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15 Abstract

16 Atomic force microscopy (AFM) is becoming an increasingly popular method for 

17 studying cell mechanics, however the existing analysis tools for determining the 

18 elastic modulus from indentation experiments are unable to quantitatively account for 

19 mechanical heterogeneity commonly found in biological samples. In this work, we 

20 numerically calculated force-indentation curves onto two-layered elastic materials 

21 using an analytic model. We found that the effect of the underlying substrate can be 

22 quantitatively predicted by the mismatch in elastic moduli and the homogeneous-case 

23 contact radius relative to the layer height for all tested probe geometries. The effect is 

24 analogous to one-dimensional Hookean springs in series and was phenomenologically 

25 modeled to obtain an approximate closed-form equation for the indentation force onto 

26 a two-layered elastic material which is accurate for up to two orders of magnitude 

27 mismatch in Young’s modulus when the contact radius is less than the layer height. We 

28 performed finite element analysis simulations to verify the model and AFM 
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29 microindentation experiments and macroindentation experiments to demonstrate its 

30 ability to deconvolute the Young’s modulus of each layer. The model can be broadly 

31 used to quantify and serve as a guideline for designing and interpreting indentation 

32 experiments into mechanically heterogeneous samples.

33

34 Introduction

35 Indentation-based elasticity measurements are commonly used to investigate 

36 mechanical properties of materials across many length, time, and rigidity scales.1 A 

37 frequently used tool for active micro- and nanoindentation is the atomic force 

38 microscope (AFM), allowing for the characterization of materials with various probe 

39 geometries with multiple magnitudes of dimensions (10-9-10-5 m) and forces (10-12-

40 10-6 N). AFM indentation has been applied at the nanometer scale to quantify 

41 mechanical properties of microtubules,2 viruses,3, 4 polymer films,5 hydrogels,6-9 and is 

42 being increasingly used in the fields of cell mechanics10-18 and tissue mechanics.19, 20 

43 The basic principle is to indent an object with a probe of known geometry and 

44 dimensions and measure the force of indentation as a function of distance into the 

45 sample, producing a force-indentation (F-δ) curve. Nominally, these F-δ curves may be 

46 fit to an elastic contact model, such as Hertz21 or Sneddon22, to determine the Young's 

47 (or elastic) modulus E of the sample when the Poisson's ratio ν is known (for a detailed 

48 review, see Ref. 23). ν is typically between 0 and 0.5 and assumed to be 0.5 for rubber-

49 like materials. Assumptions of these models include that the sample is an infinite half-

50 space with homogeneous, isotropic elasticity with no viscosity, there is frictionless, 

51 non-adhesive contact between the surface and the probe, and the strains are small; 

52 most samples encountered in cell and tissue mechanics do not meet these 

53 assumptions.

54 One common problem is the presence of some mechanical heterogeneity in the 

55 sample, for example a thin cell24 or the actin cortex of a cell,25 which may be modeled 

56 as a thin elastic layer that is supported by a substrate with different mechanical 

57 properties. Elastic contact models have been extended to account for the effects of an 

58 infinitely rigid substrate for axially symmetric probe geometries.26-28 Other models 

59 have been developed to account for a thin layer that has a small (less than one 

60 magnitude) elastic mismatch to its substrate,29-31 define an equivalent elastic modulus 

Page 2 of 22Soft Matter



61 for a multi-layered system using a numeric approach,32, 33 use a mixed finite element 

62 analysis approach,34 or for cells specifically to treat the top layer as an entropic 

63 polymer brush and the cell body an elastic sample35 or add additional contribution 

64 arising from surface tension.36 However, the field lacks a simple formulation that may 

65 be easily applied to any elastic mismatch between two elastic layers for all probe 

66 geometries. In this article we present a method for the mechanical quantification of 

67 elastic, layered materials, which has general application to many probe geometries 

68 and sample types. Further, it allows to estimate the influence of underlying materials 

69 to force-indentation curves and therewith the resulting Young's moduli. Finite 

70 element simulations are performed to validate the approach, and AFM 

71 microindentation and macroindentation experiments are performed to assess the 

72 applicability of the model.

73
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74
75 Figure 1: Overview of the bonded two-layer axisymmetric indentation model. (A) Illustration of the model with 

76 the relevant physical parameters. (B) Force-indentation curves calculated from the numeric model for three cases: 

77 the homogeneous case (green), a stiffer substrate (red), and a softer substrate (blue). (C) Contact radius between 

78 the indenter and surface of the indentation as a function of indentation depth. (D) Surface displacement profile 

79 calculated from Eq. 10. Parameters used to calculate are: parabolic indenter geometry (Hertz model), R=5 µm, 

80 h=20 µm, E1=100 kPa, E2=100 kPa, 10kPa, or 1MPa for green, blue, and red, respectively, ν1=ν2=0.5, and in (D) 

81 δ=1.0 µm.

