvation energy resulting from embedding the particle into the
dielectric medium and will be further discussed in the next sec-
tion. The term E2 is the usual Coulomb energy between two point
charges. The terms E3, E4, etc. are the polarization contributions,
with E3 being the leading order correction. The indices α and β

represent the free charges, and the indices i, j, k etc. represent
the interfaces that are consecutively polarized.

Equation (16) is the main result of the multiple-scattering for-
malism. For any given configuration, it expresses the system en-
ergy as a sum of terms involving one, two, three, and an arbitrary
number of particles through the Green’s function. Every term
transparently depends on the particle positions. The forces and
torques applied on particles can be evaluated by examining the
variation of energy with particle coordinates and orientation.36,37

The approach has been applied to quantify the cohesive energy of
periodic lattices of polarizable colloidal particles,27 represented
as the permittivity-dependent Madelung’s constant (Fig. 2).46

The string notation introduced above has inversion symmetry,
i.e., {α; j . . . i;β} = {β ; i . . . j;α}, which in practice can be em-
ployed to reduce the numerical calculation by a factor of two.
The origin to such symmetry is that the interaction between two
charges mediated by intermediate surface scattering essentially
solves the two-charge boundary value problem, whose solution
is unique and is irrespective of which one of the two charges is
source or is acted upon. Further, the higher order strings may be
conveniently evaluated by noting that the strings are transitive,
i.e., a string of form {α; j . . .klm . . . i;β} can be derived by joining
strings {α; j . . .k; l} and {l;m . . . i;β}. The particular advantage of
strings is that they are solely determined by the relative particle
positions, and no explicit reference to surface charge is needed.

1.4 Solvation energy
The formalism presented above is applicable to both free charges
and charges embedded inside particle inclusions. The generalized
solvation energy of a given charge α is obtained by selecting the

4 | 1–10

Page 4 of 11Soft Matter



strings with β = α, which includes terms of the form

Esolvation =
1
2 ∑

α

(
{α;α}+∑

i
{α; i;α}+∑

j
∑

i
{α; ji;α}+· · ·

)
. (17)

The term {α;α} only applies to charges embedded inside a par-
ticle. It represents the interaction between charge α and the sur-
face charge induced by itself on its own surface. The term {α; i;α}
can be interpreted as follows: charge α and the induced charge
on its own surface induces surface charges on the surface i, which
subsequently interact with the charge α. The remaining terms are
similar and involve more interfaces to be polarized.

Consider a point charge Q placed at the center of a spherical
particle of radius a. The lowest order solvation energy is given by
the term {α;α} in Eq. (17), which evaluates to

EB =
Q2

8πε0a

(
1
εout
− 1

εin

)
. (18)

The result differs from the standard Born solvation energy2 only
by a term depending on the particle permittivity εin. The solva-
tion energy vanishes when the permittivity mismatch vanishes.
The remaining terms in Eq. (17) are the correction to the Born
solvation, due to the interactions between the embedded charge
and the other nearby interfaces.

1.5 Dipolar and multipolar charges

The cloud of arbitrary charge distribution can be decomposed as a
sum of contributions from monopoles, dipoles, quadrupoles, etc.
The above development for monopolar charges can be carried on
and applied to these multipolar cases.1 To see this, recall that
a point dipole µ = qd can be conceived of as the limit of two
monopolar charges ±q with opposite signs spatially separated by
displacement d, which points from the negative to the positive
charge centers. Since the potential is additive, the electrostatic
potential generated by a point dipole can be treated as a sum of
contributions from two monopoles, φ(r,µ) = φ(r,+q)+φ(r,−q).
In the limit of a point dipole, i.e. d→ 0, the above sum essentially
becomes a derivative, and reduces to the dot product between the
dipole moment and the gradient of the potential generated by a
point charge at the center of the dipole,

φ(r,µ) =−µ ·∇φ(r). (19)

