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Curved boundaries and chiral instabilities – two
sources of twist in homeotropic nematic tori

James P. McInerney,a Perry W. Ellis,a,b D. Zeb Rocklin,a Alberto Fernandez-Nieves,a,c,d

and Elisabetta A. Matsumoto∗a

Many liquid crystalline systems display spontaneous
breaking of achiral symmetry, as achiral molecules aggre-
gate into large chiral domains. In confined cylinders with
homeotropic boundary conditions, chromonic liquid crys-
tals – which have a twist elastic modulus which is at least an
order of magnitude less than splay and bend counter parts
– adopt a twisted escaped radial texture (TER) to minimize
their free energy, whilst 5CB – which has all three elastic
constants roughly comparable – does not. In a recent series
of experiments, we have shown that 5CB confined to tori
and bent cylindrical capillaries with homeotropic boundary
conditions also adopts a TER structure resulting from the
curved nature of the confining boundaries [Ellis et al., Phys.
Rev. Lett., 2018, 247803]. We shall call this microscopic
twist, as the twisted director organization not only depends
on the confinement geometry but also on the values of
elastic moduli. Additionally, we demonstrate theoretically
the curved geometry of the boundary induces a twist in the
escaped radial (ER) texture. Moving the escaped core of the
structure towards the center of the torus not only lowers
the splay and bend energies, but lowers the energetic cost
of this distinct source for twist that we shall call geometric
twist. As the torus becomes more curved, the ideal location
for the escaped core approaches the inner radius of the
torus.

Chirality is ubiquitous in the natural world. A great deal of
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chirality observed in biology and chemistry is molecular in origin,
yet in soft materials and complex fluids, the achiral can become
chiral. This chirality is not microscopic in origin – it is an emer-
gent property arising from interactions between achiral molecules.
The spontaneous formation of chiral mesostructures from achiral
constituents is a powerful means of generating hierarchical struc-
tures2–8. Several liquid crystalline systems play host to emergent
chirality3,7,9,10. Confinement-induced frustration also seeds the
formation of chiral domains in liquid crystals11–14. In particular,
confining chromonic liquid crystals to cylinders with homeotropic
(normal) boundary conditions facilitates the formation of chiral do-
mains15–18. This is in stark contrast to the classical achiral escape
texture predicted for such geometries19,20. However, in chromon-
ics, the energetic cost of chiral deformations is at least an order
of magnitude lower than other elastic deformations16,18. There-
fore, such emergent chirality is the lowest energy path to relieving
frustration induced by boundary conditions. In a recent series of
experiments, Ellis et al.1 observed chirality in nematic liquid crys-
tals in toroidal droplets with homeotropic boundary conditions.
These experiments used 4-cyano-4’-pentylbiphenyl (5CB) which,
unlike chromonics, has a cost to twisting that is relatively compara-
ble to that of other elastic deformations K2/K1 ≈ K2/K3 ≈ 0.314. A
simple analysis extending the cylindrical results to tori shows that
the achiral configuration should not be stable21. Here, we demon-
strate that there are two sources for twist in homeotropic tori.
In addition to the standard microscopic twist – where molecular
chirality or elastic constants together with the bounding geometry
and director anchoring conditions create a preferential environ-
ment for twist – we find that the geometry of the torus (or indeed,
a cylinder around any curve of non-zero curvature) itself induces
a different type of twist, which we call geometric twist. We show
this for the case of escape radial (ER) textures, where the ener-
getic cost associated with geometric twist, coming from the doubly
curved boundary condition of the torus, is lowered by moving the
core off the centerline of the torus.

