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Phase behavior and morphology of multicomponent
liquid mixtures†

Sheng Mao,a Derek Kuldinow,a,b Mikko P. Haataja,∗a,c and Andrej Košmrlj∗a,c

Multicomponent systems are ubiquitous in nature and industry. While the physics of few-
component liquid mixtures (i.e., binary and ternary ones) is well-understood and routinely taught
in undergraduate courses, the thermodynamic and kinetic properties of N-component mixtures
with N > 3 have remained relatively unexplored. An example of such a mixture is provided by
the intracellular fluid, in which protein-rich droplets phase separate into distinct membraneless or-
ganelles. In this work, we investigate equilibrium phase behavior and morphology of N-component
liquid mixtures within the Flory-Huggins theory of regular solutions. In order to determine the num-
ber of coexisting phases and their compositions, we developed a new algorithm for constructing
complete phase diagrams, based on numerical convexification of the discretized free energy land-
scape. Together with a Cahn-Hilliard approach for kinetics, we employ this method to study mix-
tures with N = 4 and 5 components. We report on both the coarsening behavior of such systems,
as well as the resulting morphologies in three spatial dimensions. We discuss how the number
of coexisting phases and their compositions can be extracted with Principal Component Analysis
(PCA) and K-Means clustering algorithms. Finally, we discuss how one can reverse engineer the
interaction parameters and volume fractions of components in order to achieve a range of desired
packing structures, such as nested “Russian dolls” and encapsulated Janus droplets.

1 Introduction

Phase separation and multi-phase coexistence are commonly seen
in our everyday experience, from simple observations of the
demixing of water and oil to sophisticated liquid extraction tech-
niques employed in the chemical engineering industry to separate
the components of solutions. In non-biological systems, phase
separation has been studied for a long time dating back to Gibbs1.
Very recently, it has been demonstrated that living cells are also
multicomponent mixtures composed of a large number of compo-
nents, with phase separation behavior reminiscent of those found
in inanimate systems in equilibrium2–8. This process has been
shown to drive the formation of membraneless organelles in the
form of simple droplets7–13, and even hierarchical nested packing
structures14.
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The physics of binary (N = 2) and ternary (N = 3) mixtures
are well-understood by now, with binary mixtures comprising
standard material in undergraduate statistical thermodynamics
courses. Given, say, a molar Gibbs free energy of the mixture as a
function of composition, the presence of coexisting phases can be
ascertained via the common tangent construction, and repeating
this process at several temperatures, the phase diagram can be
readily constructed. Similar arguments also hold for ternary15,16

and N > 3 mixtures, while the construction of phase diagrams
becomes rapidly more challenging, in accordance with the Gibbs
phase rule1, which states that the maximum number of coexist-
ing phases in an N-component mixture is N + 2. On the other
hand, when N � 1, statistical approaches for predicting generic
properties of phase diagrams become applicable.

In their pioneering work, Sear and Cuesta17 modeled an N-
component system with N � 1 within a simple theoretical ap-
proach, which incorporated entropy of mixing terms and inter-
actions between the components at the level of second virial co-
efficients; the virial coefficients were in turn treated as Gaussian
random variables with mean b and variance σ2. In the special
case of an equimolar mixture, their analysis based on Random
Matrix Theory showed that for N1/2b/σ <−1, the system is likely
to undergo phase separation via spinodal decomposition, lead-
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ing to compositionally distinct phases. On the other hand, for
N1/2b/σ > −1, the mixture will likely undergo a condensation
transition, which leads to the formation of two phases differing
in only density (and not relative compositions). These predictions
were later confirmed by Jacobs and Frenkel using grand canonical
Monte Carlo simulations of a lattice gas model with up to N = 16
components18. In subsequent work19, Jacobs and Frenkel argued
that multiphase coexistence in biologically-relevant mixtures with
N � 1 does not result from the presence of a large number of
components, but requires fine tuning of the intermolecular inter-
actions.