Likewise, the energy evaluated at one dipole is given by a similar
expression, µ ·E, where E is the electrical field strength evalu-
ated at the center of dipole µ. In particular, the solvation energy
of a dipolar, dielectric spherical particle is given by37

EB,dipole =
µ2

8πε0a3
2εout

εin +2εout

(
1
εout
− 1

εin

)
, (20)

which generalizes the Born solvation energy for monopolar parti-
cles, Eq. (18). In full analogy, the field generated by a quadrupole
and the energy of a quadrupole inside an externally produced
field, can be obtained by differentiating corresponding expres-
sions for dipoles. The procedures are standard,1 and the main
results, including specifically the solvation energy, have been tab-

ulated in great detail in ref. 37.

2 External field

One practically important problem is evaluating the effective
medium dielectric permittivity for composite materials, such as
ceramic-polymer composites. The components typically have dis-
tinct dielectric permittivities; for instance, the relative permittiv-
ity of ceramic materials is often of order 20 and that of organic
materials is often less than 10, depending on polarity. The re-
sponse of the composite as a whole would then depend on the
intrinsic permittivities of both components and the mixing vol-
ume fractions. A standard approach for estimating the effective
permittivity is to use an appropriate mixing rule, that averages
the contributions of all the components. Many such mixing rules
have been proposed, among which the Maxwell-Garnett rule47,48

remains the most widely used.49 In essence, the Maxwell-Garnett
rule connects the linear combination of the component polariz-
ability with the effective dielectric permittivity via the Clausius-
Mossotti relationship.2 The effects of inter-particle interaction
have been neglected, which makes the mixing rule only appli-
cable in the dilute regime.

The generalization of the multiple-scattering treatment needed
to study the permittivity is to consider the multiple-scattering ex-
pansion in the presence of an external field. For the static di-
electric permittivity, only the presence of a static field is needed.
Further, within the linear response regime, considering the limit
of small field strength suffices.

This step was taken in ref. 38. Although it focuses on spherical
particles, the main conclusion is general, and is summarized as
follows. First consider an isolated particle embedded inside a
continuum dielectric medium. Applying a static fieldE0 polarizes
the interfaces, and the surface charges can be expanded as a sum
of dipoles, quadrupoles, etc. No monpolar charges can be induced
because of charge neutrality. In the linear response regime, these
multipoles are linear in the field E0. In particular, the dominant
dipole relates to E0 by the particle’s polarizability tensor α,

µE =α ·E0. (21)

The polarizability tensor is fully specified by the shape of the par-
ticle, and by the permittivities of particle and medium. For a
spherical particle, it is isotropic, reduced to the well-known scalar
form, α = 4πa3εout(εin− εout)/(εin +2εout). It then follows that the
multiple-scattering expansion for the energy of a composite can
be developed by treating the particles as containing a dipole µE .

To develop an analogous theory for the dielectric permittivity
of composite materials, an average over particle configurations is
needed. This was worked out in ref. 38, whereby a virial expan-
sion was derived for the free energy of a composite containing
polarizable particles, for the average polarization in the vanish-
ing field limit, and eventually for the effective medium dielectric
permittivity. For monodisperse composites, the average medium
permittivity εm is expressed as

εm− εout

εm +2εout
=

4π

3
εr−1
εr +2

ρ̃ +B0(εr) ρ̃
2 + · · · (22)
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Fig. 3 Effective static dielectric permittivity for well-dispersed compos-
ites, with a range of relative dielectric permittivity between particle inclu-
sion and medium εr. The data points are distinct experimental results
measured in the static limit. 38 The solid lines are parameter-free predic-
tion given by Eq. (22). The conducting limits are reached for large values
of εr. The Maxwell-Garnett rule predicts a much weaker variation. 38 Re-
produced with permission from Fig. 5 of ref. 38.

