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The fingerprint of a flow: wrinkle patterns in non-

uniform coatings on pre-stretched soft foundations

J. Schleifer,a J. Marthelot,a T.J. Jones,a and P.-T. Bruna∗

We study the wrinkle patterns obtained when applying a thin polymeric film on a uniaxially pre-

stretched soft foundation. The film is coated onto a substrate where it drains under the action of

gravity, thereby introducing a continuous variation in its thickness. We first study the fluid mechan-

ics component of the problem and derive the coating profile as a function of the curing properties

of the polymeric solution. Upon polymerization, the prestretch is released and yields the forma-

tion of wrinkles, which arrange in organized patterns, including fractals. We study a variety of

scenarios depending on the relative orientation of the gradient of film thickness and the stretching

direction. In particular, we characterize and rationalize the distribution of singular events in our

problem where wrinkles merge to allow a variation of the average value of the wrinkles wavelength

across the sample.

1 Introduction

A rigid thin film bounded to a compliant substrate subject to

in-plane compression may buckle past a critical value. This in-

stability yields periodic structures similar to those observed in

skin wrinkles1, fingerprints2, brain convolutions3, drying green

peas4,5 and guts6. Surface buckling patterns such as periodic

wrinkles7–9, ridges10,11, creases12,13 or folds14,15 in bilayer sys-

tems have drawn considerable attention in recent years. In par-

ticular they are studied for their potential applications in engi-

neering settings, e.g tunable wetting16, smart adhesion17, DNA

manipulation18, photonic structures19 or microlens array fabri-

cation20. While perfectly periodic structures are the norm, ex-

ceptions do exist. Smooth variations of the wrinkling wavelength

were obtained by locally varying the stiffness distribution21,22 or

the thickness of the film23,24. The mismatch of adjacent wrin-

kles wavelength introduce localized defects – two adjacent ridges

merging into a single ridge or a ridge that ends brutally25. These

singular points are reminiscent of the structures found in thin

sheets under boundary confinement26,27. Such defects are at the

origin of the main features of our fingerprints, called minutiae,

that are used for indentification for biometric applications28.

Here we introduce a simple and robust methodology to fabri-

cate elastic bilayers that present a smooth variation in thickness,

thereby enabling us to study wrinkles patterns in non-uniform

films. The thin film is obtained via the drainage of a polymeric
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coating applied on a uniaxially prestretch substrate, which then

cures, thus capturing the structure of the flow. Working in the lu-

brication limit, we derive the expression for the thickness of this

thin layer, which accounts for the rheological properties of the

polymeric liquid. When the prestretch is released we observe the

apparition of wrinkles and characterize their organization. The

wavelength of the pattern they form is compared with the classic

theory for Neo-Hookean film-substrate bilayers. When the gradi-

ent of film thickness is parallel to the direction of stretching, we

find that the wavelength increases continuously from the thinner

to the thicker portion of the sample. Conversely, when those di-

rections are orthogonal, we obverse the occurrence of merging

events. These discrete events appear at the boundary between

wrinkles with mismatched wavelength. We recast the classic the-

ory for wrinkles in order to account for the variation in film thick-

ness. Using this scaling, we rationalize the spatial distribution of

merging events, their number and size. The self-similarities in the

problem suggest that the pattern is fractal, an hypothesis that we

test using our experimental data.

2 Experimental protocol

In Fig. 1a, we present a schematic that illustrates our approach.

A soft elastic foundation (i) is stretched uniaxially to twice its ini-

tial length (ii). The stretched substrate makes an angle θ with the

horizontal and is coated with a thin viscous film that drains under

the effect of gravity (iii). The drainage results in a smooth, yet

non-uniform coating. The thickness of the thin film (apparent in

green) increases with the distance, x, from the top of the sample.

Upon curing the film creates an elastic layer that is stiffer than
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Fig. 1 (a) Sketch of the experimental setup. A soft substrate (pink) is

stretched and then coated with a relatively stiffer polymer (green). After

the polymer is cured, the stretching is released so as to compress the

stiff film. (b) Photographs of a sample in stage iv. Shown are the top

view and cross section (scale bar indicates 1cm). Close up: scale bar

indicates 1mm. (c) Variation of the wavelength of the wrinkles with the

position x. This particular case corresponds to a tilting angle θ = 45◦.