In order to begin to bridge the gap between the well-studied
binary and ternary systems on the one hand, and mixtures with
N � 1 on the other, herein we systematically investigate the
phase behavior and morphology of liquid mixtures with N = 4
and 5 components. We develop a method to construct full phase
diagrams of such systems based on free energy convexification
within the Flory-Huggins theory of regular solutions20,21, and
employ the Cahn-Hilliard22 formalism to study associated do-
main growth and coarsening processes during morphology evo-
lution. In order to identify and locate the emerging phases in the
simulations, we employ a combination of principal component
analysis (PCA)23 and K-Means clustering method24 to translate
local compositions to phase indicator functions. The phase in-
dicator functions are, in turn, employed to quantify the domain
growth and coarsening kinetics. Specifically, characteristic do-
main sizes for each phase are extracted from time-dependent
structure factors, and their behavior is compared against classi-
cal theories of coarsening kinetics25–28. Finally, we demonstrate
how tuning the interfacial energies between phases enables one
to engineer morphologies with a wide range of packing struc-
tures, including Janus-particle like domains and nested “Russian
doll” droplets-within-droplets with up to 5 layers.

The rest of this paper is organized as follows. In Section 2, the
equilibrium phase behavior of an N-component liquid mixture is
examined within the Flory-Huggins (F-H) theory of regular solu-
tions. An algorithm based on convex hull construction to compute
the phase diagram of the mixture is developed, and a graph the-
ory based method is employed to determine the number of coex-
isting phases corresponding to given set of interaction parameters
within the F-H theory and average composition. In Section 3, the
Cahn-Hilliard formalism is employed to both incorporate interfa-
cial effects within the F-H theory and model the spatio-temporal
evolution kinetics of the local compositions. The method to con-
struct local phase indicator functions is also outlined in this sec-
tion. Resulting microstructures for representative 4-component
systems are presented in turn in Section 4. We also demonstrate
how interaction parameters can be tuned to achieve different final
packing morphologies of the coexisting phases. In Section 5, we
focus on the coarsening kinetics of the phase separation process.
We examine the validity of the dynamic scaling theory in multi-
component settings and discuss the coarsening behavior due to
the multiple coexisting phases. In Section 6, we provide guide-
lines for the design of hierarchical nested structures, and employ
them to design three different nested structures in 5-component
mixtures. Finally, brief concluding remarks can be found in Sec-

tion 7.

2 Equilibrium phase behavior

2.1 Flory-Huggins theory

In this study, we model a dilute solution as a continuum multi-
component incompressible fluid composed of N different compo-
nents, where φi represents the volume fraction of component i
(∑

N
i=1 φi = 1). For simplicity, we only focus on the phase behav-

ior of condensates and solvent is not explicitly considered in our
treatment. Furthermore, we assume that all components in the
condensates have equal density, such that buoyancy effects can
be neglected.

First, we briefly review some properties of binary mixtures. Ac-
cording to the Flory-Huggins theory of regular solutions20,21 the
free energy density (per volume) is expressed as

fFH(φ1,φ2) = c0RT [φ1 lnφ1 +φ2 lnφ2 +φ1φ2χ12] , (1)

where c0 is the total molar concentration of solutes, R is the
gas constant, T the absolute temperature, and φ1 + φ2 = 1 due
to incompressibility. The first two terms in Eqn. (1) incorporate
the entropy of mixing, which favors a homogeneous binary mix-
ture. The last term describes the enthalpic part of the free en-
ergy. The Flory interaction parameter χ12 is related to the pair-
wise interaction energies ωi j between components i and j as χ12 =

z(2ω12−ω11−ω22)/(2kBT ), where kB denotes the Boltzmann con-
stant and z is the coordination number22. When χ12 < 0, the two
different components attract each other and favor mixing. When
χ12 > 0, the two components repel each other, which can drive the
system to demix and form two coexisting phases (one enriched
with component 1 and one enriched with component 2) once the
Flory parameter becomes sufficiently large (χ12 > 2), such that
enthalpy dominates over the mixing entropy15,16 (see Fig. 1a).

The Flory-Huggins free energy density in Eq. (1) can be easily
generalized to describe an incompressible liquid mixture with N
different components as28

fFH({φi}) = c0RT

[
N

∑
i=1

φi lnφi +
1
2

N

∑
i, j=1

φiφ jχi j

]
. (2)

The first term describes the mixing entropy and the second
term describes the enthalpic part, where χi j = z(2ωi j − ωii −
ω j j)/(2kBT ) are the Flory interaction parameters between com-
ponents i and j. Note that by definition χii = 0.