Above εr ≡ εin/εout is the relative permittivity controlling the
strength of the interfacial polarization, ρ̃ ≡ 4πa3ρ/3 is the volume
fraction of particle inclusions, and B0(εr) is the second dielectric
virial expansion coefficient whose strength depends on the rela-
tive permittivity. This particular representation of the permittivity
suggests that the effective permittivity of monodisperse compos-
ites only depends on the volume fraction, but not on particle ra-
dius, an expected result since particle radius and inter-particle
separation are the only two physical lengths in the problem.

Terminating the expansion at the term linear in ρ̃ gives a result
identical to the Maxwell-Garnett expansion.47–49 Including the
second order term requires evaluating the virial coefficient B0(εr)

numerically. The explicit values of B0 have been tabulated in
ref. 38 over the entire range of relative dielectric permittivity. It
reaches the limiting value 56π2/81 for conducting inclusions, i.e.
as εr→∞, and reaches −8π2/81 for the opposite limit with εr→ 0,
which is realized in porous materials with very high medium
permittivity. The comparison of the predicted permittivity using
Eq. (22) with experimental values over a wide range of dielec-
tric permittivity shows that much of the nonlinear dependence on
particle fraction is captured by the second order dielectric virial
expansion, with no adjustable parameters (Fig. 3).

3 Surface Green’s function
The multiple-scattering expansion provides a formal solution to
Poisson’s equation with sharp dielectric interfaces. It is supported
by the linearity of Poisson’s equation. The essential step needed
to make quantitative predictions is the evaluation of the single
particle Green’s function, which gives the electrostatic potential
produced by a point charge near the scattering interface. The
Green’s function, in practice, is typically evaluated numerically
and tabulated. The transparent solutions for a handful of ex-
amples are well-known. For a flat interface separating two bulk
dielectric domains, it is given by the standard image charge con-
struction.1 For a flat slab confined by two half-space dielectric
domains, it is given by more elaborate expressions.12,50 For a

conducting sphere, it is also given by the image charge which
is introduced to ensure that the conducting surface is equipoten-
tial.1

For a spherical dielectric interface, the Green’s function has
been discovered39 and re-discovered many times.33,36,40–42 It
was found that the image charge approach still applies. The
Green’s function g̃, representing the electrostatic potential at a
spatial position r generated by the surface charge induced by a
given source charge Q0 placed at R0 (Fig. 1), can be written

g̃(r;R0,Q0) =
Q′0

4πε0εout

(
δs,1−g

∫ 1

0
dssg−1

)
1

|r− s(a2/R0)R̂0|
,

(23)
where Q′0 ≡ Q0

εout−εin
εout+εin

a
R0

is the strength of the image charge,
R0 = |R0| is the distance of the source charge to the center of the
sphere, R̂0 =R0/R0 is the normal vector, and g≡ εout/(εin + εout)

determines the image charge distribution. It has been shown36

that Eq. (23) satisfies the boundary condition Eq. (1), thus
uniquely determines the static potential generated by the polar-
ized spherical surface.

The contribution from the first term in the bracket can be un-
derstood as resulting from placing an image charge Q′0 at the
Kelvin point,1 (a2/R0)R̂0. In the conducting limit (εin→ ∞) it re-
duces to the known value −(a/R0)Q0.1 The contribution from the
second term in the bracket can be understood as resulting from
the potential generated by a line charges: the line extends from
the center of the sphere to the Kelvin point, and the charge den-
sity at the fractional distance s to the center is gsg−1. This image
line, known as the Neumann line,39,40 complements the Kelvin
image point and solves the Poisson’s equation with the spheri-
cal boundary. Eq. (23) effectively replaces the effect of the two-
dimensional surface charges with that of a one-dimensional line
charge, which reduces computational costs in practice.

