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Abstract: In this paper, we develop a theory to account for the effect of the excluded volume
(EV) interactions in the Strong Stretching Theory (SST) based description of the pH-responsive
polyelectrolyte (PE) brushes. The existing studies have considered the PE brushes to be present
in a θ-solvent and hence have neglected the EV interactions; however, such a consideration cannot
describe the situations where the pH-responsive brushes are in a “good” solvent. Secondly, we
consider a more expanded form of the mass action law, governing the pH-dependent ionization of
the PE molecules, in the SST description of the PE brushes. This expanded form of the mass action
law considers different values of γa3 (γ is the density of the chargeable sites on the PE molecule
and a is the PE Kuhn length) and therefore is an improvement over the existing SST models of PE
brushes as well as other theories involving pH-responsive PE molecules that always consider γa3 = 1.
Our results demonstrate that the EV effects enhance the brush height by inducing additional PE
inter-segmental repulsion. Similarly, the consideration of the expanded form of the mass action law
would lead to a reduced (enhanced) brush height for γa3 < 1 (γa3 > 1). We also quantify the
variables such as the monomer density distribution, distribution of the ends of the PE brush, and
the EDL electrostatic potential and explain their differences with respect to those obtained with no
EV interactions or γa3 = 1.

I. INTRODUCTION

Grafting charged, polyelectrolyte (PE) brushes on solid-liquid interfaces have proven to be an excellent way of
functionalizing such interfaces for applications such as nanofluidic ion and biosensing [1–5], fabrication of nanofluidic
diodes [6, 7], current rectifiers [8], and nano-actuators [9], designing surfaces of desired wettability [10], engineering
nanoparticles for targeted drug delivery [11], oil recovery [12], and many more. The key to several of these applications
is the responsiveness of these brushes to environmental cues (e.g., a change in pH or a change in salt concentration)
– as a response to these cues, the PE brushes undergo a change in some of its properties (e.g., configuration, height,
etc.) thereby enabling most of these above applications. pH-responsive (or annealed) PE brushes refer to brushes
whose ionization and hence the charging depends on the local pH [13–17]. For example, poly(meth)acrylic brush is an
example of a pH-responsive anionic brush. On the other hand, there are brushes (also known as quenched brushes)
whose degree of ionization and hence the charging is independent of pH (e.g., partially sulfonated polystyrene brushes).
The purpose of this paper is to provide a detailed thermodynamic self-consistent theoretical model for quantifying
such pH-responsive PE brushes.

PE brushes have been modelled extensively. For example, there have been significant efforts aimed at developing
scaling laws by balancing the different energies (elastic, electrostatic, and excluded volume) and yielded the brush
height as scaled functions of variables such as the grafting density and charge density of the brushes, number of
monomers, and the concentration of the added salt [18–25]. Subsequently, a more involved calculation procedure was
also attempted where the electrostatics of the induced electric double layer (EDL) was described using the Poisson-
Boltzmann (PB) equation [15, 17, 26–31]. Such studies varied in complexity and rigour depending on the manner in
which the monomer interactions were described – there have been several approaches ranging from the use of simple
Alexander-de-Gennes model [27–30] to a more involved parabolic model [26, 31] for the brushes. The most complete
analytically tractable approach till date, however, has been proposed in a series of seminal papers that employed the
Strong Stretching Theory (SST) to describe the PE brushes while the resulting EDL electrostatics was described by
the classical PB equation [13, 32–35].

The same self-consistent SST and the PB equation have also been employed to study the configuration of the
pH-responsive PE brushes [13]. This study is the state-of-the-art in the SST calculation of the pH-responsive PE
brushes. However, this paper considers the PE brushes to be in a θ-solvent and hence neglects all the possible excluded
volume (EV) interactions. On the other hand, a vast number of experimental studies involving pH-responsive PE
brushes invariably consider the solvent to be a “good” solvent (i.e., a solvent that makes the considerations of the EV
interactions between the segments of the PE molecule mandatory) with respect to the PE brush [36–43]. Obviously,
for such problems, the theory of Ref.[13] will be inadequate. In order to fill this void, in this paper, we modify
the SST for the pH-responsive PE brushes by accounting for the EV interactions between the PE brush segments.
Therefore, this study is the first study for the SST of the pH-responsive PE brushes accounting for the effect of the EV
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interactions. EV interactions have been considered for other theoretical calculations of the PE brushes [44–46], but
not in this SST framework used to quantify the behavior of the pH-responsive PE brushes. As a second improvement
to the SST model of the pH-responsive PE brushes, we consider a more expanded form of the mass action law for the
pH-dependent ionization of the PE molecules valid for all values of γa3 (γ is the density of the chargeable sites on
the PE molecule and a is the PE Kuhn length) and study the effect of this more expanded form of the mass action
law in the SST calculations of PE brushes. Both Ref. [13] as well as other papers describing the pH-responsive PE
molecules (not necessarily PE “brushes”) [47–51] have considered only a special form of the mass action law where
γa3 = 1. Our calculations, therefore, ensure a more generic description of the pH-responsive PE brushes within the
general ambit of the SST model.

Our results demonstrate distinct contributions of the EV interactions and the expanded form of the mass action
law in the SST description of the PE brushes. Consideration of the EV interactions imply consideration of additional
inter-segmental repulsion for a particular PE brush molecule. Accordingly, the EV effect enhances the brush height.
This enhancement is most magnified for large salt concentration (which leads to an enhanced screening of the PE
brush charges) and small pH∞ (i.e., a large bulk H+ ion concentration that weakens the ionization of the brushes).
On the other hand, consideration of the generic mass action law implies that one witnesses a decrease (increase)
of the PE brush height for γa3 < 1 (γa3 > 1) owing to a reduced (enhanced) charge density of the PE brushes
causing a reduced (enhanced) counterion-induced brush swelling [52–54]. We complete the description of the problem
by accounting for the effects of the EV interactions and the expanded form of the mass action law in dictating the
monomer density distribution, distribution of the end location of the PE brushes, and the EDL electrostatics. In
summary, our paper establishes the theory for a much more generic SST-based description of the pH-responsive PE
brushes and the resultant EDL electrostatics.