The Flory-Huggins theory presented above has been widely
used to model mixtures of regular solutions in dilute limit and
was also generalized to model polymeric systems28–32. Now, ac-
cording to the Gibbs phase rule1, there can be as many as N coex-
isting liquid phases at fixed temperature and pressure, but the ac-
tual number depends on the interaction parameters {χi j} and the
average composition {φ i}. In the next subsection we describe an
algorithm for constructing a complete phase diagram for a given
set of interactions {χi j}, which is based on the convexification of
the free energy density in Eq. (2).
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Fig. 1 Construction of phase diagrams based on finding the convex hulls of free energy functions for (a) binary and (b-c) ternary mixtures. (a) The
original free energy function (black solid line in left) and the convexified one using the common tangent construction (black solid line in right) for a binary
mixture with Flory interaction parameter χ12 = 2.31. Red dots and lines correspond to a discrete approximation of the free energy function evaluated
on a uniform grid (left) and to the convex hull of the free energy function (right). Red points are projected to the abscissa (composition space). Short
projected segments from the convex hull correspond to single phase regions, while long projected segments correspond to two phase ones. (b) Discrete
approximation of the free energy function (left) and its convex hull (right). (c) Projected triangles from the original free energy function (left) and from
the convex hull (middle). The number of stretched sides for projected triangles corresponds to the number of coexisting phases for the composition
points that reside within such triangles. This information is used to construct the ternary phase diagram (right).

2.2 Phase diagram based on the convex hull construction

In order to construct a phase diagram, one needs to find the con-
vex envelope of the free energy density in Eq. (2). For binary mix-
tures the free energy density depends on a single variable (φ1)
and the two phase coexistence regions can be identified via the
standard common tangent construction15,16. For mixtures with
N components, the free energy landscape can be represented as
an (N−1)-dimensional manifold embedded in an N-dimensional
space. The regions in composition space that correspond to the
P coexisting phases can in principle be obtained by identifying
common tangent hyperplanes that touch the free energy mani-
fold at P distinct points. This is a very daunting task for mixtures
with many components. Here we describe how a complete phase
diagram can be obtained via a convex hull construction of the dis-
cretized free energy manifold, which is implemented via the stan-
dard Qhull algorithm33. This method was initially introduced by
Wolff et al.34 for the analysis of ternary mixtures, and here we
generalize it to systems with an arbitrary number of components
N.

To illustrate the main idea of the algorithm, it is useful to first
recall the phase diagram construction process for binary mixtures
(N = 2). When the Flory parameter is sufficiently large (χ12 > 2),
the free energy density becomes a double well potential with two
minima located at φ α

1 and φ
β

1 (see Fig. 1a). When the average

composition φ 1 is between the two minima (φ α
1 < φ 1 < φ

β

1 ), the
free energy of the system can be lowered by demixing and thus

forming two phases α and β with compositions φ α
1 and φ

β

1 , re-
spectively. The volume fractions ηα and ηβ (ηα +ηβ = 1) of the
two phases can then be obtained from the lever rule15,16, such
that φ 1 = ηα φ α

1 +ηβ φ
β

1 .

Now, we show how identical information can be obtained via
the convex hull construction of the discretized free energy land-
scape. First, we discretize the composition space φ1 ∈ [0,1] with
regular segments and make a discrete approximation of the free
energy function (see Fig. 1a). Then, we construct the convex
hull of the discretized free energy function and we project it back
onto the composition space φ1 ∈ [0,1]. Note that the projected
segments remain unchanged in the regions that correspond to a
single phase (i.e. for φ 1 < φ α

1 and φ 1 > φ
β

1 ), while all the seg-
ments between the two free energy minima are replaced with a
single stretched line segment. The stretched segment of the pro-
jected free energy convex hull thus denotes the two phase coexist-
ing region, where the two ends of the segment correspond to the
compositions φ α

1 and φ
β

1 of the two coexisting phases, respctively.
Note that the discretized points may not exactly coincide with the
true free energy minima, but the error can be made arbitrarily
small by refining the mesh.