The strength of the surface polarization depends on the particle
radius a and the distances of the source (R0) and the field (r) to
the center of the sphere. Expanding the last term in Eq. (23)
in terms of the powers of s shows that the contribution from the
term of order s0 vanishes, and that from the term of order s1 gives
the leading contribution

g̃(r;R0,Q0)'−
Q0

4πεout

(
a3 εin− εout

εin +2εout

)
R0 ·r
R3

0 r3
. (24)

Therefore, the strength of the static potential produced by a single
polarized sphere is determined by the product between the polar-
izability of the sphere, a3(εin− εout)/(εin + 2εout), and (R0r)−2. In
the typical case, when both R0 and r are of the order of the aver-
age inter-particle separation d, Eq. (24) is smaller than the non-
polarized Coulombic potential, Q0/(εoutd), by a factor (a/d)3.

The Green’s function g̃i ◦ g̃i for the string of type {r; ji;0} is ob-
tained by propagating the Kelvin image point and Neumann im-
age line.36 One first finds the primary image of source charge Q0

in the sphere i, then finds the images of the primary image in the
sphere j, which finally acts at the position r. The final result36

reads

g̃ j ◦ g̃i =
Q0

4πε0εout
√

R43R21
I jIi

1
| fiR̂21 + R̂32 + f jR̂43|

, (25)
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Fig. 4 Contact charges between two conducting spheres approaching
each other. The two conducting spheres are equipotential, and the po-
tential values are set as V and 0. The charge distributions are adapted
to produce the nearly vertical field lines, The gap distance is h, and the
separation for non-vanishing radial distance ρ is h+ ρ2/a for small gap
distance, according to the Derjaguin approximation. 2

whereR43 ≡ r−R j,R32 ≡R j−Ri,R21 ≡Ri−R0, andR j and
Ri are the positions of the centers of the spheres j and i. The
summation over images, denoted by Ii and I j, are defined by

Ik ≡
εout− εin

εout + εin
tk

(
δ fk ,t2

k
−gt−2g

k

∫ t2
k

0
d fk f g−1

k

)

with k = i or j, t j ≡ a/
√

R43R32, and ti ≡ a/
√

R32R21. A Taylor
expansion analogous to the above shows that Eq. (25) is of or-
der (a/d)6 compared to the direct Coulomb interaction. This scal-
ing is generic: the transparent expressions for image lines needed
to evaluate a string of n intermediate interfacial polarization are
provided in ref. 36, and their orders of magnitude are smaller
than the direct Coulomb interaction by a factor (a/d)3n.

The above result the Green’s function is applicable to spher-
ical particles. A Green’s function has also been discovered for
anisotropic nematic dielectric domains with planar interfaces,51

by absorbing the dielectric profile into the coordinate transforma-
tion. The extension of this approach to spherical domains, or with
a more complicated permittivity tensor, is still to be worked out.

4 Contact singularity
Interfacial polarization is particularly relevant at small inter-
particle separation. Thus for practical applications involving di-
lute suspensions, the effects of induced surface charges can be
evaluated with the multiple-scattering series truncated at lower
orders. However, the polarization does strengthen with reduced
separation, which can cause practical difficulties for cases involv-
ing particles forming close contact. In certain cases, the contact
charging effects become singular; evaluating the energy would be
plagued by numerical divergence, stymieing the practical applica-
tion of the series expansion.31,32

To reveal the contact singularity, it is instructive to examine
the contact formed between two approaching, conductive sur-
faces, for which the interfacial polarization is the strongest. Con-
sider two spherical conducting particles. Let one of them, say
sphere 1, carry a source charge q1. The source charge induces
surface charges on sphere 2, which subsequently induces surface

Fig. 5 Cohesive energy of lower order clusters composed of identical
conducting spheres in contact. The contribution from the singular con-
tact charges has been fully accounted for. Upper curve: (2/n)1/3/(2ln2),
the continuum limit for the energy of most compact configuration. Lower
curve: ln(2na/r0)/[n ln2 ln(2a/r0)], the energy of a conducting cylinder
with an identical volume, i.e., with length L= 2na and radius r0 = 0.816a. 52

Reproduced with permission from Fig. 5 of ref. 52.

charges on sphere 1. This recursive reflection continues indefi-
nitely. The smaller the gap width between the two approaching
surfaces, the greater number of reflective terms required to en-
sure convergence. Right at the contact, an infinite number of
such reflective terms are needed, which translates to diverging
image charges of opposite signs of the two surfaces.