FIG. 1: Schematic showing the pH-responsive PE brush layer.

II. SELF-CONSISTENT FIELD APPROACH

A. Free Energy Equations

We consider a rigid, impenetrable substrate grafted with pH-responsive, weakly poly-acidic (anionic) PE brushes
immersed in an electrolyte solution (see Fig. 1). The separation between adjacent grafted PE molecules ` is assumed
to be small enough such that the system attains a brush like configuration. Here we would discuss the free energies
that dictate the brush equilibrium in a self-consistent field approach. These equations have already been discussed
by several previous papers [13, 32, 44]; we repeat them here for the sake of continuity.
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The net free energy functional (F ) of a given PE molecule can be expressed as:

F

kBT
=
Fels
kBT

+
FEV
kBT

+
Felec
kBT

+
FEDL
kBT

+
Fion
kBT

, (1)

where Fels, FEV , Felec, FEDL and Fion are the elastic (entropic), excluded volume, electrostatic, electric double layer
and ionization contributions to the free energy (per PE molecule) respectively.

In this model, the equilibrium brush height H (to be determined self-consistently later) refers to the maxi-
mum distance of the monomers of the PE brush from the substrate. In order to express the free energy, the system
is divided into two regions: region 1 (0 ≤ x ≤ H) forms the interior of the brush and comprises of all the PE chains
whereas the region 2 (H ≤ x ≤ ∞) lies exterior to the brush. We consider the case where the electrostatic repulsion
between the charged monomers is large enough to ensure that the brush is in a strongly stretched configuration.
Therefore this free energy description is the same as the Strong Stretching Theory description of the PE brushes.

Following the notation of Zhulina et al. [44], we write:

Fels
kBT

=
3

2pa2

∫ H

0

g(x′)dx′
∫ x′

0

E(x, x′)dx, (2)

FEV
kBT

=
σ

a3

∫ H

0

fconc[φ(x)]dx, (3)

where p is the chain rigidity, a is the Kuhn length, and σ ∼ `2 is the grafted area per chain. Also, E(x, x′) = dx
dn is

the local stretching at a distance x from the surface for a chain whose end is located at a distance of x′. Furthermore,
g(x′) is the normalized chain end distribution function, such that∫ H

0

g(x′)dx′ = 1. (4)

Finally, φ(x) is the dimensionless monomer distribution profile of a given PE chain and fconc[φ(x)] is the non-
dimensionalized per unit-volume free energy for the excluded volume interactions.

Following [17], Felec + FEDL can be expressed as:

Felec
kBT

+
FEDL
kBT

=
σ

kBT

∫ ∞
0

[
− ε0εr

2

∣∣∣∣dψdx
∣∣∣∣2 + eψ(n+ − n− + nH+ − nOH−)

]
dx− σ

kBT

∫ H

0

[
eψnA−φ

]
dx+

σ

∫ ∞
0

[
n+

(
ln
( n+
n+,∞

)
− 1
)

+ n−

(
ln
( n−
n−,∞

)
− 1
)

+ nH+

(
ln
( nH+

nH+,∞

)
− 1
)

+ nOH−
(
ln
( nOH−

nOH−,∞

)
− 1
)

+ (n+,∞ + n−,∞ + nH+,∞ + nOH−,∞)
]
dx

(5)

where ψ is the electrostatic potential, ni is the number density of the ion i [where i = ±, H+, OH−], ni,∞ is the bulk
number density of the ion i, nA− is the local number density of the A− ion, e is the electronic charge, kBT is the
thermal energy, ε0 is the permittivity of free space, and εr is the relative permittivity of the solution.

The PE brush ionizes via dissociation of an acid HA producing H+ and A− ions. nA− is a function of the
hydrogen ion concentration (nH+) as given by the expanded form of the mass action law (see the derivation later).

Following [13], Fion can be expressed as:

Fion
kBT

=
σ

a3

∫ H

0

φ

[(
1− nA−

γ

)
ln
(

1− nA−

γ

)
+
nA−

γ
ln
(nA−

γ

)
+
nA−

γ

(µ0
H+ + µ0

A− − µ
0
AH

kBT
+ ln(cH+,∞)

)]
dx

=⇒ Fion
kBT

=
σ

a3

∫ H

0

φ

[(
1− nA−

γ

)
ln
(

1− nA−

γ

)
+
nA−

γ
ln
(nA−

γ

)
+
nA−

γ
ln
(nH+,∞

K ′a

)]
dx

(6)
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where K ′a = 103NAKa, NA is the Avogadro number and Ka is the ionization constant of the reaction

HA → H+ + A−. Also Ka = exp
(
− µ0

H++µ0
A−−µ

0
AH

kBT

)
, where µ0

i represents the standard chemical poten-

tial of species i. nH+,∞ = 103NAcH+,∞ and γ (1/m3) is the maximum density of polyelectrolyte chargeable sites
(PCS).

Substituting eqs.(2,3,5,6) in eq.(1), F can be written as:

F

kBT
=

3

2pa2

∫ H

0

g(x′)dx′
∫ x′

0

E(x, x′)dx+
σ

a3

∫ H

0

fconc[φ(x)]dx+
σ

kBT

∫ ∞
0

[
− ε0εr

2

∣∣∣∣dψdx
∣∣∣∣2

+ eψ(n+ − n− + nH+ − nOH−)
]
dx− σ

kBT

∫ H

0

[
eψnA−φ

]
dx+ σ

∫ ∞
0

[
n+

(
ln
( n+
n+,∞

)
− 1
)

+ n−

(
ln
( n−
n−,∞

)
− 1
)

+ nH+

(
ln
( nH+

nH+,∞

)
− 1
)

+ nOH−
(
ln
( nOH−

nOH−,∞

)
− 1
)

+ (n+,∞ + n−,∞ + nH+,∞ + nOH−,∞)
]
dx

+
σ

a3

∫ H

0

φ

[(
1− nA−

γ

)
ln
(

1− nA−

γ

)
+
nA−

γ
ln
(nA−

γ

)
+
nA−

γ
ln
(nH+,∞

K ′a

)]
dx

(7)

This energy needs to be minimized in presence of the following conditions (constraints):

N =

∫ x′

0

dx

E(x, x′)
, (8)

N =
σ

a3

∫ H

0

φ(x)dx, (9)

where N is the number of monomers per chain.