For a ternary mixture we follow the same procedure. First, we
discretize the composition space with small equilateral triangles
and we make a discrete approximation of the free energy func-
tion (see Fig. 1b). Then, we construct the convex hull of the
discretized free energy function and project it back onto the com-
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Fig. 2 Distinct types of stretched tetrahedra, which correspond to regions with different numbers of coexisting phases, resulting from the projection
of the free energy convex hull to the composition space, and their respective adjacency matrices A (see text). Vertices with identical colors which are
connected with short line segments correspond to the same phase, while vertices with opposite colors that are connected with long line segments
correspond to different phases.

position space. Now, there are in general three different types of
projected triangles: triangles with three short sides, triangles with
two elongated sides, and triangles with three elongated sides (see
Fig. 1c). According to Wolff et al.34, the three different types of
triangles correspond to a single phase regions, 2-phase regions,
and 3-phase regions, respectively. For the 3-phase region, the
corners of triangles describe the equilibrium compositions {φ α

i }
of the phases, where i and α denote the indices of the component
and of the phase, respectively. For a mixture with average compo-
sition {φ i}, that resides inside such a triangle, the mixture phase
separates into three phases with volume fractions 0<ηα < 1, such
that φ i = ∑α ηα φ α

i and ∑α ηα = 1. For the 2-phase regions, the
two long sides of a projected triangle are approximations for the
tie-lines that connect the two coexisting phases, while the two
corners that are connected by the short side correspond to the
identical phase. For a mixture with an average composition that
lies inside such a triangle, the mixture phase separates into the
two phases located at the ends of the tie-line. Refining this pro-
cess with arbitrarily small mesh sizes enables one to obtain com-
plete information about ternary phase diagrams34 (see Fig. 1c).

Conceptually, it is straightforward to generalize the phase dia-
gram construction to mixtures with N > 3 components. First, we
discretize the composition space with regular (N−1)-dimensional
simplexes and make a discrete approximation of the free energy
function. Then, we construct the convex hull of the discretized
free energy function and project it back onto the composition
space. The projected (N−1)-dimensional simplexes are distorted
when they correspond to regions with multiple coexisting phases.
In Fig. 2 we display all distinct types of distorted tetrahedra (sim-
plexes) for an N = 4 component mixture. Next we demonstrate
that determining the number P of different coexisting phases for
distorted simplexes can be mapped to the problem of counting
the number of distinct connected components in a simple graph.

To this end, based on our knowledge from ternary mix-

tures (see Fig. 1c), we make the observation that the two vertices
of simplexes that are connected by a stretched line segment cor-
respond to two distinct phases, while the two vertices that are
connected by a short line segment correspond to the identical
phase. Now, the vertices of simplexes can be represented as graph
vertices. The two simplex vertices i and j are considered con-
nected (disconnected), i.e. they correspond to the identical phase
(two distinct phases), when their Euclidian distance ||~ri−~r j|| in
the composition space is smaller (larger) than some threshold ∆,
which we typically set to be slightly larger than the initial mesh
size. Note that the threshold needs to be slightly larger, because
the convex hull algorithm may return small irregular simplexes
in the 1-phase regions (see Fig. 1c). In practice we find that the
threshold ∆ needs to be set at about ∼ 5 times the initial mesh
size. Thus we define the adjacency matrix Ai j for such graph as

Ai j =

{
1, ||~ri−~ri|| ≤ ∆,

0, otherwise.
(3)

The number of distinct phases P for a given simplex is thus
equivalent to determining the number of distinct connected com-
ponents for a graph characterized with the adjacency matrix Ai j.
From graph theory35 we know that this number is related to the
spectrum of the Laplacian of A, which is defined as Li j = Di j−Ai j,
where Di j is the weight matrix defined as Dii = ∑k Aik and Di j = 0
for i 6= j. The number of distinct connected components is then
equal to the algebraic multiplicity of the eigenvalue 0. The ex-
amples for tetrahedra in N = 4 component mixtures are shown in
Fig. 2. The locations of vertices also provide approximate values
for the compositions {φ α

i } of each phase α. For a mixture with an
average composition {φ i} that resides inside a simplex, the mix-
ture phase separates into P coexisting phases with volume frac-
tions 0 < ηα < 1, such that φ i = ∑