(Inset) Log-log representation of the same data.

its foundation. Note that this thin film is stress-free in its origi-

nal configuration. The substrate is then gradually relaxed and, as

the pre-stretch is released, the thin film is compressed (iv). Wrin-

kles appear above a compression threshold. In Fig. 1b, we show

photographs of our sample after it has been fully relaxed. The

top view and the cross-section show the variation of the wrinkle

geometry across the sample. The cross-section reveals the non-

symmetric shape of the wrinkles that deviate from a sinusoidal

shape. In particular, the grooves are sharp and we noticed local-

ized plastic deformations in these areas that persist even when

the substrate is stretched again.

In our experiment the thin film is constituted of VPS Elite 32

(Vinyl Polysiloxane, Elite Double 32, Zhermack), while the softer

foundation is constituted of VPS Elite 8 (Elite Double 8, Zher-

mack). Both polymers are mixed at room temperature (20◦C)

with a base/cure ratio 1:1 in weight for 10 s at 2,000 r.p.m.

(clockwise), and then 10 s at 2,200 r.p.m. (counterclockwise).

As the film directly polymerizes on the substrate, the layer and

the substrate present a strong adhesion such that no delamina-

tion between film and substrate has been observed.

The deformation in the substrate is characterized by its princi-

pal stretch ratio, λ1 = L/L0 > 1, defined as the ratio between L,

the deformed length of the foundation and L0, the initial length

of the foundation. In the two other principal directions we have

λ2 = λ3 = 1/
√

λ1. In Figure 1a-ii we have λ1 = λ10
= 2, where λ10

denotes the initial stretch in the substrate. When the pre-stretch

of the substrate is released, the film is under compression. The

uniaxial compressive strain ε f = (L− 2L0)/(2L0) = λ1/2− 1 < 0.

In our experiments, the pre-stretch is released at a slow rate,

dλ1/dt ∼ −0.03s−1, so that the wrinkle formation is considered

to be quasi-static. The sample is then imaged with a high reso-

lution scanner, the image is binarized and the wavelength of the

structure is extracted and averaged along the width of the sam-

ple. In Fig. 1c we plot the wavelength ℓ against the position x

for a bilayer obtained with a tilting angle θ = 45◦ and a initial

stretch λ10
= 2. The wavelength of the wrinkles continuously in-

creases with the distance from the pouring front and scales with

x1/2 as illustrated in the logarithmic plot in inset. We now turn to

rationalize the selection of the film thickness by considering the

drainage of the viscous film on an inclined plane.

3 Film thickness: drainage and curing of

the viscous film on an inclined plane

We characterize and model the selection mechanism of the stiff

film profile, considering the configuration sketched in Fig. 2a. To

this end, we investigate the drainage dynamics coupled to the cur-

ing of the polymeric coating. In this section we use transparent

acrylic plates as substrates to ease our experimental investigation

of the profiles and enable the measurement of the coating thick-

ness using optical transmittance methods29.

VPS Elite 32 is poured on an inclined plate, tilted at an angle

θ from the horizontal (see Fig. 2a). A large volume of polymer

is used to completely wet the sample and thus avoid any finger-

ing instabilities at the advancing front of the flow. The liquid

drains and polymerizes in finite time, yielding an elastic film with

a nonuniform thickness. The resulting layers obtained in our ex-

periments for various tilting angles display a continuous variation

of the transmittance, thicker films indeed appear darker than rela-
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Fig. 2 (a) Sketch of the geometry of the drainage problem. (b)

Photographs of 9 samples, obtained with different tilt angles θ . (c)

Variation of the final thickness h f with the position x for different tilt

angles θ . The solid black line corresponds to the theoretical prediction

from eq. 4. (d) Polymer viscosity over time for 4 different shear rates with

corresponding fit (solid black lines). The black circles correspond to an

experiment in which the shearing was started after a delay of 400 s.

tively thinner films (Fig. 2b). In our experiments, we observe that

the film thickens with the position, x, and that, overall, thicker

films are obtained when the substrate is held closer to the hori-

zontal (small θ). The variation of the optical transmittance with

the layer thickness is calibrated on uniform films of known thick-

nesses obtained by spin-coating. The final thickness of the elastic

film, h f (x), is then extracted from our samples. In Fig. 2c we show

that the spatial variation of film thickness across 8 samples can be

collapsed by multiplying the film thickness by
√

sinθ .