82
83 Sneddon demonstrated that the axisymmetric elastic indentation problem in 

84 cylindrical coordinates can be reduced using Hankel Transforms into a dual integral 

85 problem to solve for the stress-strain relations along the deformed surface of an 

86 infinite half-space.22 From this, F-δ relations can be derived for any arbitrary indenter 

87 geometry defined by a function f. Dhaliwal and Rau extended the work of Sneddon to 

88 include an elastic layer bonded to an infinite elastic half-space (Fig. 1A) by imposing 

89 additional boundary conditions between the two elastic layers.37 The F-δ relations are 

90 determined by solving a Fredholm Integral Equation of the Second Kind:37, 38

91

92 𝜙(𝑡) +
𝑎

ℎ𝜋∫
1

0
𝐾(𝑥,𝑡)𝜙(𝑥)𝑑𝑥 = ―

𝐸1𝑎

2(1 ― 𝜈1
2)[𝛿 ― 𝛽(𝑡)]   (1)

93
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94 𝐹 = ―4∫
1

0
𝜙(𝑡)𝑑𝑡  (2)

95
96   (3)𝜙(1) = 0

97
98 where a is the contact radius between the probe and the sample, δ is the probe 

99 indentation depth, h is the distance from the top of the layer to the interface with the 

100 substrate (height of the layer), E1 is the Young’s modulus and ν1 is the Poisson's ratio 

101 of the layer, F is the indentation force, and β is a function of f (Supplementary Table 1):

102

103 𝛽(𝑡) = 𝑡∫
𝑡

0

𝑓′(𝑟𝑎)

𝑡2 ― 𝑟2𝑑𝑟      (4)

104
105 where 0 < r < 1. Here ϕ is an intermediate function to reduce the system of dual integral 

106 equations to a single equation and is related to the stress profile of the indentation. 

107 The kernel K is smooth and defined by

108

109  𝐾(𝑥,𝑡) = 2∫∞
0 𝐻(2𝑢)cos (𝑎

ℎ𝑡𝑢)cos (𝑎
ℎ𝑥𝑢)𝑑𝑢     (5)

110
111 with

112

113 𝐻(𝑢) = ―
𝑑 + 𝑔(1 + 𝑢)2 + 2𝑑𝑔𝑒 ―𝑢

𝑒𝑢 + 𝑑 + 𝑔(1 + 𝑢2) + 𝑑𝑔𝑒 ―𝑢        (6)

114

115 𝑑 =
(3 ― 4𝜈1) ― 𝜇(3 ― 4𝜈2)

1 + 𝜇(3 ― 4𝜈2)         (7)

116

117 𝑔 =
1 ― 𝜇

𝜇 + 3 ― 4𝜈1
    (8)

118

119 𝜇 =
𝐸1(1 + 𝜈2)
𝐸2(1 + 𝜈1)      (9)

120
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121 where E2 and ν2 are the Young’s modulus and Poisson’s ratio of the substrate. When E1 

122 = E2 or h → ∞, Eq. (1) is reduced to the homogeneous case considered by Sneddon.22 

123 Eq. (1) is numerically solved39 simultaneously with the boundary condition Eq. (3) to 

124 determine a and ϕ, then F is calculated using Eq. (2). In the case of an indentation onto 

125 a two-layer sample with a stiffer substrate (E2>E1), F will be larger compared an 

126 indentation onto a sample with homogeneous E1, and similarly for a sample with a 

127 softer substrate (E2<E1), F will be smaller compared to homogenous E1 (Fig. 1B). The 

128 relationship between a and δ varies in the same way as F; for a stiffer substrate, a will 

129 be larger than the homogeneous case, and a will be smaller for a softer substrate (Fig. 

130 1C). The substrate effect is strongest for ν=0.5 and weakens as ν decreases (Fig. S1). 

131 This formalism does not model an asymptotic relationship in F when δ>h, especially 

132 in the case of E2>E1, thus we ensure that δ<h henceforth. Dhaliwal and Rau present a 

133 series approximation37 for ϕ and we observed that this will provide a similar result as 

134 Nyström interpolation39 for E2>E1 but converges slowly when E1>E2 (Fig. S2).

135 Additionally, the surface deformation profile uz of the layer as a function of 

136 lateral distance from the probe is37

137

138

 𝑢1
𝑧(𝑟;

𝑟
𝑎 > 1)

=
2
𝜋∫

1

0

𝛿 ― 𝛽(𝑥)

(𝑟/𝑎)2 ― 𝑥2𝑑𝑥 ―
4(1 ― 𝜈1

2)
𝜋2𝐸1ℎ ∫

𝑟/𝑎

1

𝑑𝑦

(𝑟/𝑎)2 ― 𝑦2∫
1

0
𝐾(𝑦,𝑡)𝜙(𝑡)𝑑𝑡

   (10)

139
140 (for r/a < 1, the surface strain is the difference of the probe shape and indentation). 