P
α=1 ηα φ α

i . The volume fractions
{ηα} can be determined by calculating the pseudo-inverse36,37 of
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Fig. 3 Phase diagram for a 4-component mixture with symmetric interac-
tions χi j ≡ 3.10 for i 6= j. From (a) to (d) the slicing planes are at φ4 = 0.025,
0.25, 0.50, and 1.0, respectively.

the N×P matrix Φ≡ φ α
i as

ηα = Rα jφ j, R =
(

Φ
T

Φ

)−1
Φ

T . (4)

With this procedure we were able to construct phase diagrams
for mixtures with N = 4 (see Fig. 3 and Video S1) and N = 5
components.

The algorithm described above is general and can in princi-
ple be used to construct phase diagrams for mixtures with an
arbitrary number N of components with a given set of interac-
tion parameters {χi j}. However, it is practically impossible to use
this procedure for constructing phase diagrams for mixtures with
N > 5 components, which can be demonstrated by considering the
scaling of computational complexity. First, we need to generate a
uniform mesh for an N− 1 dimensional simplex to discretize the
composition space (see Fig. 1c). The number of different points
scales as Mp ∼M(N−1), where M is the number of grid points for
each component. In order to precisely capture the boundaries
between different regions on a phase diagram, one has to use suf-
ficiently fine mesh (M� 1) of the discretized composition space.
For N > 3 the computational time of the Qhull algorithm scales
as O(Mp fv/Mv), where Mv ≤Mp is the number of vertices on the
convex hull and fv is the maximum number of facets for a convex
hull of Mv vertices33. We note that the number of facets grows as
fv ∼ MbN/2c

v /bN/2c!, where b·c is the floor function. This means
that, in the worst case scenario, the computational complexity
scales as O(M(N−1)bN/2c), when the free energy landscape is con-
vex to begin with (Mv = Mp). In practice, we managed to use
this algorithm to construct phase diagrams for mixtures with up
to N = 5 components.

3 Phase separation kinetics: Cahn-Hilliard
formalism and microstructural characteri-
zation

3.1 Cahn-Hilliard formalism

The convex hull algorithm described in the previous section can
predict the number of coexisting phases, but it cannot provide any
information about the equilibrium microstructure, which is gov-
erned by the interfacial properties between phases. To account
for such effects, we follow the treatment of Cahn-Hilliard22.

With regard to kinetics, Hohenberg and Halperin38 introduced
several standard dynamic models of domain growth and phase
separation processes. The form of the dynamic evolution equa-
tions depends on the nature of the order parameter (conserved
or non-conserved) and the physics of the problem (e.g., relative
importance of diffusive vs. advective transport processes). Such
models have been successfully employed to study a wide spec-
trum of problems in materials science, e.g. solidification, spinodal
decomposition and many others39. Recently, these models have
also been used to study compositional domain formation in lipid
bilayer membranes40–42. Several different models have been pro-
posed for the investigation of multicomponent multiphase sys-
tems43,44. In this paper we follow the treatment by Cahn and
Hilliard22 to investigate phase separation of N = 4 and N = 5 com-
ponent mixtures in three spatial dimensions.

Before writing the general expression incorporating interfacial
effects for an N–component mixture, it is useful to briefly com-
ment on binary mixtures. For such systems, Cahn and Hilliard
postulated the free energy density f (φ1,∇φ1) = fFH(φ1,1− φ1)+

c0RT χ12λ 2
12(∇φ1)

2, where the first term describes the Flory-
Huggins part of the free energy in Eq. (1) and the second term
is related to the interfacial energy of the system. Here, λ12 is re-
lated to the characteristic width of the interface (usually taken
proportional to the range of interaction between molecules22).
Note that a stable interface can form only when χ12 > 0. The
Cahn-Hilliard approach assumes that the interfacial energies are
primarily coming from enthalpic interactions. However, for long-
chain polymers the entropic effects may become important, and
for such systems the interfacial part can be described within the
Flory-Huggins-de Gennes approach45.