Starting from the lubrication equation to describe the drainage,

and neglecting surface tension effects30, we find that the pressure

through the film is P = ρgcosθ(h− y)+P0, where ρ is the fluid

density, g the acceleration of gravity, P0 the atmospheric pressure

and h the film thickness. Assuming that ∂xP ≪ ρgsinθ or equiva-

lenty ∂xh ≪ tanθ , we find that the velocity field in the x−direction

is parabolic. We indeed have vx = ρgsinθ/(2µ)y(2h− y), where µ

is the viscosity of the fluid assumed to be constant as a first ap-

proximation. Using the expression for vx to evaluate the flow rate

Q=
∫ h

0 vxdy, and then using mass conservation ∂th=−∂xQ we find

that ∂th=−ρgsinθ/µh2∂xh. Injecting h(x/tα ) in this equation one

finds α = 1 and the self-similar solution:

h(x/t) =

√

µx

ρgsinθ t
, (1)

whose domain of validity has to be established (indeed eq 1 does

not carry any trace of the initial conditions of the problem). In

the idealized case where the initial condition of the film is uni-

form with thickness h0 the film thickness is a piecewise function.

The solution in eq. 1 propagates from x = 0 with front speed

ρgsinθh2
0/µ, and matches the uniform film solution h(x, t) = h0,

which persists from x = ρgsinθh2
0t/µ to the end of the sample

x = 2L0. In practice, we argue that eq. 1 is thus valid across the

sample for times greater than 2L0µ/(ρgsinθh2
0), where h0 mea-

sures of the typical thickness of the initial coating. Eq. 1 is con-

sistent with the scaling in
√

sinθ observed in Fig. 2c, here ratio-

nalized as gsinθ is the effective gravity of the problem. With a

constant fluid viscosity, however, the model predicts a vanishing

film thickness as h ∼ t−1/2. To account for the curing of the poly-

meric solution that freezes the flow31, we consider the evolution

of the viscosity of the polymer (see Fig. 2d). The polymer indeed

cures in finite time and the viscosity progressively increases as:

µ(t) =
µ0

1− t/τc
(2)

where µ0 and τc are two fitting parameters representing the initial

viscosity and the time at which the dynamic is frozen (i.e. when

the viscosity diverges). We generalize the solution in eq. 1 to

account for the viscosity model in eq. 2:

h(x, t) =

√

x

ρg
∫ t

0
dt

µ(t)
sinθ

. (3)

Note that this solution is no longer self similar. Yet, setting t = τc,

we can estimate the final film thickness:

h f (x) =

√

2µ0x

ρgsinθτc
(4)
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To best represent our experiment, the rheology of the polymer

mixture is measured under a rheometer for various shear rates

that best represent the experiment (γ̇ = [0.05,0.1,0.25,1]s−1).

The VPS is found to be slighty shear-thinning 31, such that

µ0, as defined in eq. 2, decreases when γ̇ increases (µ0 =

[9.34,7.81,5.93,4.37]Pa.s) while τc remains roughly constant (τc =

[952,965,899,885]s). The curing time τc however decreases signif-

icantly in quiescent conditions. This is evident in Fig. 2d: the cur-

ing time measured under a constant shear-rate of γ̇ = 1s−1 (open

circles) is significantly larger than the one observed for the same

shear rate only applied to the mixture after 400 s (black circles).

In our experiments, the shear rate varies across the thickness of

the sample, in the direction of flow and over time. Additionally,

the mixtures are poured at times that may vary slightly from sam-

ple to sample, therefore having an effect on the effective value

of τc. For those reasons, we compare our experimental data to a

batch of curves (solid lines in Fig. 2c) corresponding to the afore-

mentioned shear rates. Using such criteria, the model is found to

be in reasonable agreement with the experiments. In summary,

we have fabricated and rationalized non-uniform coatings. Next,

we utilize these profiles to predict the wavelength of the wrinkles.