Nematic liquid crystal phases are formed by anisotropic
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Fig. 1 a) Twistless radial escape of the homeotropic cylinder. b) Twisted
radial escape of the homeotropic cylinder. c) A stability analysis for
homeotropic tori with centered radial escape. This analysis fails to capture
experimental data 1. The circles correspond to experiments with observed
microscopic twist. The star corresponds to the experiment 1 in (d) with
ξ = 5 which displays microscopic twist. (Image under crossed polarizers.
Scale bar = 250 µm.)

molecules which preferentially align with their molecular axes
parallel to one another, described by the director field n. Low
energy elastic deformations from the uniform state are captured
by the Frank-Oseen free energy functional22,

F =
1
2

∫
V

dV
[
K1(∇ ·n)2 +K2(n ·∇×n)2 +K3(n× (∇×n)2

]
, (1)

where K1, K2 and K3 are the elastic moduli for splay, twist and
bend elastic distortions, respectively. In the one-constant approx-
imation K1 = K2 = K3 = K, the Frank-Oseen free energy is vastly
simplified to F = K

2
∫
V dV |∇n|2. However in chromonics, the twist

elastic constant is much smaller than the others K2� K1,K3, thus
deformations that increase the twist free energy are much more
favourable than those involving splay or bend.

In a homeotropic cylinder with strong anchoring, an analytic
solution for the escaped radial configuration can be calculated by
considering a generic nematic director field in cylindrical coordi-
nates of the form n = sin(Ω(r))er + cos(Ω(r))ez, where ez points
along the axis of the cylinder. In the one-constant approximation,
the analytic solution for the escape texture can be found by solv-
ing the Euler-Lagrange equation Ω̈+ R

r Ω̇− R2

2r2 sin(2Ω) = 0 with
the boundary conditions Ω(r = 0) = 0 and Ω(r = R) = π/2, which
yields the solution Ω(r) = 2arctan(r/R)16,21,23 depicted in Fig. 1a.

Microscopic twist can be introduced to the homeotropic cylin-
der by including the scalar field Λ(r) in the director n =

sin(Ω(r))cos(Λ(r))er + sin(Ω(r))sin(Λ(r))eθ + cos(Ω(r))ez
16. After

relieving the one-constant approximation, in particular choosing
K2 < K = K1 = K3, the corresponding Euler-Lagrange equations
still admit stationary solutions which are microscopically twistless
Λ = 0. Examining the second order condition for stability

δ
2F = ∑

δ 2F
δuiδu j

δuiδu j > 0, (2)

for {ui = Λ, ∂ρ Λ, ∂ψ Λ}, shows that if K2 . 0.27K such microscop-
ically twistless solutions are unstable to perturbations in Λ, as
depicted in Fig. 1b. Note that the free energy is already minimized
in respect to Ω and allowing for perturbations δΩ does not affect
the above result.

Theories for spontaneous breaking of achiral symmetry in liquid
crystal-filled solid tori used angular toroidal coordinates21,24. In
these coordinates, the escaped core lives at the center of the cir-
cular cross-section of the torus. When solving the Euler-Lagrange
equations for the minimal energy director field, the singularity in
the coordinate system becomes the line along which escape occurs.
A stability analysis of the centered escape (see 1c, ESI) shows the
maximal K2/K ratio that admits stable microscopically twisted
configurations. As with homeotropic cylinders, microscopically
twistless (Λ = 0), angularly symmetric (Ω(r,θ ,z) = β (r)) solutions
in homeotropic tori are unstable below a critical twist modulus –
they adopt configurations with microscopic twist (Λ 6= 0). This crit-
ical modulus increases with the curvature of the torus, as shown
in Fig. 1c. However, experiments with toroidal droplets made
from 5CB, where K2/K ≈ 0.31, yield polarized images (eg. Fig. 1d)
which reveal features indicative of microscopic twisting well into
the predicted stable twistless regime1.

The assumption, adopted from cylindrical confinement, that
the escape core lives in the center of the circular cross section is
implicitly broken when the cylinder becomes curved around the
ez-axis. As the aspect ratio of the torus ξ = Ro/Ri, where Ro is the
radius from the origin to the center of the tube of the torus and
Ri is the radius of the tube, decreases, splay from the boundary
condition near the center of the torus increases from (∇ ·n)2→ 0
as ξ →∞ to (∇ ·n)2→∞ as ξ → 1. One route to decrease the splay
for tori with low ξ is to shift the location of the escape core.