The magnitude of the diverging charge for one of the two con-
ductors in contact is of order πεouta ln(a/h),52 where h is the gap
distance between the two spheres, and a is the sphere radius.
This divergent contact charge is needed to establish the potential
difference near the gap and may be obtained by considering the
vicinity of two spheres near contact depicted in Fig. 4. Since the
conducting spheres are equipotential, the static potentials every-
where on the surfaces are identical. Denote their difference as V .
For small separation h, the Derjaguin approximation2 can be ap-
plied to represent the two surface as parabolic. Denote further the
radial length by ρ, the distance separating the two spheres can be
written as h+ρ2/a, which is asymptotically exact for h→ 0. The
field strength at radius ρ is E(ρ) = V/(h+ρ2/a), which is 1/εout

times of the induced charge density (note that the electric field in-
side a conductor vanishes, so there is no contribution from εin).1

Integrating ρ from 0 to ca, in which c is an order unit numeri-
cal cutoff to ensure the validity of the Derjaguin approximation,2

gives the singular portion of the induced charge

Qsingular =
∫ ca

0
dρ

2π ρ εoutV
h+ρ2/a

= πεout aV ln(a/h) , (26)

in which the non-singular factor ln(c2) has been dropped.
This contact charge can also be obtained using the multiple-
scattering formalism when only two conducting spheres are con-
sidered.53,54 In that approach, one image charge is introduced
for one interfacial scattering.55 For vanishing gap separation h,
an infinite number of image charges or interfacial scatterings are
required, which ultimately expresses the induced surface charges
in terms of an infinite series. Pulling out the asymptotic, diverging
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contact charge from such a series gives an expression identical to
that from the analysis based on the Derjaguin approximation. The
Derjaguin approximation, relying on geometric properties near
the contact, however can be applied to the case of multiple con-
ducting particles in close contact.

Eq. (26) clearly shows that the singular capacitance Q/V di-
verges logarithmically as h→ 0. For any finite potential differ-
ence between the spheres, resolving the induced surface charges
at small separation requires ever increasing spatial resolutions
as h decreases. The practical calculation of the surface charges
at small separation would need to numerically remove the contri-
bution from this singular capacitance.

The case of two spheres of unequal radii in close contact has
been analyzed by Russell,53 and the singular portion of the charge
density is obtained by replacing the sphere radius with the har-
monic mean of the two radii, 2a1a2/(a1+a2). Because the contact
singularity is local, the same behavior is expected for contacts
formed between conducting particles of arbitrary shape, being
convex or concave. In these cases, the sphere radii are replaced
by the radii of curvature near the contacts.

The singular capacitance imposes a steep separation depen-
dence of interaction energy between polarizable spheres.52 As a
result, the cohesive energy between two particles, identified as
the difference of the interaction energy at contact or at an infi-
nite separation, is strongly affected by this effect. In the case of
dimers, the cohesive energy was found to be56

1
4πεouta

(Q1 +Q2)
2

2ln2
, (27)

where Q1 and Q2 are the net charges on the two spheres.

The ensemble of multiple polarizable conducting spheres has
no analytically closed-form solution, but can be evaluated nu-
merically by isolating the contribution of singular capacitance.52