In order to generalize the Cahn-Hilliard formalism to mixtures
with N components, it is useful to first rewrite the Cahn-Hilliard
free energy density for a binary mixture in a symmetric form as

f = c0RT
[
φ1 lnφ1 +φ2 lnφ2 +χ12φ1φ2−λ

2
12χ12∇φ1 ·∇φ2

]
, (5)

where φ1 + φ2 = 1, and thus ∇φ1 +∇φ2 = 0. The negative sign
before the λ 2

12 is thus merely a consequence of incompressibility,
while interfacial stability still requires that χ12 > 0. Following the
procedure documented in Ref.22, we can generalize the above
free energy density to an N-component mixture as

f = c0RT

[
N

∑
i=1

φi lnφi +
1
2

N

∑
i, j=1

χi jφiφ j−
λ 2

2

N

∑
i, j=1

χi j∇φi∇φ j

]
, (6)

where, for simplicity, we assumed that the ranges of intermolec-
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ular interactions are identical such that λi j ≡ λ . The parameter
λ thus describes the characteristic width of all interfaces in the
system.

Now, the equilibrium packing (i.e., morphology) of coexisting
phases can in principle be obtained by minimizing the total free
energy functional

F =
∫

V
d3~r f [{φi(~r),∇φi(~r)}] , (7)

subject to the fixed average composition φ i =
∫
V d3~r φi(~r). This is

in general a very hard optimization problem, but one can learn
much about the local microstructure by considering the interfa-
cial energies (also called surface tensions) γαβ between different
phases. According to Cahn and Hilliard22, the interfacial energy
between the two phases α and β with compositions {φ α

i } and

{φ β

i }, respectively, can be estimated as

γαβ ≈ 2λc0RT
∫ 1

0
dη

√
καβ ∆ f̃FH(η), (8)

where η is a parameter that interpolates between the two phases
such that φi = ηφ α

i + (1− η)φ
β

i . The other two quantities in

Eqn.(8) are defined as καβ = − 1
2 ∑i, j χi j(φ

α
i −φ

β

i )(φ α
j −φ

β

j ), and

∆ f̃FH(η) = f̃FH(φi)− η f̃FH(φ
α
i )− (1− η) f̃FH(φ

β

i ), where f̃FH =

fFH/(c0RT ). Note that the interface between phases α and β is
stable only when καβ > 0, due to the fact that the excess free en-
ergy f̃FH(η) is always positive. This observation provides some
restrictions for the Flory interaction parameters {χi j}, that must
satisfy relation ∑

N
i, j=1 aiχi ja j < 0 for any {ai} with ∑i ai = 0.

Here we briefly comment on the special case, where each of the
two phases α and β are predominantly composed of components
a and b, respectively, i.e. φ α

i ≈ δia and φ
β

i ≈ δib, where δi j denotes
the Kronecker delta. This special case typically occurs when Flory
interaction parameters are large (χi j � 1). For this special case,
it is easy to show that ∆ f̃FH ≈ χabη(1−η) and καβ ≈ χab. Hence
the interfacial energy can be estimated as

γαβ ≈
πc0λRT

4
χab, (9)

which is directly proportional to the Flory interaction parameter
χab. The relation above is used in Sec. 6, where we comment on
how the desired packing morphology of coexisting structures can
be obtained by appropriately choosing the relations between sur-
face tensions {γαβ }, which are functions of the Flory interaction
parameters {χi j}.

Note that the expression for the interfacial energy in Eq. (8)
assumes that the interface is straight in composition space. How-
ever, in our simulations we observed that the interfaces are typi-
cally curved in composition space (see, e.g., Fig. 6). Hence, while
the expression in Eq. (8) overestimates the true interfacial energy,
it still provides a very useful estimate.

3.2 Kinetics and numerical implementation

Rather than numerically minimizing the total free energy in
Eq. (7) to obtain the morphology of coexisting phases, we instead
focus on the dynamic evolution of the mixture. Since the absolute

concentrations {ci ≡ c0φi} are fixed in our system, we employ the
so-called model B dynamics38

∂ci

∂ t
= ∇ ·

[
∑

j
Mi j∇

(
δ f
δc j

)]
, (10)

where Mi j are the Onsager mobility coefficients and δ f/δc j de-
notes a functional derivative of the free energy density. Further-
more, we adopt Kramer’s model46 to model the fluxes, and write
the mobility coefficients as Mi j = (Dc0/RT )×

(
φiδi j−φiφ j

)
. We

also assume that all components have identical diffusion coeffi-
cients Di j ≡D. It should be noted that in Eq. (10) we have omitted
terms accounting for any advective hydrodynamic flow behavior
and thermal noise. In this paper we focus on the regions of phase
space that undergo diffusion-dominated spinodal decomposition,
for which the free energy is locally unstable and thermal fluc-
tuations are unimportant47. Thermal fluctuations are of course
important for the nucleation and growth within the binodal re-
gions16,48, processes which are not investigated in this paper but
are left for future work.