141 The surface deformation profile depends on the elastic mismatch; the deformation at 

142 higher lateral distances from the probe will increase as E2 decreases (Fig. 1D).

143 Solving the above equations will calculate F and a as a function of the other 

144 physical parameters (f, δ, h, E1, E2, ν1, ν2) thus providing a template to fit experimental 

145 F-δ data. The formalism has recently been used to deconvolute the Young's modulus 

146 of the layer E1 using Eq. 1-9 by pre-computing a table of correction factors to the 

147 Young's modulus for an AFM dataset in which f is known, δ is constant, F is measured, 

148 ν1=ν2=0.5 is assumed, and h and E2 are independently measured.16 We denote E0 as the 

149 apparent Young’s modulus which is obtained by fitting the F-δ to a standard contact 

150 model (e.g. the Hertz model) and pre-compute a table of values of dimensionless 
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151 corrections to the apparent Young’s modulus E1/E0 as a function of the first layer 

152 height h and relative elastic mismatch E1/E2. Once the table is generated, it may be 

153 iteratively interpolated to find the unknown Young's modulus E1 of the layer. This 

154 method directly solves Eq. (1-9) to deconvolute one of the Young's moduli, however it 

155 lacks generality and is computationally expensive as a separate table must be 

156 generated for each experimental condition and curve fitting method (for example 

157 constraints on the contact point). Thus, we seek to use numeric results of Eq. (1-9) to 

158 provide a more intuitive framework for understanding the substrate effect in the 

159 indentation problem.

160

161 Materials and methods

162 Finite element analysis

163 Finite element analysis was performed using ANSYS Workbench 14.0. The models assume 

164 axial symmetry around the center of the indenting probe. The indenting probe was modeled 

165 as a sphere of radius 5 µm with much higher rigidity (~GPa) than the samples being indented 

166 (~kPa-MPa). The sample was modeled as two bonded elastic (isotropic) layers each with ν1
 

167 = ν2 = 0.49 (ν = 0.49 was chosen as opposed to 0.5 for numeric stability). The layer had 

168 variable height (4 µm or 20 µm) and fixed Young’s modulus (100 kPa) and the substrate had 

169 a fixed height of 200 µm and variable Young’s modulus (100 Pa-100 MPa) and both layers 

170 had a radius of 150 µm. The material was fixed at the bottom of the second layer and had a 

171 triangular mesh size of 100 nm which and tapers to larger values at a distance of 25 μm from 

172 the probe. The probe used a triangular mesh size of 50 nm and the contact between the tip 

173 and sample was frictionless. The probe was then moved into the sample in 2 nm increments 

174 and the force response was calculated at the interface between the probe and sample, thus 

175 producing a simulated F-δ curve which are copied to MATLAB for analysis.

176
177 PDMS preparation and atomic force microscopy

178 Polydimethylsiloxane (PDMS, Sylgard 184, Dow Corning) was mixed with 

179 base:crosslinker ratios of 25:1 and 40:1 and degassed. Thin PDMS layers were spin-

180 coated at 4000 rpm for 2 min onto silanized (Methyltrichlorosilane, Sigma Aldrich) 

181 glass coverslips (Gold Seal 48mm×60mm, Electron Microscopy Sciences) and thick 

182 (~3 mm) PDMS substrates were poured onto glass-bottom petri dishes and cured at 
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183 65°C overnight. The layer thicknesses were determined by the interference pattern of 

184 the back reflected light at the gel interfaces using a confocal microscope (Microtime 

185 200, PicoQuant) at 6 locations on the gel used to form the layer; thickness values 

186 represent the mean  standard deviation. Both layers were then cleaned in oxygen 

187 plasma (PDC-001, Harrick Plasma) for 2 min, pressed together to bond, and then the 

188 silanized coverslip was removed to produce a layered PDMS substrate. AFM 

189 measurements were performed using an MFP-3D-BIO (Asylum Research) with a 10 

190 μm diameter glass bead glued to a tipless cantilever (ACT-TL, AppNano) with stiffness 

191 57 N/m as determined from the thermal tuning method. Experiments were performed 

192 at room temperature and in 2% bovine serum albumin in phosphate buffered saline 

193 to reduce tip-sample adhesion. The probe velocity was 2 μm/s and indentation depths 

194 up to 1.5 μm were analyzed. Data is collected from multiple indentations at different 

195 locations on a single two-layered sample as well the homogeneous stiffness samples 

196 prepared at the same time (gels within a single figure panel were prepared at the same 

197 time, gels in different figure panels were not); stiffness values represent the mean  

198 standard deviation from at least 48 indentations per sample.