The method has been applied to ensembles of up to 20 identical
spheres. Two types of particle packings are considered. The first
type is more compact, which places the spheres at the vertices of
Platonic solids including tedrahedron, cubic, octahedron, dodec-
ahedron, and icosahedron (Fig. 5). The second type is the most
open, which places the spheres along a straight line. Charging
one sphere in these clusters with an elementary charge (it does
not matter which one is charged when all the spheres are in con-
tact because the whole cluster becomes equipotential), and calcu-
lating the total electrostatic energy gives the cohesive energy for
these clusters. The cohesive energies are dominated by the con-
tact charge, and are plotted in Fig. 5, for both compact and open
configurations. It was found that the cohesive energies of both
compact and open configurations can be understood by treating
the clusters in close contact as equipotential. The compact clus-
ters can be approximated (geometrically) as spherical capacitors
whose radius is determined from the size of the cluster. Likewise,
the open clusters can be approximated as cylindrical capacitors
whose length is the same as the number of spheres times their di-
ameter and whose radius is calculated by equating the volume of
the cylindrical capacitor and that of the cluster. The dashed lines
in Fig. 5 are the energies of the spherical and cylindrical capaci-

tors with identical volume, which approximately the numerically
evaluated cohesive energy of these clusters remarkably well.

A similar type of contact singularity is expected for dielectric
spheres. This is clearly seen from the numerical examples pro-
vided in the literature.31,32 An analytical treatment similar to
that of ref. 52 but relying on the application of bispherical co-
ordinates was developed recently,38 albeit only for dimer spheres
carrying identical charges. The resulting cohesive energy depends
explicitly on the dielectric permittivity of spheres, and reduces to
Eq. (27) in the conductor limit, i.e. εin→∞. The asymmetric case,
with Q2 6= Q1, remains to be tackled.

5 Summary and outlook
The multiple-scattering formalism is an iterative, flexible frame-
work for solving boundary value problems. Since the governing
equation, e.g., Poisson’s equation, is additive, the solution can
be constructed iteratively. The components to be iterated are
the Green’s functions for single, isolated boundaries. This for-
malism, in principle, also applies to transport phenomena in the
low-Reynolds number regime, in which the Stokes equation and
the velocity profile play the role of the Poisson equation and the
electrostatic potential, respectively.43 The dielectric permittivity
likewise plays the role of viscosity. Thus there is a close analogy
between the problems of polarization and low-Reynolds number
hydrodynamics.44 Much of the issues touched upon here, includ-
ing the contact singularity and the Green’s function, have been
addressed in the context of hydrodynamics.57

Polarization is weak compared to the direct Coulombic inter-
action. Its strength is controlled by the relative dielectric permit-
tivity at the interface and by the polarizability of particles as is
clearly revealed by Eqs. (23–24). The scaling behaviors of the
terms needed to evaluate the terms in the multiple-scattering se-
ries have been discussed based on the consideration of the leading
term, Eq. (24).36 Qualitatively, every additional interfacial scat-
tering reduces the numerical value of the string by a factor pro-
portional to the polarizability of particles. Since the polarizability
scales as the volume of particle a3, the strength of polarization
effect scales, according to Eq. (24), as ρa3, where the particle
number density ρ is used to estimate the average inter-particle
separation, R0 ∼ ρ−1/3.36 In cases involving short inter-particle
separations, and strong dielectric discontinuities, the polarization
has been demonstrated to alter the qualitative behavior of the
interaction among particles. The like-charge attraction and non-
additive many-body interaction potential derived by the surface
polarization are two well-known examples.25–27,30

In practice, the number of terms to evaluate grows rapidly with
the number of particles,36 although imposing the symmetry of
strings can simplify the calculation to certain degree. Thus, the
method reviewed here is useful primarily for aggregates involv-
ing lower-order clusters, and for systems with sharp, yet weak
dielectric discontinuities, where the polarization effects are local.
Systems involving spatially varying dielectric permittivity will re-
quire, in essence, inverting dense coefficient arrays, which makes
the alternative variational approach more attractive.35 The main
advantage of the multiple-scattering formalism is that every term
in the series bears a simple physical interpretation.