Also φ(x) is related to the functions g and E as:

φ(x) =
a3

σ

∫ H

x

g(x′)dx′

E(x, x′)
. (10)

Accounting for the constraints, the elastic component of free energy can be expressed in terms of Lagrange multipliers
[λ1 and λ2(x′)] as:

F ′els
kBT

=
3

2pa2

∫ H

0

g(x′)dx′
∫ x′

0

E(x, x′)dx+ λ1

[ σ
a3

∫ H

0

φ(x)dx−N
]

+

∫ H

0

λ2(x′)dx′
[ ∫ x′

0

dx

E(x, x′)
−N

]
. (11)

Therefore, the net free energy (F ′) accounting for all the constraints is:

F ′

kBT
=
F ′els
kBT

+
FEV
kBT

+
Felec
kBT

+
FEDL
kBT

+
Fion
kBT

(12)

B. Variational Formalism

We would like to obtain the governing equations dictating the problem by carrying a variational minimization of
eq.(12). Variation of eq.(12), i.e.,

δF ′

kBT
=
δF ′els
kBT

+
δFEV
kBT

+
δFelec
kBT

+
δFEDL
kBT

+
δFion
kBT

= 0. (13)
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The condition δF ′=0 leads to the following equations (see appendix A for the detailed derivation), which stem from
the fact that δE(x, x′) 6=0, δg(x′) 6=0, δψ 6=0, δnA− 6=0, δn± 6=0, δnH+ 6=0, δnOH− 6=0:

3g(x′)

2a2
− λ2(x′)

E2(x, x′)
−

(
δfconc
δφ

+ λ1 −
ea3ψ

kBT
nA− +

(
1− nA−

γ

)
ln
(

1− nA−

γ

)
+
nA−

γ
ln
(nA−

γ

)
+
nA−

γ
ln
(nH+,∞

K ′a

)) g(x′)

E2(x, x′)
= 0,

(14)

∫ x′

0

[
3E(x, x′)

2a2
+

(
δfconc
δφ

+ λ1 −
ea3ψ

kBT
nA− +

(
1− nA−

γ

)
ln
(

1− nA−

γ

)
+
nA−

γ
ln
(nA−

γ

)
+
nA−

γ
ln
(nH+,∞

K ′a

)) 1

E(x, x′)

]
dx = 0,

(15)

− γa3 eψ

kBT
− ln

(
1− nA−

γ

)
+ ln

(nA−
γ

)
+ ln

(nH+,∞

K ′a

)
= 0

=⇒ nA− =
K ′aγ

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

) (16)

ε0εr

(d2ψ
dx2

)
+ e
(
n+ − n− + nH+ − nOH− − nA−φ

)
= 0 (0 ≤ x ≤ H)

ε0εr

(d2ψ
dx2

)
+ e(n+ − n− + nH+ − nOH−) = 0 (H ≤ x ≤ ∞),

(17)

n± = n±,∞exp
(
∓ eψ

kBT

)
, (18)

nH+ = nH+,∞exp
(
− eψ

kBT

)
, (19)

nOH− = nOH−,∞exp
( eψ

kBT

)
, (20)

Eq. (16) is the expanded form of the mass action law that we shall use here. On the other hand, all the existing
studies have invariably considered γ = 1/a3 and accordingly, have considered a form of the mass action law expressed
as [13]:

nA− =
K ′aγ

K ′a + nH+,∞ exp
(
− eψ

kBT

) . (21)

This study, therefore, will reveal for the first time the effect of consideration of the mass action law in dictating the
strong stretching behavior of the pH-responsive PE brushes.
Now, from eq.(14), we get:

E(x, x′) =
√
U1(x′)− U2(x), (22)

where

U1(x′) =
2a2

3

λ2(x′)

g(x′)
, (23)
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U2(x) =
2a2

3

(
− δfconc

δφ
− λ1 +

ea3ψ

kBT
nA− −

(
1− nA−

γ

)
ln
(

1− nA−

γ

)
− nA−

γ
ln
(nA−

γ

)
− nA−

γ
ln
(nH+,∞

K ′a

))
. (24)

Since there is no extension at the brush ends, E(x, x) = 0. Therefore, U1(x) = U2(x) = U(x). Hence,

E(x, x′) =
√
U(x′)− U(x). (25)

The normalization condition of eq.(8) serves as an integral equation for U(x′). One can check that this integral
equation is satisfied if:

U(x) =
π2x2

4N2
(26)

Consequently,

E(x, x′) =
π

2N

√
x′2 − x2. (27)

Now we can re-write eq.(15) as: ∫ x′

0

[
E(x, x′)− U(x)

E(x, x′)

]
dx = 0. (28)

Eq.(28) is equally satisfied with these stated forms of U(x) and E(x, x′). To obtain φ(x) we can employ eq.(24),
but prior to that we would need the functional dependence of f on φ. Considering the virial expansion for the
non-dimensionalised per-unit volume free energy of volume interactions, we can write [44]:

fconc[φ(x)] ≈ νφ2 + ωφ3 + ..., (29)

where ν and ω are the virial coefficients.
Considering the first two terms of the expansion of fconc[φ(x)], we can use eq. (24) to obtain φ(x) in terms of ψ(x)
by solving a quadratic equation:

φ(x) =
ν

3ω

[{
1 + κ2

(
λ− x2 + β

K ′aγ

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

)ψ
−ρ
(

1− K ′a

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

))ln(1− K ′a

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

))
−ρ K ′a

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

) ln( K ′a

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

))

−ρ K ′a

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

) ln(nH+,∞

K ′a

))}1/2

− 1

]
,

(30)

where,

κ2 =
9π2ω

8N2a2ν2
, (31)

ρ =
8a2N2

3π2
, (32)

λ = −λ1ρ = −λ1
8a2N2

3π2
, (33)

β =
8N2ea5

3π2kBT
. (34)
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Using eqs. (16), (18), (19), (20) and (30), we can re-write the equations governing ψ as:

ε0εr

(d2ψ
dx2

)
+ e

(
n+,∞ exp

(
− eψ

kBT

)
− n−,∞ exp

( eψ

kBT

)
+ nH+,∞ exp

(
− eψ

kBT

)
− nOH−,∞ exp

( eψ

kBT

)
− K ′aγ

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

) ν
3ω

[{
1 + κ2

(
λ− x2 + β

K ′aγ

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

)ψ
−ρ
(

1− K ′a

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

))ln(1− K ′a

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

))
−ρ K ′a

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

) ln( K ′a

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

))

−ρ K ′a

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

) ln(nH+,∞

K ′a

))}1/2

− 1

])
= 0 (0 ≤ x ≤ H),

ε0εr

(d2ψ
dx2

)
+ e

(
n+,∞ exp

(
− eψ

kBT

)
− n−,∞ exp

( eψ

kBT

)
+ nH+,∞ exp

(
− eψ

kBT

)
− nOH−,∞ exp

( eψ

kBT

))
= 0

(H ≤ x ≤ ∞).
(35)

Eqs.(29,35) establish that the equations governing the monomer distribution and the EDL electrostatic potential
involve the parameters (ν, ω) dictating the excluded volume interactions enabling for the first time the inclusion
of the excluded volume interactions in the SST description of the pH-responsive PE brushes. As has been already
discussed, the state of the art SST invariably neglect the EV effects, i.e., consider the brushes to be always in a
θ-solvent, which might be scenario far from reality.

The boundary conditions for solving ψ are:

(ψ)x=H− = (ψ)x=H+ ,
(dψ
dx

)
x=H−

=
(dψ
dx

)
x=H+

,
(dψ
dx

)
x=0

= 0, (ψ)x→∞ = 0. (36)

From eq.(35) we can solve for ψ for a given H, provided we know λ. λ is obtained by using the normalization condition
provided by eq.(9). In other words, we shall need to solve eqs.(35,9) simultaneously, as well as employ eq.(30) to obtain
φ, ψ and λ. Now that we have φ(x), ψ(x), nA−(ψ), n± = n±(ψ), nH+ = nH+(ψ), nOH− = nOH−(ψ) we can obtain
the net unbalanced charge (qnet) in the system as a function of H.

qnet = eσ

∫ ∞
0

(n+ − n− + nH+ − nOH− − φnA−)dx (37)

In order to obtain the equilibrium brush height H, which is H0, we will obtain the resulting equation (in terms of H0)
by writing: (

qnet
)
H=H0

= 0 (38)

Finally, we can obtain g(x) by inverting the integral equation provided by eq.(10) in presence of eq.(27) as:

g(x) =
xσ

Na3

[
φ(H)√
H2 − x2

−
∫ H

x

dφ(x′)

dx′
dx′√
x′2 − x2

]
(39)

III. RESULTS

A. Effects of consideration of excluded volume interactions

The state-of-the-art SST calculations for describing the pH-responsive PE brushes neglect the EV interactions, i.e.,
assume that the brushes are in a θ-solvent. However, a more generic consideration must account for the possibilities
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that the brushes might be present in a “good” solvent, so that there is a finite EV interactions between brush segments.
In the present case, we account for such a generic consideration and consider varying extent of the “goodness” of the
solvent, quantified by the different values of the parameters ν and ω. For simplicity, we define a given solvent using
different values of ν and a given value of ω. Obviously, the results corresponding to ν = 0 , ω = 0 represent the case
of the θ-solvent [13].

In Fig. 2(a), we elucidate the variation of the brush height as a function of the extent of the EV interactions
(quantified by different values of ν and a given value of ω). Larger EV interactions, characterized by larger values of
ν and ω, would enforce a larger separation between the segments of the PE brushes, and accordingly lead to a larger
value of the brush height [see Fig. 2(a)]. Of course, the case of ν = 0, ω = 0 is the case where the EV interactions have
been ignored. We have checked that the results ν = 0, ω = 0 from our calculations is exactly identical to that obtained
by Zhulina and Borisov [13], who consider a θ-solvent (no EV interactions). An increase in the salt concentration
reduces the brush height for all the values of ν and ω. A larger salt concentration leads to a smaller EDL thickness
and hence there is a screening of the electrostatic repulsion over much shorter distance, eventually reducing the brush
height with the salt concentration, as has been revealed previously [24, 27]. On the other hand, a larger pH∞ or a
smaller value of bulk H+ ion concentration leads to a stronger ionization reaction (i.e., there is an enhancement of the
reaction that produces H+ ions) and hence a larger charge of the PE brushes ensuring a larger counterion-induced
osmotic swelling [52–54] causing to a larger brush height for all values of ν and ω. The relative contribution of
the EV interactions in altering the brush height (quantified by the ratio ∆H0/H0) has been probed in Fig. 2(b).
We find that the maximum percentage difference occurs for the case of larger salt concentration and smaller pH∞.
Larger salt concentration (or a smaller EDL thickness) and smaller pH∞ (or a larger H+ ion concentration leading
to a weakened PE ionization) ensure weakened charging of the PE brushes and hence weakened counterion-induced
osmotic swelling of the brushes. Under such circumstances, therefore, the relative contribution of the EV-interactions
(and the resulting inter segment repulsions) in enhancing the brush height becomes more important as reflected by
the larger values of ∆H0/H0 for such concentration and pH∞ values. This is the first key finding of the paper: the EV
interactions, neglected in all previous studies of SST for pH-responsive PE brushes [13], become extremely important
in dictating the brush height for large salt concentration and small pH∞ values.
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FIG. 2: Variation of (a) non-dimensional equilibrium brush height H0/a (a is the PE Kuhn length) and (b) percentage increase
in equilibrium brush height ∆H0/H0 (where ∆H0 = H0 −H0,ν=0,ω=0) with the first virial coefficient ν for different pH∞ and
c∞ values. The case of Ref.[13] is the one where ν = 0, ω = 0 – we recover exactly the results of Ref.[13] when ν = 0, ω = 0.
Other parameters for this figure are ω = 0.1, pKa = 3.5, a = 1nm, γ = 1/a3 (1 PCS per kuhn monomer), N = 662, ` = 40nm,
kB = 1.38 × 10−23J/K, T = 298K, e = 1.6 × 10−19C, ε0 = 8.854 × 10−12F/m, εr = 79.8, pKw = 14, pOH∞ = pKw − pH∞,
c+,∞ = c∞, cH+,∞ = 10−pH∞ , cOH−,∞ = 10−pOH∞ , c−,∞ = c∞ + cH+,∞ − cOH−,∞.