In order to accommodate this necessary shift in the escape
core, we consider a set of coordinates that maintains homeotropic
boundary conditions along the outside of the torus, but allows
the central escape to exist anywhere within the solid torus. To
do this, we choose a conformal coordinate change using Möbius
transformations, which are given by the map w→ aw+b

cw+d , w ∈ C,
a,b,c,d ∈ R. Three points define a Möbius transformation. We
want a transformation that leaves the boundary of the unit disk
unchanged, but moves the center of the coordinate system from
the origin to an arbitrary point inside the unit disk σ ∈ C. Our
Möbius transformation,

w→ −w+σ

−σ̄w+1
, (3)

takes the coordinate singularity at the origin of polar coordinates
and maps it to a point {Re(σ), Im(σ)} (see Fig. 2b). However,
there is nothing to break the top-bottom symmetry of the torus,
so we can choose a shift that is purely real, corresponding to
Im(σ) = 0. By rewriting the imaginary coordinate w = ρeiψ (see
Fig. 2c), we arrive at a distorted set of polar coordinates, where
we can easily write the homeotropic boundary condition at ρ = 1
and the escape boundary condition at ρ = 0. To create the offset
toroidal coordinates, shown in Fig. 2d, the unit disk in the xz-plane
is translated by the aspect ratio of the torus ξ in the ex direction
and revolved around the z-axis,
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Fig. 2 The conformal transformation w→ −w+σ

−σ̄w+1 moves the core of an
escaped radial texture from the origin (a) to the point {Re(σ), Im(σ)} (b).
c) In the resulting coordinate system, ρ and ψ are the transformed radial
and azimuthal coordinates, with origin at (σ ,0). d) To create a set of
toroidal coordinates, the origin is offset by ξ and revolved around the
z-axis. (Note that in this figure, we show σ > 0. Our minimization finds
σ < 0 in all cases.)

x =

(
ρ(σ 2+1)cos(ψ)−(ρ2+1)σ

ρ2σ 2−2ρσ cos(ψ)+1 +ξ

)
cos(φ),

y =

(
ρ(σ 2+1)cos(ψ)−(ρ2+1)σ

ρ2σ 2−2ρσ cos(ψ)+1 +ξ

)
sin(φ),

z =
ρ(σ 2−1)sin(ψ)

−ρ2σ 2+2ρσ cos(ψ)−1 . (4)

In these coordinates, a generic director field has the form

n = cos(α)sin(β )eρ + sin(α)sin(β )eψ + cos(β (ρ))eφ , (5)

where β is the escape angle, α describes the microscopic twist,
and we are restricted to the angularly symmetric case in which the
director field has no ψ dependence. The homeotropic boundary
conditions and radial escape are satisfied by

α|ρ=1 = 0, ∂ρ α|ρ=0 = 0, β |ρ=1 =
π

2
, β |ρ=0 = 0, (6)

where the second condition on α is necessary to ensure the ex-
istence of stationary solutions for the free energy21. The metric
tensor associated with the coordinates in Eqn. 4 is computed
gi j = ∂ir ·∂ jr, i, j ∈ {ρ,ψ,φ}, yielding non-zero components

gρρ =
(σ 2−1)

2(
ρ2σ 2−2ρσ cos(ψ)+1

)2 , gψψ =
ρ2(σ 2−1)

2(
ρ2σ 2−2ρσ cos(ψ)+1

)2 , (7)

gφφ =

(
ξ ρ2σ 2−ρ(2ξ σ+σ 2+1)cos(ψ)+ξ+ρ2σ+σ

)2

(
ρ2σ 2−2ρσ cos(ψ)+1

)2 .

Fig. 3 a) Normalized Frank-Oseen free energy for α = 0, β = β (ρ) satisfy-
ing the associated Euler-Lagrange equations with aspect ratio ξ = 1.1 as
a function of σ . This gives a minimal value at σ∗ =−0.54. b) Dependence
of σ∗ on aspect ratio where 1/ξ = 0 corresponds to cylinders and 1/ξ → 1
is the limit of the horn torus.

In curvilinear coordinates, the vector derivatives are given by

∇ ·b =
1
√

g
∂i

(√
gbi

hi

)
, ∇×b = ei

1
√

g
εi jk∂ j

(
hkbk

)
, (8)

where hi =
√

gii are the Lamé coefficients, g is the determinant of
the metric tensor and εi jk is the Levi-Civita tensor.