8 | 1–10

Page 8 of 11Soft Matter



Many questions can be addressed using the formalism devel-
oped here. The dielectric virial expansion developed only applies
to spherical particles, and for static permittivity. It would be desir-
able to generalize the theory to systems with anisotropic particle
inclusions (i.e., keeping the tensorial form of polarizability and
tracking the orientational degrees of freedom), and with poly-
disperse inclusions (i.e., performing statistical averages for a mix
of different particle types). Another extension is to develop an
analogous theory for the frequency-dependence of the effective
medium permittivity, which demands a treatment analogous to
those in the Lifshitz theory for the Van der Waals interaction.2,58

Furthermore, by replacing the internal dielectric permittivity of
the particles with the molecular polarizability using the Clausius-
Mossotti relation,2 it is possible to investigate the effects of ion
polarizability on various electrochemical phenomena including,
specifically, the effects of ion polarizability on surface tension.
The standard DLVO theory2 for the effective potential between
colloidal particles is also expected to be affected by the interfacial
charge polarization, and should be studied in the future.

Conflicts of interest
There are no conflicts to declare.

Acknowledgements
This research has been supported by the Assistant Secretary for
Energy Efficiency and Renewable Energy, Office of Vehicle Tech-
nologies of the U.S. Department of Energy through the Advanced
Battery Materials Research (BMR) Program (Battery500 Consor-
tium). The supports provided through the Terman Faculty Fund,
the 3M Non-Tenured Faculty Award, and the Hellman Scholar
Award are acknowledged. The author thanks Prof. Karl Freed
gratefully for discussions throughout, and Huada Lian and Kevin
Hou for critical reading of the manuscript.

References
1 J. D. Jackson, Classical Electrodynamics, Wiley, 3rd edn, 1998.
2 J. N. Israelachvili, Intermolecular and Surface Forces, Aca-

demic Press, New York, 1992.
3 K.-D. Kreuer, Chem. Mater., 2013, 26, 361–380.
4 E. Gouaux and R. MacKinnon, Science, 2005, 310, 1461–

1465.
5 E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O’brien and

C. B. Murray, Nature, 2006, 439, 55.
6 S. R. Waitukaitis, V. Lee, J. M. Pierson, S. L. Forman and H. M.

Jaeger, Phys. Rev. Lett., 2014, 112, 218001.
7 V. Lee, S. R. Waitukaitis, M. Z. Miskin and H. M. Jaeger, Na-

ture Physics, 2015, 11, 733–737.
8 M. E. Leunissen, A. Van Blaaderen, A. D. Hollingsworth, M. T.

Sullivan and P. M. Chaikin, Proc. Natl. Acad. Sci., 2007, 104,
2585–2590.

9 I. N. Derbenev, A. V. Filippov, A. J. Stace and E. Besley, J.
Chem. Phys., 2016, 145, 084103.

10 R. Messina, J. Chem. Phys., 2002, 117, 11062.
11 A. Bakhshandeh, A. P. Dos Santos and Y. Levin, Phys. Rev.

Lett., 2011, 107, 107801.

12 J. W. Zwanikken and M. Olvera de la Cruz, Proc. Natl. Acad.
Sci., 2013, 201302406.

13 H. S. Antila and E. Luijten, Phys. Rev. Lett., 2018, 120,
135501.

14 H. Gong and K. F. Freed, Phys. Rev. Lett., 2009, 102, 057603.
15 A. Abrashkin, D. Andelman and H. Orland, Phys. Rev. Lett.,

2007, 99, 077801.
16 L. Onsager and N. N. Samaras, J. Chem. Phys., 1934, 2, 528–

536.
17 M. Boström, W. Kunz and B. W. Ninham, Langmuir, 2005, 21,

2619–2623.
18 I. Langmuir, J. Am. Chem. Soc., 1917, 39, 1848–1906.
19 C. Wagner, Phys. Z, 1924, 25, 474–477.
20 N. L. Jarvis and M. A. Scheiman, J. Phys. Chem., 1968, 72,

74–78.
21 E. Knipping, M. Lakin, K. Foster, P. Jungwirth, D. Tobias,

R. Gerber, D. Dabdub and B. Finlayson-Pitts, Science, 2000,
288, 301–306.

22 S. Ghosal, J. C. Hemminger, H. Bluhm, B. S. Mun, E. L.
Hebenstreit, G. Ketteler, D. F. Ogletree, F. G. Requejo and
M. Salmeron, Science, 2005, 307, 563–566.