4 Wavelength selection.

Three scenarios of increasing complexity are considered. Case

1: a film of uniform thickness of VPS Elite 32 is spin-coated on

the VPS Elite 8 substrate, which is then stretched to a stretch ra-

tio λ10
= 2 (uniform coating as sketched in Fig. 3a). The coating

thickness is uniform and h f is directly measured on the cross-

section of the sample. The film thickness can be tuned by vary-

ing the spin-coater rotation speed. Case 2: the substrate is first

stretched to λ10
= 2, then coated with a film of VPS Elite 32, and

finally oriented such that the stretching direction is parallel to the

direction of drainage (see Fig. 3a). Case 3: the substrate is first

stretched to λ10
= 2, then coated with a film of VPS Elite 32, and

finally oriented such that the stretching direction is orthogonal to

the direction of drainage (see Fig. 3a). In all cases, we wait for

polymerization before the substrate is relaxed and find that the

wrinkling instability appears above a critical compressive strain

in the film ε fc
= λ1c

/2− 1 = −0.35, or equivalently λ1c
= 1.3. In

Fig. 3b, we report the wrinkling wavelength measured in our bi-

layer system, shown as a function of the film thickness. Each

reported data point is the average value of three independent

samples. The wavelength is extracted when the substrate is com-

pletely released. Beyond threshold, we assume that the wrinkles

grow as stretching continues to be released in such a way that the

curvilinear length of the free surface is conserved15. As a result,

the wavelength varies as: ℓ= ℓc/λ1c
at leading order.

In case 1 the wavelength (black squares in Fig. 3a) is found to

be in favorable agreement with the prediction for a Neo-Hookean

film deposited on a stretched Neo-Hookean substrate10:

ℓe = 2πh f





2

3

1

λ
1/2
10

(

1+λ
3/2
10

)

µ f

µs





1/3

(5)

where µ f = 330kPa and µs = 75kPa are the shear modulus of the

Fig. 3 (a) Sketch of the thickness gradient obtained with spin-coating

(case 1), draining in a direction parallel (case 2) or orthogonal (case 3)

to the direction of stretching. The substrate appears in pink, while the

green gradient represents the variation of the film thickness. (ii) Wrinkle

wavelength ℓ versus film thickness h f obtained for case 1,2,3 and

various tilt angles. The solid line corresponds to the theoretical

prediction in eq. 5 taking into account the correction ℓe/λ1c due to the

compression after the wrinkles appear.

film and the substrate, respectively. The material properties of

the film and the substrate are assumed to be isotropic. The shear

modulus µi = Ei/2(1+ νi) is a function of the Young modulus Ei

and the Poisson ratio νi.

In cases 2 and 3, we use eq. 4 to predict the film thickness

and compute ℓe as defined in eq. 5. The resulting value is found

to compare favorably with the wavelength of the wrinkles ob-

tained experimentally with a tilt angle θ = 45◦ (dark diamonds

and circles) and θ = 60◦ (light diamonds and circles in Fig. 3a).

We note that the prediction of the spatial variation of the wave-

length (eq. 5) is formally derived for a film of constant thickness,

an infinitely deep and wide substrate and in the asymptotic limit

µ f /µs ≫ 1 (soft foundation and stiff film). In all our experiments,

the film thickness is at least 10 times thinner than the substrate,

yet the shear modulus of the film is only slightly larger than 4

times the shear modulus of the substrate. Our setup also deviates

from the idealized theoretical problem in that the film thickness

is not uniform. Yet, we find that the asymptotic expression eq. 5

describes our results favorably.

In the following section, we study the way the system accom-

modates the evolution of film thickness, especially in the orthog-

onal case, so as to produce a smooth variation of the wavelength.

4 | 1–8

Page 4 of 8Soft Matter



In particular, we are interested in the occurrence of merging

events, here seen as a regularization mechanism.

Fig. 4 Photograph of the wrinkle pattern obtained when pouring in a

direction orthogonal to that of stretching (and with inclination θ = 45◦).

Close-up of the merging events at different lengthscales: 3 wrinkles

merging into 2 wrinkles (i-iii) and 2 wrinkles merging into 1 wrinkle (iv).