We solve the Euler-Lagrange equations associated with the
Frank-Oseen free energy in the one-constant approximation for a
director field given by Eqn. 5 with α = 0, β = β (ρ) satisfying the
boundary conditions of Eqn. 6 over the domain of escape shifts
−1 < σ < 1 and aspect ratios 0 ≤ 1

ξ
< 1. This is an ansatz for a

microscopically twistless solution, i.e. an ER texture. The extremal
values of 1

ξ
correspond to a cylinder for 1

ξ
→ 0 and the horn torus

(a torus with no “hole" in the middle) as 1
ξ
→ 1. Even the (micro-

scopically twistless) centered radial escape solution, σ = 0, has
non-zero twist energy,

Ft =
∫ 1

0
dρ

πρ sin2(2β (ρ))

2
(√

ξ 2−ρ2 +ξ

) , (9)

corresponding to twisting within planes of constant z, independent
of the elastic moduli. This geometric twisting vanishes as 1

ξ
when

approaching the homeotropic cylinder.
We find the ideal escape shift σ∗, the value of σ that minimizes

the free energy, for each value of ξ , as shown in Fig. 3a for ξ = 1.1.
We see in Fig. 3b that all tori admit a shifted radial escape in the
one-constant approximation. While the particular elastic moduli
affect the exact magnitude of this escape shift, an inward shift
σ < 0 reduces the free energy (see ESI). In such geometries, the
director field must twist in order to satisfy the boundary conditions.
An example director field for the ξ = 1.1 torus is shown in Fig. 4a.
The leading order addition to the twist energy Eqn. 9

δFt =
∫ 1

0
dρπρ sin2(2β (ρ))σ (10)

is negative for all tori, since all σ∗ are negative. Hence, there
is geometrically induced twist in both the z = constant and
φ = constant planes, where the latter reduces the overall
twist energy. By comparing the free energy of the shifted
escape texture with the centered escape, we find the geo-
metrically induced twist decreases all three components of
the free energy (see Fig. 4b-f). There is a slight increase
in the free energy near the inner radius of the torus due to
splay and bend. However, this is more than compensated for by
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Fig. 4 a) The minimal energy radial escape director field with α = 0 (twistless) and β (ρ) plotted in the inset for ξ = 1.1, σ =−0.54. b) The total changes in
energy after integrating over the cross section of the torus, ∆F/V =

∫
V ( f (σ = σ∗)− f (σ = 0))/V for splay, twist, bend and the one constant approximation

all decrease as 1/ξ , except for bend, which increases near the horn torus limit. c) The total change in energy density in the one-constant approximation
∆ f/V = ( f (σ = σ∗)− f (σ = 0))/V for the energy minimizing director field and shifted escape core compared with the centered core decreases away
from the center of the torus. From the component energy densities, (d-f) the splay (d) and bend (f) energies are slightly increased near the inner radius of
the torus, but decrease significantly towards the outer radius of the torus. However, the twist (e) decreases as the escaped core shifts inwards.

the decrease in free energy density towards the outer radius of the
torus. Near the limit of the horn torus, shifting the escape increases
the total cost to bend distortions, however the total energy is still
reduced by the contributions of the splay and twist energies.

A small twist elastic constant compared with splay and bend
elastic constants is frequently responsible for the spontaneous
breaking of achiral symmetry in confined nematics with frustrated
boundary conditions. We have demonstrated that, in homeotropic
tori, it is energetically favourable from the point of view of all
three elastic deformations, to have also an induced geometric
twist associated with shifting the escaped centerline. Although
the additional microscopic twist associated to the TER texture
is present in the experiments1, the ubiquitous geometric twist
causing the shift of the escape core towards the inside of the
torus, might also be playing a role. Determining this contribution
requires relieving our symmetry assumptions on the director field
before minimizing the free energy over all values of the escape
shift. The stability line in Fig. 1c is then given by the ratio K2/K,
if any, for which such solutions are microscopically twisted. Our
work opens the door to these additional studies by demonstrating
the importance of geometric twist in homeotropic nematic tori
with a ER texture. In conjunction with recent work with planar
anchoring23,24, a doubly-curved confinement geometry appears to
provide twisting mechanisms regardless of boundary conditions.
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