Fig. 3 provides the variation of the monomer distribution (φ) along the brush height modelled considering finite EV
interactions of varying magnitude (quantified by different values of ν and a given value of ω) and no EV interactions
(i.e., ν = ω = 0). This latter case is exactly identical to the predictions by Zhulina et al. [13]. Smaller H0 for the
case where EV effects have been neglected ensure a denser monomer concentration near to the wall, and accordingly,
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driven by the need to ensure a constant N, a smaller monomer concentration away from the wall. Deviation of the
brush height due to the consideration of the EV interactions is maximum for larger c∞ and smaller pH∞ [see Fig.
2(b)]. Accordingly, for such c∞−pH∞ combinations, the variation in φ with and without the EV effects is maximum.
Therefore this variation in φ between the cases of with and without the EV effects is witnessed to the largest extent
in Fig. 3(d) (c∞ = 0.1 M and pH∞ = 3) and to the least extent in Fig. 3(a) (c∞ = 0.01 M and pH∞ = 4).

0 50 100 150
x

b
/a

0

0.001

0.002

0.003

0.004

0.005
 = 1

 = 0.5

 = 0.1

Ref. 13

(a) pH∞ = 4, c∞ = 10−2 M

0 20 40 60 80
x

b
/a

0

0.002

0.004

0.006

0.008

0.01
 = 1

 = 0.5

 = 0.1

Ref.13

(b) pH∞ = 4, c∞ = 10−1 M

0 20 40 60 80
x

b
/a

0

0.002

0.004

0.006

0.008

0.01
 = 1

 = 0.5

= 0.1

Ref. 13

(c) pH∞ = 3, c∞ = 10−2 M

0 10 20 30 40 50
x

b
/a

0

0.005

0.01

0.015

0.02
 = 1

 = 0.5

 = 0.1

Ref. 13

(d) pH∞ = 3, c∞ = 10−1 M

FIG. 3: Comparison of monomer distribution profiles (φ) as a function of the dimensionless transverse distance along the brush
(xb/a, a is the Kuhn length) obtained for different values of the first virial coefficient ν using our theory and theory of [13] for
different pH∞ and c∞ values. All other parameters are identical to that used in Fig. 2.

Fig. 4 provides the variation of the end distribution g of the PE brushes considering finite EV interactions of varying
magnitude (quantified by different values of ν and a given value of ω) and no EV interactions (i.e., ν = ω = 0; this
case is that of Ref. [13]). Given that the case without the EV effects lead to a larger concentration of the monomers
at near-wall locations, we witness a larger value of g at such near wall locations for the case without the EV effects.
On the other hand, an increase in the EV effects, leading to a flatter distribution of φ (see Fig. 3), ensures a larger g
value much away from the wall. Very much like Figs. 2 and 3, here too the maximum difference between the cases of
with and without the EV interactions is witnessed for the condition of large c∞ and small pH∞.
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(c) pH∞ = 3, c∞ = 10−2 M
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FIG. 4: Comparison of non-dimensional chain end distribution profiles (g × a, a is the Kuhn length) as a function of the
dimensionless transverse distance along the brush (xb/a) obtained for different values of the first virial coefficient ν using our
theory and theory of [13] for different pH∞ and c∞ values. All other parameters are identical to that used in Fig. 2.

Fig. 5 provides the transverse variation of the EDL electrostatic potential considering both finite EV interactions of
varying magnitude between the PE brush segments (quantified by different values of ν and a given value of ω) as well
as no EV interactions (i.e., ν = ω = 0; this case is that of Ref. [13]). The case of no EV interactions correspond to a
shorter height of the brush implying a larger per unit volume charge density of the monomers, which in turn would
ensure a larger magnitude of the EDL electrostatic potential at near-wall locations. At the same time, the presence of
the shorter brushes imply that the brushes extend to smaller distances away from the grafting wall. Accordingly, there
is no longer any charge from the brush at some finite distance away from the wall. These two factors simultaneously
ensure that the electrostatic potential at near-wall locations is much larger and steeper for the case without the EV
effects. The consideration of the EV effects makes the electrostatic potential much smaller and flatter. Here too this
difference between the cases that consider or neglect the EV interactions is parimaril manifested for large c∞ and
small pH∞.
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(c) pH∞ = 3, c∞ = 10−2 M
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FIG. 5: Comparison of non-dimensional electrostatic potential profiles (ψ̄ = eψ/(kBT )) as a function of the dimensionless
transverse distance along the nanochannel half height (x/a) obtained for different values of the first virial coefficient ν using
our theory and theory of [13] for different pH∞ and c∞ values. All other parameters are identical to that used in Fig. 2.