199

200 PDMS preparation and macroindentation

201 PDMS was mixed with base:crosslinker ratios of 10:1 and 25:1, degassed, and cured at 

202 65°C overnight. Bulk indentation measurements were performed with an Anton-Paar 

203 MCR302. A steel bead with a diameter of 9.53 mm was glued to a disposable measuring 

204 plate (D-PP25/AL/S07) using epoxy. The rheometer was programmed to adjust the 

205 gap distance relative to the bottom of the gel (equivalent to δ with an offset) and the 

206 resulting normal force is measured resulting in a F-δ curve. Measurements were 

207 performed in air. The height of the PDMS gel was determined from the contact point 

208 of the rheometer. F-δ curve and indentation depths up to 1.5 mm were analyzed. Data 

209 is collected from a single indentation on a single layered sample as well the 

210 homogeneous stiffness samples prepared at the same time.

211

212 Data analysis

213 F-δ curves are analyzed using home-built routines in MATLAB (R2015b, MathWorks). 

214 For all data using a spherical indenter, data is fit using linear least squares regression 
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215 on the Hertz model with a fully constrained contact point (the fits contain F = 0, δ = 0). 

216 Contact points were manually chosen in a point-and-click scheme. Eq. (1) is solved 

217 using the MATLAB program Fie.39 Built-in MATLAB functions trapz and quadv are used 

218 for numeric integration and lsqcurvefit for curve fitting. Wolfram Mathematica 8.0 is 

219 used to solve Eq. (4). The Poisson's ratio was assumed to be 0.5.

220

221
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222
223 Figure 2: Results of the two-layer model for F/F0 for a parabolic (Hertz model) probe. (A) F/F0 as a function of 

224 E1/E2 for various values of a0/h (magenta a0/h=0.01, green 0.10, blue 0.25, red 0.50, and black 1.00). (B) The same 

225 data as (A) except showing F/F0 as a function of a0/h for various values of E1/E2 (cyan E1/E2=1, blue 10, red 100, 

226 black 1000, green 0.1, and magenta 0.001). Open markers indicate the solution to Eq. (1-9) while solid lines 

227 indicate the solution to Eq. (16).

228

229 Results

230 The deconvolution method

231 In elastic contact mechanics, F is linearly proportional to E and has some non-linear 

232 dependence on δ. We denote F0 and a0 as the force and contact radius between the probe and 

233 sample for the homogeneous case of E1 (see also Supplementary Table 1), so for the Hertz 

234 model21 

235

236 𝐹0 =
𝐸1

(1 ― 𝜐1
2)

4
3 𝑅𝛿3    (11)

237

238 𝑎0 = 𝑅𝛿      (12)

239

240 where R is the apex radius of the probe. In the two-layer model, E is replaced by E1, and h and 

241 E2 are introduced as additional multiplicative term describe the contribution of the substrate 

242 and perturbs F (and a) from the case of homogeneous E1. In Eq. (1-9), h and E2 only appear in 

243 terms relative to the contact radius a and E1, respectively. Therefore, when the Poisson’s 

244 ratios of the layer and substrate are known (here we assume ν1=ν2=0.5 for incompressible 
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245 materials), the indentation into the two-layer material can be described as an indentation 

246 into the layer treated as a homogeneous material E1 with an extra corrective term from 

247 substrate. The perturbative term should have dependence on the relative height to the probe 

248 size and contact radius a0/h and the elastic mismatch E1/E2, both of which are dimensionless.

249 We calculated deviations from the homogeneous case F/F0 for a values of E1/E2 in the 

250 range of 10-3 to 103 and a0/h<1 for a parabolic (Hertz model) indenter (Fig. 2A, B). When 

251 E1<E2, F/F0>1 and the substrate effect saturates for increasing E2, indicating an upper limit of 

252 E2 altering the F-δ response. When E1>E2, F/F0<1 and the effect diverges for decreasing E2 and 

253 the F-δ response becomes dominated by the rigidity of the substrate. These effects are 

254 amplified as a0/h increases. We also calculated F/F0 for various E1/E2 and a0/h for other 

255 common axisymmetric indenter geometries: a cone (Sneddon model22), hyperbola,38 and 

256 cone with a spherical cap (sphero-cone,16 Supplementary Table 1), and these are similar for 

257 each geometry (Fig. S3). 