Now, instead of the absolute concentrations ci, we work with
relative compositions φi that evolve via

∂φi

∂ t
= D∇ ·

[
φi ∑

j

(
δi j−φ j

)
∇µ̃ j

]
, (11)

where we introduced the dimensionless chemical potentials

µ̃ j =
δ f̃
δφ j

= 1+ lnφ j +
N

∑
k=1

χ jk(1+λ
2
∇

2)φk (12)

in terms of the dimensionless free energy density f̃ = f/(c0RT ).
Note that the constraint ∑i φi = 1 is automatically satisfied, when
mobility coefficients Mi j are set as per Kramer’s model. Hence,
there are only N− 1 independent volume fractions and N− 1 in-
dependent chemical potential gradients.

The nonlinear partial differential equations in Eqn. (11) were
solved numerically in a 3D cubic box with linear dimension L
discretized with 128×128×128 uniform grid points and periodic
boundary conditions. A semi-implicit time-integration scheme49

was used, which enabled us to use relatively large time steps.
To do so, we first discretized Eqn. (11) in time and separated
the implicit linear and the explicit non-linear terms following the
usual IMEX (implicit-explicit) scheme50 as

φ
n+1
i −φ n

i
∆t

= Ni(φ
n
i )+Li(φ

n+1
i ), (13)

where φ n
i is the volume fraction field of component i at time step

n. Ni and Li denote the nonlinear and linear parts of the right
hand side of Eqn. (11), respectively. In the present problem, the
stiffest term of the numerical integration corresponds to the ∇4

operator, which is actually nonlinear, because the mobilities {Mi j}
are functions of the compositions {φi}. To overcome this difficulty,
we followed the procedure in Ref.49 and introduced an artificial
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linear ∇4 term to stabilize the nonlinear term as

Ni({φi}) = D∇ ·

[
φi ∑

j

(
δi j−φ j

)
∇µ̃ j

]
+ADλ

2
∇

4
φi, (14)

Li(φi) =−ADλ
2
∇

4
φi, (15)

where the numerical prefactor A is chosen empirically to ensure
numerical stability. In Ref.49 the value A = 0.5χ12 was used for
the study of binary mixtures. Based on their experience, the value
A = 0.5max{χi j} was used in the present work.

Now, when evaluating nonlinear terms Ni({φi}), the products
of composition fields φ n

i (~r) are carried out in real space, while
the spatial derivatives are evaluated in Fourier representation
φ̂ n

i (
~k) =

∫
V d~r e−i~k·~rφ n

i (~r)/V . The Fast Fourier Transform (FFT) al-
gorithm was used to convert back and forth between real space
and Fourier space representations51. In Fourier space, the im-
plicit equation (13) can be solved to obtain

φ̂
n+1
i =

φ̂ n
i + N̂i(φ

n
i )∆t

1+Aλ 2k4D∆t
, (16)

where ·̂ denotes a Fourier transform and k = |~k| is the magnitude
of the wave vector~k.

To make equations dimensionless, the lengths are measured in
units of the cubic box size L and time is measured in the units
of τ = λ 2/D, which describes the characteristic time of diffu-
sion across the interface between two phases. We chose λ/L =

0.45× 10−2 and the time step ∆t = τ/2. Our system is initial-
ized with the desired average composition {φ̄i} with some small
perturbation (uniform random noise with small magnitude), and
then the simulation runs for a total duration of 105−106τ.