B. Effects of consideration of an expanded form of the mass action law

We have discussed previously that eq.(16) represents the expanded form of the mass action law and not eq.(21),
which has been invariably used in most of the existing studies, but is only a special case of the expanded form of
the mass action law obtain for the specific condition of γ = 1/a3. In this subsection, we provide results dictating
the PE brush configuration and the resultant EDL electrostatics for different values of γ, i.e., study the effect of the
consideration of the expanded form of the mass action law. Fig. 6 shows the variation of the equilibrium brush height
as a function of γa3. Increase in γ or γa3 implies that the PE molecules has a larger backbone charge density. As a
consequence, a larger number of counterions will get localized within the brush in order to screen the larger magnitude
of the PE charge. This, in turn, will lead to a larger counterion-induced osmotic swelling of the brushes (reflecting the
tendency of the counterions to maximize their entropy by increasing the brush volume), eventually leading to a larger
brush height [52–54]. Also, here too, the lowering of the salt concentration (i.e., increasing the EDL thickness, which
in turn would lead to a screening of the PE backbone charge over a larger length) and an increase in the pH∞ (leading
to a larger ionization and hence a greater charging of the PE molecule inducing a larger counterion-induced osmotic
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swelling) will cause an increase of the PE brush height. Here we also account for the EV interactions quantified by
ν = 0.1 and ω = 0.01.
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FIG. 6: Variation of non-dimensional equilibrium brush height H0/a with number of PCS per kuhn monomer γa3 for different
pH∞ and c∞ values. ν = 0.1, ω = 0.01. All other parameters are identical to that used in Fig. 2.
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FIG. 7: Comparison of monomer distribution profiles (φ) as a function of the dimensionless transverse distance along the brush
(xb/a, a is the Kuhn length) obtained for different values of PCS number density γ using our theory and theory of [13] for
different pH∞ and c∞ values. ν = 0.1, ω = 0.01. All other parameters are identical to that used in Fig. 2.

Fig. 7 provides the variation of the monomer density along the brush height for different values of γ. It was
discussed Fig. 3, a shorter brush would imply a larger (smaller) monomer density close to (away from) the wall in
comparison to the cases with larger brush height. This is also the case here – hence we witness a larger (smaller)
monomer density close to (away from) the wall for smaller γ values as well as the cases for larger salt concentration
and smaller pH∞ values.

Fig. 8 provides the variation of the end distribution g along the brush height for different values of γ. It was
revealed in Fig. 4 that the case of smaller brush height leads to a larger concentration of the monomers close to the
wall and results in a larger value of g close to the wall and it decays quickly away from the wall. On the other hand,
for the case of larger brush height, g is much smaller at near wall locations and decays much more slowly away from
the wall. This is the case here as well – hence we witness a larger (at near wall locations) and a steeply decaying g
for the case with small γ (i.e., the case that corresponds to smaller brush height, see Fig. 5), but a smaller and more
weakly decaying g for larger γ (i.e., the condition that leads to taller brushes).
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FIG. 8: Comparison of non-dimensional chain end distribution profiles (g × a, a is the Kuhn length) as a function of the
dimensionless transverse distance along the brush (xb/a) obtained for different values of PCS number density γ using our
theory and theory of [13] for different pH∞ and c∞ values. ν = 0.1, ω = 0.01. All other parameters are identical to that used
in Fig. 2.

Finally, Fig. 9 provides the transverse variation of the EDL electrostatic potential for different values of γ. Smaller
γ implies both weakened charge density of the brushes as well as shorter brushes. Accordingly, for smaller γ, the EDL
electrostatic potential is also weak and also decays quickly (since the brush height is small). Of course, for a given
γ, a larger EDL electrostatic potential (magnitude) is invariably witnessed for lower c∞ (weakened screening of the
charge of the PE brushes) and larger pH∞ (more enhanced ionization of the PE brushes).
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FIG. 9: Comparison of non-dimensional electrostatic potential profiles (ψ̄ = eψ/(kBT )) as a function of the dimensionless
transverse distance along the nanochannel half height (x/a) obtained for different values of PCS number density γ using our
theory and theory of [13] for different pH∞ and c∞ values. ν = 0.1, ω = 0.01. All other parameters are identical to that used
in Fig. 2.

IV. DISCUSSIONS

A. Applicability of the Proposed Theory

The proposed theory is directly applicable to all the systems that involve planar, pH-responsive PE brushes.
Such brushes have been extensively employed for several applications such as nanochannel ion selectivity [55] and
ion detection [56], fabrication of ionic valves [57, 58], nanofluidic diodes [59], and surfaces of controllable wetting
properties [60], and many more. The theory provides a new prediction of the EDL electrostatic potential distribution
and consequently a new prediction for the number density distribution of the electrolyte, hydrogen, and hydroxyl
ions for cases where the EV interactions between the PE segments become important and the PE brushes are so
charged that γa3 6= 1. This would imply that the corresponding changes in the ionic current or the current-voltage
characteristics (in presence of an applied voltage), which in turn would dictate several of these applications [55–59],
would be significantly different as compared to that obtained with the existing theory [13]. Similarly, the prediction of
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a new monomer distribution would critically affect the drag and the resulting fluid flow in brush-grafted nanochannels,
which would impact the problems dictated by such fluid flows in brush-grafted nanochannels [14, 16, 61].

The present model, while describes the planar brushes, would also motivate developing models that account for
the appropriate EV interactions and the expanded form of the mass action law for the pH-responsive spherical [62]
or cylindrical PE brushes (i.e., PE brushes grafted to spheres and cylinders) that have been employed in many
applications such as the use of nanoparticles grafted with pH-responsive brushes for targeted drug delivery [63],
protein binding [64], synthesis of magnetic nanoparticles [65], etc. Finally, the use of the generic mass action law
would be useful to improve the theoretical predictions of not only the pH-responsive planar and curved PE brushes,
but also all those calculations that involve generic pH-responsive PE molecules and gels [47–51].