258 The shape of F/F0 for the 3D axisymmetric indentation is similar to the 1D problem 

259 of compressing springs with stiffnesses k1 with k2 in series (Supplementary Text); in the 

260 regime of k2>>k1 the force required saturates to compress only k1 without the second spring, 

261 and in the regime of k1>>k2 a power law emerges (Eq. S3). We phenomenologically extend the 

262 1D solution to the full 3D solution using Eq. (1-9) and assuming ν1=ν2=0.5 to take the form of

263

264 𝐹 ≈ 𝐹0

𝐵(𝑎0

ℎ ) + 1

𝐵(𝑎0

ℎ )(𝐸1

𝐸2)
𝐴(𝑎0

ℎ )
+ 1

      (13)

265
266 where 0≤A≤1 is the power law behavior in the elastic mismatch and B is the saturation 

267 point at E1<<E2, both of which depend on the 3D geometry a0/h. In the 1D case of two 

268 springs in series, A=B=1. We fit the data in Fig. 2 to Eq. (13) as a function of E1/E2 and 

269 subsequently fit A and B as functions of a0/h to obtain (Supplementary Note 1, Fig. S4)

270
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271 𝐴(𝑎0

ℎ ) ≈ min (1, 0.72 ― 0.34(𝑎0

ℎ ) + 0.51(𝑎0

ℎ )
2)    (14)

272

273 𝐵(𝑎0

ℎ ) ≈ 0.85(𝑎0

ℎ ) + 3.36(𝑎0

ℎ )
2

     (15)

274
275 These satisfy F=F0 when E1=E2 or a0/h=0 and F≈F0 E2/E1 when a0>>h. The value and 

276 interpretation of B is similar to other layered indentation models with a rigid substrate 

277 (E2=∞).26 Eq. (14-15) are valid only for a0/h < 1 (Fig. S4C) and errors arise for large 

278 a0/h and E1>>E2. Eq. (14-15) were approximated for a parabolic (Hertz model) 

279 indenter, however the numeric coefficients will be similar for other indenter shapes 

280 up to a0/h~0.5. Thus, we can write a final equation to approximately fit experimental 

281 F-δ data using a spherical or parabolic indenter on a two-layered sample as

282 𝐹 ≈
16𝐸1 𝑅𝛿3

9 ( 0.85(𝑎0

ℎ ) + 3.36(𝑎0

ℎ )
2

+ 1

(0.85(𝑎0

ℎ ) + 3.36(𝑎0

ℎ )
2)(𝐸1

𝐸2)
0.72 ― 0.34(𝑎0

ℎ ) + 0.51(𝑎0

ℎ )
2

+ 1
)   (16)

283
284 where, ν1=ν2=0.5 is assumed, δ<h, and a0/h<1. Eq. (16) as written provides a similar 

285 result as numerically solving Eq. (1-9) to within 8% for a0/h<0.8 and E2>10E1, or 

286 a0h<0.5 and E2>100E1 (Fig. 2). F depends on all parameters (E1, E2, and h) and the 

287 effects of changing one variable may be similar to changing another; thus, fitting for 

288 multiple unknown parameters in Eq. (16) may result in overfitting of the data and 

289 errors in determining any of the input parameters will propagate into further errors 

290 in fitting for the unknown parameters. Henceforth in this article, fitting for either E1 or 

291 E2 is performed when the other modulus is known and h is always known (single 

292 unknown parameter fitting).

293
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294
295 Figure 3: Finite element analysis validation of the two-layer indentation model. (A) F-δ curves generated from 

296 the numeric model for the homogeneous case (green), a softer substrate (blue, E2=E1/10), and a stiffer substrate 

297 (red, E2=10E1), and the corresponding F-δ curves calculated from Eq. (1-9) (solid lines). Parameters used are 

298 E1=100 kPa, h=4 µm, R=5 µm, δ=1.0 µm, and ν1=ν2=0.49. (B) Fits for the Young's modulus of a layered material 

299 with a stiff substrate (E2=10E1), including the Hertz model fit (red), the fit for the layer E1 (magenta), the fit for 

300 the substrate E2 (cyan), and the fit for the layer E1 of a homogeneous material (green). (C) Same as (B) for a layered 

301 material with a soft substrate (E2=E1/10). (D) Deconvolutions of finite element analysis data using precomputed 

302 correction tables. Plus signs show fits using the standard Hertz model E0, circles are two-layer fits for the layer E1 

303 which is kept constant at 100 kPa, squares are fit for the substrate E2 which is variable (simulation moduli shown 

304 in black), blue denotes a thicker layer (h=20 µm), red denotes a thinner layer (h=4 µm). (E) Deconvolutions of 

305 finite element analysis data by performing a least squares fit on Eq. (14), using the same legend as (C) with δ up 

306 to a0/h=0.10, a0/h=0.25, and a0/h=0.50 in blue, green, and red, respectively.