23 Y. Levin, Phys. Rev. Lett., 2009, 102, 147803.
24 A. P. dos Santos, A. Diehl and Y. Levin, Langmuir, 2010, 26,

10778–10783.
25 E. Bichoutskaia, A. L. Boatwright, A. Khachatourian and A. J.

Stace, J. Chem. Phys., 2010, 133, 024105.
26 E. B. Lindgren, H.-K. Chan, A. J. Stace and E. Besley, Phys.

Chem. Chem. Phys., 2012, 18, 5883–5895.
27 J. Qin, J. Li, V. Lee, H. Jager, J. J. de Pablo and K. F. Freed, J.

Colloid Interface Sci., 2016, 469, 237 – 241.
28 J. C. Crocker and D. G. Grier, Phys. Rev. Lett., 1996, 77, 1897–

1900.
29 S. K. Sainis, J. W. Merrill and E. R. Dufresne, Langmuir, 2008,

24, 13334–13337.
30 J. W. Merrill, S. K. Sainis and E. R. Dufresne, Phys. Rev. Lett.,

2009, 103, 138301.
31 K. Barros and E. Luijten, Phys. Rev. Lett., 2014, 113, 1–5.
32 K. Barros, D. Sinkovits and E. Luijten, J. Chem. Phys., 2014,

140, 64903.
33 Z. Gan, S. Jiang, E. Luijten and Z. Xu, SIAM J. Sci. Comput.,

2016, 38, 375–395.
34 X. Jiang, J. Li, X. Zhao, J. Qin, D. Karpeev, J. Hernandez-Ortiz,

J. J. de Pablo and O. Heinonen, J. Chem. Phys., 2016, 064307,
year.

35 V. Jadhao, F. J. Solis and M. Olvera de la Cruz, J. Chem. Phys.,
2013, 138, 054119.

36 J. Qin, J. J. de Pablo and K. F. Freed, J. Chem. Phys., 2016,
145, 124903.

37 K. S. Gustafson, G. Xu, K. F. Freed and J. Qin, J. Chem. Phys.,
2017, 147, 064908.

38 H. Lian, J. Qin and K. F. Freed, J. Chem. Phys., 2018, 149,
163332.

39 C. Neumann, Hydrodynamische Untersuchen nebst einem An-

1–10 | 9

Page 9 of 11 Soft Matter



hang uber die Probleme der Elecktrostatik und der Magnetischen
Induktion, Teubner, Leipzig, 1883, pp. 279–282.

40 I. V. Lindell, Am. J. Phys., 1993, 61, 39–44.
41 W. Cai, S. Deng and D. Jacobs, J. Comp. Phys., 2007, 223,

846.
42 P. Linse, J. Chem. Phys., 2008, 128, 214505.
43 D. J. Jeffrey and A. Acrivos, AIChE J., 1976, 22, 417–432.
44 J. Happel and H. Brenner, Low Reynolds number hydrodynam-

ics: with special applications to particulate media, Martinus Ni-
jhoff Publishers, 1983.

45 T. P. Doerr and Y.-K. Yu, Phys. Rev. E, 2006, 73, 061902.
46 N. W. Ashcrof and N. D. Mermin, Solid State Physics, Thomson

Learning, Inc., 1976.
47 J. C. Maxwell Garnett, Phil. Trans. Royal Soc. A, 1904, 203,

385–420.
48 L. Rayleigh, Phil. Mag., 1892, 34, 481–502.

49 V. A. Markel, J. Opt. Soc. Am. A, 2016, 33, 1244–1256.
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Reviewing the impacts of interfacial charges on the cohesive energy, permittivity, and singular 
contact charge for polarizable dielectric particles.
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