5 Merging events and self-similarity

We turn to describe the geometry and density of the merging

events in case 3, i.e. when the stretching direction is orthogo-

nal to the flow (see Fig. 3a). In Fig. 4, we show a photograph

of a sample, that has been stretched in the horizontal direction,

while the flow was vertical, from top to bottom. Due to the con-

tinuous variation in film thickness, small wavelengths (at the top

of the sample) merge to match larger wavelengths (at the bot-

tom of the sample). The size mismatch of adjacent wrinkles in-

troduces localized defects where the wrinkles merge25. We find

two types of merging events: 3 wrinkles merging into 2 wrinkles

(Fig. 4(i)− (iii)) and 2 wrinkles merging in 1 wrinkle (Fig. 4(iv)).

In both cases, the size of the singularity27 where one groove van-

ishes is small enough such that the merging events appear to be

self-similar. Shown in Fig. 4(i)− (iii) are close up photographs of

three merging events that have been rescaled by the wavelength

of the wrinkles shortly after the singularity, and which appear

qualitatively identical. In all cases, we notice that the wrinkle

that vanishes appears to be smaller than its neighbors. To fur-

ther investigate the structure of the wrinkled pattern we turn to

quantitative analysis.

The position of the ridges and the merging events are automat-

ically detected using a in-house Python algorithm, that leverages

the change in intensity of the sample and the directionality of the

wrinkles. In Fig. 5a, we show a typical outcome of our routine.

Shown in black are the edges detected by the algorithm, while

red triangles show merging events, M. Conversely blue triangles

indicate the "birth of a wrinkle" that is the point where a groove

appears, B. They correspond to cases where a groove ends, while

another one appears next to it, as if the wrinkle was shifting lo-

Fig. 5 (a) Position of the wrinkles and merging events extracted from

the photograph of a sample. Red triangles indicate the position of

merging events (M) while blue triangles indicate points where a groove

appears (B). Scale bar indicates 1 cm. (b) Cumulative number of defects

as a function of the distance x− x0, where x0 is the position of the first

detected merging event. (c) Shown is the linear relation between the

transition length L and the distance to the origin x.

cation. We find that there are a larger number of merging events

at the top (thin region, small wavelength) than at the bottom

(thick region, large wavelength). In Fig. 5b, we report the cumu-

lative number of such merging events, (M−B)/W for four differ-

ent samples, where W is the width of the sample. We find that

(M−B)/W ∼
√

x− x0, where x0 is the position of the first merging

detected. This result is consistent with the scaling of the wave-

length ℓ∼
√

x and indicates that merging is the main mechanism

that drives the overall variation of wavelength across the sam-

ple. Yet, as merging are discrete events, we expect to find some

areas of frustration in the pattern. In fact, we observe that wrin-

kles deviate from their nominal wavelength before merging (see

Fig 4). We define L as the distance from a singularity over which

the wavelength is less than 90% of the mean wavelength, ℓ̄(x),

averaged across the width of the sample. Leveraging on the fact

that merging are localized events27, we expect that dℓ/dx ∼ ℓ/L.

Considering the scaling, ℓ∼
√

x, we conclude that L∼ x. This scal-

ing is in agreement with the results shown in Fig. 5c. This level of

self-similarity suggests that the pattern might be fractal.

To further characterize the spatial organization of the wrinkles

pattern, we compute the fractal dimension via a box counting

method based on the position of the ridges. We place our skele-

tonized sample on an evenly spaced grid and count how many

boxes are required to cover the set32. Shown in Fig. 6a are the ar-

eas obtained with those boxes for three different box sizes. Boxes

that have an intersection with the ridges are colored in gray, while

others are left white. In Fig. 6b we plot the number of such boxes
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Fig. 6 (a) Result of the box counting method applied on the same

sample for three different box size. A gray pixel in the image indicates a

pixel with an intersection with a ridge. Conversely, white pixels indicate

no intersection. (b) Number of boxes as a function of the box size for five

different samples.

as a function of their size for four different samples. We find that

the data gathered from our samples collapse on a single curve,

such that we conclude that the pattern is indeed fractal with di-

mension 1.3. This fractal dimension is thus larger than that of a

line (dimension 1) and far less than that of a space filing curve

(dimension 2), a value close to that of several natural patterns33.

This dimension is a response of the system to the variation of film

thickness imposed by the flow, in a way its fingerprint. In the re-

mainder of the paper, we seek to identify ways to force the system

away from its natural wavelength and quantify the robustness of

the wrinkling instability.