307

308 Validation of the method with simulated F-δ curves 

309 To test the validity of the model, we performed finite element analysis simulations of 

310 an indentation into a layered elastic material using a spherical probe. We simulated 

311 F-δ data for two different layer heights (20 μm and 4 μm, corresponding to a0/h=0.11 

312 and a0/h=0.56, respectively, for a spherical probe with R=5 μm and δ=1 μm) with 

313 varying E2 and constant E1 (Fig. 3C). We observed good agreement in the F-δ curves 

314 generated by finite element analysis and the two-layer model Eq. (1-9) for the same 
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315 geometric and material parameters (Fig. 3A) and in the surface displacement profile 

316 of the layer with Eq. (10) (Fig. S5). When we fit the F-δ curves on a layered material to 

317 the Hertz model to determine E0, we observe a dependence of the fitted (apparent) 

318 Young’s modulus value with indentation depth (Fig. 3B, C). Fitting F-δ data using Eq. 

319 (16) for E1, removes the depth-dependence of the Young's modulus and we can 

320 recover the value of the layer in the simulation. Furthermore, fitting the F-δ data using 

321 Eq. 16 for E2 provides mixed results; when E1>E2 we are able to recover the value of E2 

322 in the simulation (Fig. 3C), however when E1>E2 we are only able to recover the value 

323 at high indentation depths (Fig. 3B). This is due to the fact that F/F0 will plateau at a 

324 certain value of a0/h even if E2 is further increased (Fig. 2A).

325 We next fit for the Young's moduli of the two layers from finite element models 

326 for different combinations of E1/E2 and a0/h (Fig. 3D, E). In the case of an indentation 

327 into a thick (h=20 μm) layer, the standard Hertz model is able to accurately estimate 

328 the layer Young's modulus in the case of E2>E1, however for E1>E2, large errors arise 

329 which scale with decreasing E2. When the layer height is thin (h=4 μm), errors arise in 

330 estimating the Young's modulus using the Hertz model when E2>E1 and are more 

331 pronounced for E1>E2 (Fig. S6A). When we directly used Eq. (1-9) as a template to fit 

332 the simulated finite element data (Fig. 3D), we obtained E1 for nearly all h and E2, and 

333 E2 for E2<E1 within 20% accuracy, however E2 could not be estimated when E1<E2 due 

334 to the saturating effect on F/F0 with increasing E2.

335 The deconvolution results for the approximate method Eq. (16) (Fig. 3E, S6B) 

336 provides similar results however with less accuracy for large a0/h and small E2; E1 has 

337 errors within ~20% when the elastic mismatch is within two orders of magnitude and 

338 a0/h<0.25, and E2 cannot be determined when E2>E1. Errors in determining E1 in the 

339 regime of E1>E2 become larger than the exact method Eq. (1-9) as E2 decreases and 

340 a0/h increases.

341
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342
343

344 Figure 4: Experimental indentation-based measurements of layered PDMS gels. (A) Schematic of AFM 

345 indentation of a layered PDMS gel. (B) F-δ curves of a soft layer and rigid substrate (green), a homogenous 

346 soft gel (blue), and a homogenous stiff gel (red). Fits are shown using Hertz model (E0, in black) for the 

347 homogenous gels, and the two-layer model (E1, in black) with known substrate and the substrate modulus 

348 (E2) with known layer height. (C) F-δ curves for a stiff layer and soft support (magenta) and similar 

349 analysis as in B. The two-layer model was used to fit for the layer modulus (E1) when the substrate 

350 modulus and layer height are known, and is also used to fit the substrate modulus (E2) when the layer 

351 modulus and layer height are known. (D) Schematic of macroindentation on a layered PDMS gel. (E) F-δ 

352 curves showing rheometer data for single-layered gels and double-layered gels with the respective 

353 Young's modulus values from fitting.

354

355 Demonstration of the deconvolution method with experimental F-δ curves 

356 In order to test the efficacy of the model in analyzing experimental F-δ data, we 

357 fabricated layered PDMS samples with stiffness mismatch (base:crosslinker ratios of 

358 25:1 and 40:1 for stiff on soft, respectively) and performed AFM-based 

359 microindentation (Fig. 4A) with a spherical probe (Fig. S7). Here we measure the 

360 Young's moduli of both layers independently and the layer thickness using the 

361 interference patterns of the back reflected light at the interfaces (h~17 μm and δ=1.5 

362 μm, thus a0/h~0.16). Once the modulus of each homogenous gel had been 

363 independently determined, we tested if we could use Eq. (16) to deconvolute each 

364 constituent modulus in a layered sample when one of E1, E2, or h is fitted for and the 

365 other two are treated as known input parameters. In the case of a soft layer with stiff 
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366 substrate (E1<E2), we observe that the force is higher than the homogenous soft gel 

367 and less than the homogenous stiff gel (Fig. 4B), thus fitting with the Hertz model for 

368 E0 (58  6 kPa) provides a result different from both (258  8 kPa and 49  4 kPa for 

369 25:1 and 40:1, respectively). When the force-indentation curve on the layered gel is fit 

370 with Eq. (16) with known substrate E2 (the value of E0 of the homogeneous stiff gel) 

371 and h, the fitted value E1 (51  5 kPa) of the layer is in good agreement with the 

372 homogenous stiffness E0 of the soft gel. We do not fit for E2 as we observed that fitting 

373 for E2 in the case of a stiff substrate with a relatively low a0/h results in high errors in 

374 determining E2.