B. Limitations and Scope of Improvement of the Proposed Theory

In this paper, we employ the strong stretching theory (SST) framework which assumes the brushes to be in a
strongly stretched configuration. Hence we ignore the effects of lateral variation of monomer distribution profile and
bending back of chain ends. The approximation holds good for systems with high grafting density. For other systems,
an advanced numerical self-consistent field theory (SCFT) model [66] needs to be implemented.

The second important issue is that we invariably assume that the EDLs are always thin enough to ensure that
`� 2λD (` is the distance between the adjacent grafted chains and λD is the EDL thickness) and there is no overlap
between the EDLs formed by the adjacent brushes. In case such an approximation does not hold, one would need to
assume a 2D (and not a 1D) model for the brush EDL electrostatics and alter the SST accordingly [67].

Thirdly, no non-PB component (e.g. finite ion size effect [68, 69], solvent polarization effect [70], or ion-ion corre-
lation effect [71]) has been considered in the description of the EDL. These effects would become important for large
ψ and large salt concentration and would significantly impact the overall self-consistent field approach.

Fourthly, our theory also does not consider the correlations due to the connectivity of the polymer charges. Such
correlations can be specially significant for pH-responsive systems (like pH-responsive PE brushes). For example,
there are chances that the effective pKa of the polymer chain might get significantly altered due to the connected
charges of the pH-responsive PE chain [72]. Such alteration of the pKa and its resulting connotations in all the
presented results have been obviously neglected in the present study.

Finally, we shall like to emphasize that given the fact that we have used mean-field calculations in this paper, the
capability of the present model to quantify the exact influence of the EV effects will be limited. This stems from
the fact that the mean field assumptions extend to the EV effect consideration as well. This has been described in
detail by Alexander-Katz et al. [73]. In this paper [73], the authors studied confined polymer solutions and used the
density profiles to obtain the effective correlation length ξeff quantifying the non-mean-field polymer correlations and
obtained the results to the mean field theory predictions. While for small EV parameters, the ξeff was well described

by the mean-field theory results, for larger EV parameters ξeff ∼ C−3/4 (C is the polymer solution concentration),
a result that the mean-field theory could not predict. In essence, therefore, chances are that the inherently mean-
field approach of the our calculations would imply that some of the predictions of the effect of considering the EV
interactions will be limited.

V. CONCLUSIONS

In this paper, we develop a self-consistent field approach (modified SST) to probe the behavior of the pH-responsive
brush system by accounting for (a) the EV interactions between the PE segments and (b) a more expanded form of
the mass action law valid for γa3 6= 1. Results indicate an enhancement of the brush height due to the consideration
of the EV interaction driven PE inter-segmental repulsion and an increase (decrease) of the brush height for γa3 > 1
(γa3 < 1) due to increased (decreased) counterion-induced osmotic swelling of the brushes. We also establish
that these typical height variations get reflected in the corresponding variations of the monomer density profile,
distributions of the PE brush ends, and the corresponding EDL electrostatic potential distribution. This model,
which can be considered as the most generic SST model for the pH-responsive PE brushes, will not only be critical for
explaining several experiments that invariably consider the PE brushes to be in a “good” solvent, but will also help
to better interpret a large number of problems that involve pH-responsive PE molecules (not necessarily in a “brush”
configuration) and gels and where a more expanded form of the mass action law with γa3 6= 1 may be more applicable.

Acknowledgement: This work has been supported by the Department of Energy Office of Science grant
DE-SC0017741.
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Appendix A: Derivation of eqs.(14-20)

We employ variational calculus to carry out the minimization of the free energy functional [eq.(12)]. Assuming that
the chain is flexible (p=1) and taking the variation of each free energy component w.r.t. E(x, x′), g(x′), ψ, nA− , n±,
nH+ and nOH− , we shall get:

δF ′els
kBT

=
3

2a2

[ ∫ H

0

g(x′)dx′
∫ x′

0

δE(x, x′)dx+

∫ H

0

δg(x′)dx′
∫ x′

0

E(x, x′)dx
]

+ λ1
σ

a3

∫ H

0

δφ(x)dx

−
∫ H

0

λ2(x′)dx′
∫ x′

0

δE(x, x′)

E2(x, x′)
dx

(A1)

δFEV
kBT

=
σ

a3

∫ H

0

(δfconc
δφ

)
δφdx (A2)

δFelec
kBT

+
δFEDL
kBT

=
σ

kBT

∫ ∞
0

[
− ε0εr

2
δ

∣∣∣∣dψdx
∣∣∣∣2 + eδψ(n+ − n− + nH+ − nOH−) + eψ(δn+ − δn− + δnH+ − δnOH−)

]
dx

− σ

kBT

∫ H

0

δ
[
eψnA−(x)φ

]
dx+ σ

∫ ∞
0

δ
[
n+

(
ln
( n+
n+,∞

)
− 1
)

+ n−

(
ln
( n−
n−,∞

)
− 1
)

+ nH+

(
ln
( nH+

nH+,∞

)
− 1
)

+ nOH−
(
ln
( nOH−

nOH−,∞

)
− 1
)

+ (n+,∞ + n−,∞ + nH+,∞ + nOH−,∞)
]
dx

=
σ

kBT

∫ ∞
0

[
ε0εr

(d2ψ
dx2

)
δψ + eδψ(n+ − n− + nH+ − nOH−) + eψ(δn+ − δn− + δnH+ − δnOH−)