6 Forcing the instability away from the elas-

tic wavelength

We propose a perturbative approach to force the instability away

from the elastic wavelength. Instead of a smooth substrate, we

introduce some features at the surface of the pre-stretched foun-

dation (see Fig. 7a). Such modulations are obtained using a laser

cutter to engrave the base of the mold in which the sample is

prepared. Rectangular crenel shapes of varying wavelength ℓR,

width 0.5 mm and amplitude 0.3 mm are created in the center of

Fig. 7 (a) Grooves are etched at the surface of the substrate. (b) The

sample is then coated and (c) stretched. Scale bar 1mm.

the sample, while the remainder of the sample remains smooth.

The soft substrate is then coated with a uniform film of VPS Elite

32 using a spin-coater (cross-section of the sample in Fig. 7b).

The substrate is finally stretched uniaxially before polymerization

(Fig. 7c). Upon curing, the stretch is released and wrinkles ap-

pear across the sample. We found that we were able to force the

wavelength of those wrinkles in a certain range. We define ℓN ,

the natural wavelength obtained without forcing (ℓN ≃ ℓe/1.3).

Here, we find that forcing in the range 1 < ℓR/ℓN < 1.8 is effec-

tive, while values outside of this range lead to a variety of issues,

e.g. period doubling. In all cases, we find that when moving suffi-

ciently far from the center of the sample the wrinkles returned to

their natural wavelength ℓN .

For the cases in the range 1 < ℓR/ℓN < 1.8, we characterize the

transition between the imposed wavelength ℓR and the elastic one

ℓN . Fig. 7a shows three cross-sections cut at a position x = 2.5 (i),

6 (ii) and 15(iii) mm away from the center of the sample (the forc-

ing in this case is ℓR = 1.6ℓN). In the area of the sample where the

substrate thickness is modulated, we observe that the wavelength

corresponds to the forcing value ℓR (cross-section (i) in Fig. 8a).

The wavelength then decreases as one moves away from center

(cross-section (ii)) and eventually returns to its natural value ℓN

(cross-section (iii)). In Fig. 8b, we plot the variation of the wave-

length for five samples forced at different wavelengths. While

imposing a wavelength far from the natural elastic wavelength

leads to a brutal transition from ℓR to ℓN , forcings closer to the

natural elastic wavelength presents a smoother transition toward

ℓN . To characterize this regularization, we measure the distance

∆x for which the wavelength returns within 20% of its natural

value. The evolution of ∆x with ℓR is shown in the inset of Fig. 8b

in semilog scale. We found that this evolution is coherent with

an exponential decrease ∆x/ℓN ∼ exp(−ζ ℓR/ℓN) where ζ = 5.0 is

a numerical factor. We note that the typical lengthscale of the ex-

ponential decay ℓN/5 is smaller than ℓ, indicating the fast decay

of the wavelength towards the value of the natural wavelength

of the system. Wrinkling is thus particularly robust and the size

of the wrinkles is mostly defined locally by the thickness of the

substrate.
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Fig. 8 (a) Cross-sections of the wrinkling profile in a sample forced at

ℓR = 1.6ℓN captured at a distance x = 2.5 (i), 6 (ii) and 15(iii) mm away

from the center of the sample. (b) Spatial variation of the wavelength ℓ

normalized by the natural wavelength ℓN for five different imposed

wavelength ℓR. The width of the perturbation (3 mm) is indicated by the

vertical dashed line. (Inset) Regularization distance ∆x, defined as the

distance between the edge of the perturbation and the point for which

the wavelength returns to 1.2 ℓN .

7 Conclusion

In summary, we have systematically explored the wrinkling pat-

tern obtained with a smooth variation of the film thickness, based

on the drainage of a viscous film on a pre-streched substrate. We

found that the wavelength is everywhere imposed by the coating

thickness. In particular, the mismatch of adjacent wavelengths

introduces localized defects where the wrinkles merge. We found

that the number of those defects scales with the wavelength and

that the pattern they form is fractal. By forcing the instability

away from its natural wavelength using a perturbative approach,

we found that regularization length after which the structure re-

laxes back to its natural state is small, confirming the robustness

of the instability.
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