375 The effect is similar for the case of a stiff layer and soft substrate (Fig. 4C); the 

376 E0 fits for these samples differ from both homogenous gels (196  15 kPa, 226  5 kPa, 

377 and 81  3 kPa for layered, 25:1, and 40:1, respectively). However, when E2 (E0 of the 

378 homogenous soft gel) and h are used as input parameters in Eq. (16), the fitted value 

379 E1 (230  22 kPa) is similar to E0 of the stiff gel. When E1 (E0 of the homogenous stiff 

380 gel) and h are used as input parameters in Eq. (16), the fitted E2 (93  29 kPa) is similar 

381 to E0 of the soft gel.

382 As the model is applicable to any length scale, we additionally performed 

383 macroindentation experiments on layered PDMS gels using a steel bead (R = 4.8 mm) 

384 glued to the measuring plate of a rheometer (Fig. 4D). We collected F-δ data on two-

385 layered and single-layered PDMS gels with crosslinking ratio of 10:1 and 25:1 and fit 

386 the data using Eq. (14) (Fig. 4E). Indentations were first performed on homogenous 

387 PDMS gels and we obtained Young's moduli E1 of 1.39 and 0.26 MPa for 10:1 and 25:1 

388 crosslinking ratios, respectively. Thin (h ~ 9 mm and δ = 1.5 mm, thus a0/h ~ 0.3) slices 

389 of additional PDMS gel were attached on top of the thick gels and additional F-δ data 

390 (Fig. 4E) was collected. As qualitatively expected, the force of indentation on a thin 

391 10:1 gel with a 25:1 substrate is lower than the force of indentation on a homogeneous 

392 10:1 gel, and the force of indentation on a thin 25:1 gel with a 10:1 substrate is higher 

393 than the force of indentation on a homogeneous 25:1 gel. Fits for E0 using the Hertz 

394 model gave results that are significantly different from the homogenous gel stiffnesses 

395 (0.72 MPa for 10:1 on top of 25:1; 0.38 MPa for 25:1 on top of 10:1). When the F-δ data 

396 is analyzed using Eq. (16), the fit for E1 of the layered gels gives values comparable to 

397 those measured on the bulk gels (1.10 and 0.29 MPa for 10:1 and 25:1 thin layers, 

398 respectively). In the case of the thin 10:1 gel on the 25:1 gel substrate, because E2<E1 
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399 it is possible to fit for E2, and we obtained 0.18 MPa for the thick 25:1 substrate beneath 

400 the 10:1 thin layer. Taken together, these experiments serve as a proof-of-principle for 

401 using the model presented here in quantitatively analyzing F-δ curves on elastic 

402 layered samples.

403
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404
405
406 Figure 5: Comparison of F/F0 with other layered models. (A) The case of a parabolic indenter and a rigid 
407 substrate; blue shows the numeric solution of Eq. (1-9), red shows Eq. (16), yellow shows the model by 
408 Dimitriadis et al.,27 and magenta shows the model by Garcia and Garcia.26 (B) The case of a conical 
409 indenter and a rigid substrate; blue shows the numeric solution Eq. (1-9), red shows Eq. (16), yellow 
410 shows the model by Gavara and Chadwick,28 and magenta shows the model by Garcia and Garcia.26 (C) 
411 The case of a parabolic indenter and a two-layer substrate as a function of E1/E2; open markers indicate 
412 the model by Hsueh and Miranda30 and solid lines indicate Eq. (1-9) with a0/h values of 0.01 (red), 0.10 
413 (green), 0.25 (blue), 0.50 (magenta), and 1.00 (black).

414
415 Discussion

416 Indentations into bonded two-layered elastic systems are treated as indentation into 

417 a homogeneous layer with an additional perturbative term that depends on E1/E2 and 

418 a0/h and summarized as Eq. (16). Qualitatively, the force of indentation scales in a 

419 similar manner to springs in series. For a stiffer substrate (E2>E1), the effect of the 

420 substrate will increase with a0/h but will saturate for higher values of E2, and the 

421 saturation point will depend on the value of a0/h. In this scenario, the dominant factor 

422 in the perturbative term is a0/h, which directly relates to the indentation depth. For a 

423 softer substrate (E2<E1), there is a power-law relationship between F/F0 and E1/E2. In 

424 this scenario, both E1/E2 and a0/h strongly affect F/F0.