]
dx

− σ

kBT

∫ H

0

[
eφ
( K ′aγ

K ′a + nH+

)
δψ − eφψ K ′aγ

(K ′a + nH+)
2 δnH+ + eψ

( K ′aγ

K ′a + nH+

)
δφ
]
dx

+ σ

∫ ∞
0

[
δn+ln

( n+
n+,∞

)
+ δn−ln

( n−
n−,∞

)
+ δnH+ ln

( nH+

nH+,∞

)
+ δnOH− ln

( nOH−

nOH−,∞

)]
dx

(A3)

δFion
kBT

=
σ

a3

∫ H

0

δφ

[(
1− nA−

γ

)
ln
(

1− nA−

γ

)
+
nA−

γ
ln
(nA−

γ

)
+
nA−

γ
ln
(nH+,∞

K ′a

)]
dx

+
σ

a3

∫ H

0

φ δ

[(
1− nA−

γ

)
ln
(

1− nA−

γ

)
+
nA−

γ
ln
(nA−

γ

)
+
nA−

γ
ln
(nH+,∞

K ′a

)]
dx

=
σ

a3

∫ H

0

δφ

[(
1− nA−

γ

)
ln
(

1− nA−

γ

)
+
nA−

γ
ln
(nA−

γ

)
+
nA−

γ
ln
(nH+,∞

K ′a

)]

+
σ

a3

∫ H

0

φ δnA−

[
− 1

γ
ln
(

1− nA−

γ

)
+

1

γ
ln
(nA−

γ

)
+

1

γ
ln
(nH+,∞

K ′a

)]
dx

(A4)

Page 17 of 22 Soft Matter



18

Substituting eq.(A1), (A2), (A3) and (A4) in (13), we get:

δF ′

kBT
=

3

2pa2

[ ∫ H

0

g(x′)dx′
∫ x′

0

δE(x, x′)dx+

∫ H

0

δg(x′)dx′
∫ x′

0

E(x, x′)dx
]

+ λ1
σ

a3

∫ H

0

δφ(x)dx

−
∫ H

0

λ2(x′)dx′
∫ x′

0

δE(x, x′)

E2(x, x′)
dx+

σ

a3

∫ H

0

(δfconc
δφ

)
δφdx

+
σ

kBT

∫ ∞
0

[
ε0εr

(d2ψ
dx2

)
δψ + eδψ(n+ − n− + nH+ − nOH−) + eψ(δn+ − δn− + δnH+ − δnOH−)

]
dx

− σ

kBT

∫ H

0

[
eφnA−δψ + eφψδnA− + eψnA−δφ

]
dx

+ σ

∫ ∞
0

[
δn+ln

( n+
n+,∞

)
+ δn−ln

( n−
n−,∞

)
+ δnH+ ln

( nH+

nH+,∞

)
+ δnOH− ln

( nOH−

nOH−,∞

)]
dx

+
σ

a3

∫ H

0

δφ

[(
1− nA−

γ

)
ln
(

1− nA−

γ

)
+
nA−

γ
ln
(nA−

γ

)
+
nA−

γ
ln
(nH+,∞

K ′a

)]
dx

+
σ

a3

∫ H

0

δnA−φ

[
− 1

γ
ln
(

1− nA−

γ

)
+

1

γ
ln
(nA−

γ

)
+

1

γ
ln
(nH+,∞

K ′a

)]
dx

(A5)

Variation of eq.(10) gives:

δφ(x) =
a3

σ

∫ H

x

[ δg(x′)

E(x, x′)
− g(x′)δE(x, x′)

E2(x, x′)

]
dx′ (A6)

Substituting eq.(A6) in (A5) and rearranging gives:

δF ′

kBT
=

∫ H

0

dx′
∫ x′

0

δE(x, x′)

[
3g(x′)

2pa2
− λ2(x′)

E2(x, x′)
−

(
δfconc
δφ

+ λ1 −
ea3ψ

kBT
nA− +

(
1− nA−

γ

)
ln
(

1− nA−

γ

)
+
nA−

γ
ln
(nA−

γ

)
+
nA−

γ
ln
(nH+,∞

K ′a

)) g(x′)

E2(x, x′)

]
dx

+

∫ H

0

dx′δg(x′)

∫ x′

0

[
3E(x, x′)

2pa2
+

(
δfconc
δφ

+ λ1 −
ea3ψ

kBT
nA− +

(
1− nA−

γ

)
ln
(

1− nA−

γ

)
+
nA−

γ
ln
(nA−

γ

)
+
nA−

γ
ln
(nH+,∞

K ′a

)) 1

E(x, x′)

]
dx

+
σ

γa3

∫ H

0

δnA−φ

[
− γa3 eψ

kBT
− ln

(
1− nA−

γ

)
+ ln

(nA−
γ

)
+ ln

(nH+,∞

K ′a

)]
dx

+
σ

kBT

∫ H

0

δψ
[
ε0εr

(d2ψ
dx2

)
+ e
(
n+ − n− + nH+ − nOH− − nA−φ

)]
dx

+
σ

kBT

∫ ∞
H

δψ
[
ε0εr

(d2ψ
dx2

)
+ e(n+ − n− + nH+ − nOH−)

]
dx+ σ

∫ ∞
0

δn+

[ eψ
kBT

+ ln
( n+
n+,∞

)]
dx

+ σ

∫ ∞
0

δn−

[
− eψ

kBT
+ ln

( n−
n−,∞

)]
dx+ σ

∫ ∞
0

δnH+

[ eψ
kBT

+ ln
( nH+

nH+,∞

)]
dx

+ σ

∫ ∞
0

δnOH−
[
− eψ

kBT
+ ln

( nOH−

nOH−,∞

)]
dx

(A7)
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Equating δF ′=0 yields the desired eqs.(14-20) since δE(x, x′) 6=0, δg(x′) 6=0, δψ 6=0, δnA− 6=0, δn± 6=0, δnH+ 6=0,
δnOH− 6=0.
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Polyelectrolyte brushes have been modeled using Strong Stretching 
Theory with excluded volume effects and expanded mass action law. 
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