425 The two-layer model presented here may be used as a quantitative guide 

426 during the design and analysis of AFM indentation experiments with biological 

427 samples. If elastic heterogeneity is known or suspected (for example a mammalian cell 

428 with stiff actomyosin cortex,25 a thin cell or polymer gel, or a cell seeded on soft 

429 extracellular matrix16, 40), E1/E2 and a0/h may be roughly estimated and Eq. (16) will 

430 predict two-layer effects on F. Depending on the scientific question being addressed, 

431 a0 can be tuned by changing δ or the indenter geometry. If the goal is to quantify the 

432 rigidity of the layer (E1), using low a0/h will help to ensure that the layer dominates 

433 the F-δ response. If the goal is the measure the rigidity of the substrate (E2), then 
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434 increasing a0 will make the F-δ response more characteristic of E2 (Fig. 2, S4C), 

435 however the model presented here is inaccurate for E2>>E1 and another approach 

436 where δ>h would be more suitable, such as in Kaushik et al.19 As the two-layer effect 

437 depends on all of the sample parameters (h, E1, E2) as well as the indentation 

438 parameters (f, δ) (Fig. 2), it may be necessary to accurately and independently 

439 measure several of these parameters or perform further experiments on the same 

440 sample using different probe geometries in order to accurately determine the 

441 unknown parameter. For a practical example, it has been observed that a cell's Young's 

442 modulus measured by AFM depends on the geometry of the probe, with sharper 

443 probes resulting in larger values.18, 25 As the substrate effect scales with the contact 

444 radius, the two-layer model corroborates observations that sharper conical probes are 

445 more sensitive than larger bead probes to the stiffer actomyosin cortex than the cell 

446 body.25

447 In Hertzian contact with a parabolic indenter there is power-law scaling F∝δ3/2, 

448 however if a second layer is present then this power-law behavior is changed; for 

449 E2>E1 the exponent will be effectively higher and for E2<E1 it will be lower (Fig. 1B). If 

450 an experimental F-δ curve bends from the expected power-law behavior and the fitted 

451 elastic modulus depends on indentation depth (as in Fig. 2B, C) then mechanical 

452 heterogeneity may be present; the two-layer model provides guidelines for 

453 interpreting this data.

454 Other analytical models have been independently derived in the case of 

455 indentations onto thin samples with a rigid substrate. The model presented here 

456 provides similar corrective terms as Dimitriadis et al.27 and Garcia and Garcia,26 

457 although differ from Gavara and Chadwick28 (Fig. 5A, B). Both the two-layer model 

458 here and by Garcia and Garcia26 observe a direct dependence of both F and a on a0/h 

459 for multiple probe geometries. We also compared our two-layer model with another 

460 derived by Hsueh and Miranda30 and find that the corrective terms agree only for small 

461 stiffness mismatches (Fig. 5C). It should be noted that Eq. 16 was approximated to 

462 examine the substrate effects on indenting the top layer, analogous to a “bottom-effect 

463 correction”. When E2<<E1 or a0/h>1, the force becomes more characteristic of the 

464 substrate (e.g. the top layer effects on indenting the substrate) and Eq. (16) is no 

465 longer accurate (Fig. S4C). Future work could be performed to improve the 
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466 phenomenological approach in Eq. (13-16) to account for the asymptotic switch 

467 between the two mismatched layers, such as in Korsunsky and Constantinescu.32

468 Finally, the model also predicts that, as E2 decreases, the shape of the deformed 

469 surface of the layer will change such that positions further away from the probe will 

470 undergo higher displacement. This also means that the 3D strain field induced by a 

471 deformation when E2 < E1 will be larger than the homogeneous case. The two-layer 

472 model presented here is only valid when the substrate (an elastic half-space) and the 

473 layer have infinite lateral dimensions. However, based on the surface displacement Eq. 

474 (10), the model predicts that the effects on F from a finite-sized sample will be 

475 amplified when E2<E1.

476
477 Conclusions

478 We describe a simple method for the quantitative mechanical analysis of two-layered 

479 elastic materials and anticipate that our results will yield to more precise 

480 quantification of heterogeneous soft matter and biological specimens. This model may 

481 be easily applied to the design, analysis, and interpretation of AFM indentation 

482 experiments and may also be used as a general description of elastic contact 

483 mechanics regarding the correlation of length scales and stiffness in the presence of 

484 external forces and deformations. Considerations for future improvements include 

485 quantitative effects of lateral sample size and viscous and non-linear effects of layered 

486 materials.
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