3.3 Post-processing methods

The model B dynamics described above can be used to study
phase separation of mixtures with an arbitrary number of com-
ponents N. Once the mixture phase separates, we need to find a
way to extract the number P of coexisting phases and the com-
positions {φ α

i } of each phase. In order to do this, it is useful
to represent a simulation configuration in the composition space,
where the compositions {φi} at each of the 128× 128× 128 grid
points are represented as points in an (N−1)-dimensional compo-
sition space (see Fig. 4). Note that there are only N−1 indepen-
dent components due to the constraint ∑i φi = 1. Once a mixture
phase separates into P coexisting phases, all the data points lie
on a (P−1)-dimensional manifold in the composition space (see
Fig. 4). Majority of the points are located in P corners that cor-
respond to the compositions {φ α

i } of P distinct phases denoted
with Greek labels. Points that connect these corners correspond
to the compositions associated with interfacial regions between
phases. Below we describe how this information can be extracted
with Principal Component Analysis (PCA) methods to estimate
the number P of coexisting phases together with a K-Means clus-
tering algorithm to estimate the compositions of phases {φ α

i }.

Fig. 4 An example of the post-processing procedure for a N = 4 compo-
nent mixture with P = 3 coexisting phases. (a) The composition map of
the simulation data. Large gray dots correspond to the equilibrium com-
positions of the three coexisting phases α, β , γ as determined from the
convex hull algorithm. (b) The composition map for the filtered simulation
data (see text). Note that most points are concentrated in the neighbor-
hood of equilibrium phase compositions. (c-d) K-Means clustering based
on the (c) original and (d) filtered simulation data. Crosses mark the clus-
ter centers and data points are colored according to the cluster to which
they belong. Data in this figure was obtained from simulations with Flory
interaction parameters χ12 = 4.50, χ13 = 2.50,χ23 = 3.50,χi4 = 1.50, (i =
1,2,3) and initial compositions {φ̄i}= {0.30,0.20,0.45,0.05}.

3.3.1 Estimation of the number of coexisting phases with
the Principal Component Analysis

The PCA method can be thought of as the fitting of an N-
dimensional ellipsoid to the composition data, where each axis of
the ellipsoid represents a principal component23. As can be seen
in Fig. 4 the composition points lie approximately on a (P− 1)-
dimensional hyperplane. Therefore, the PCA method produces
an ellipsoid with P−1 axes of finite size, while the other N−P+1
axes are nearly zero.

First, we construct the dataset X for the PCA. The composi-
tion {φi} for each of the 128× 128× 128 grid points is treated as
one entry in the dataset X, which is thus a matrix of dimensions
1283×N. Second, we construct the covariance matrix C = XT X
of dimension N×N and calculate its eigenvalues and eigenvec-
tors. Eigenvectors and eigenvalues in turn correspond to the di-
rections and lengths of ellipsoid axes, respectively. For the so-
lution with P coexisting phases, we thus expect P− 1 non-zero
eigenvalues and N−P+1 eigenvalues that are nearly zero. How-
ever, as can be seen in Fig. 4, the interfacial points that connect
certain two phases do not necessarily lie on a straight line. Due to
the curvature of interfaces in the composition space some points
may reisde outside the (P− 1)-dimensional hyperplane, and in
such cases, the PCA analysis produces additional nonzero eigen-
values. This problem can be avoided by removing the interfa-
cial points, which correspond to regions with large compositional
gradients ∆ = maxi |∇φi|2. By filtering out interfacial points with
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gradients larger than ∆ = 0.002/λ 2, (see Fig. 4), we kept only
points that correspond to P bulk phases. After the filtering, the
PCA analysis in fact produces only P−1 nonzero eigenvalues. For
the N = 4 component mixture with P = 3 coexisting phases in
Fig. 4, the eigenvalues of the covariance matrix C are 1.69×10−1,
6.51× 10−2, 1.01× 10−5, and 2.34× 10−12. In practice, we find
that there is good agreement for the number of coexisting phases
P with the convex hull algorithm described in the previous sec-
tion, if we define nonzero eigenvalues as those that are larger
than 10−4.

3.3.2 Estimation of phase compositions with K-Means

Compositions of stable phases correspond to regions of densely
clustered points in the composition space (see Fig. 4). There-
fore, once we determine the number P of coexisting phases with
the PCA method, we can then use the standard K-Means clus-
tering method24 to compute the centers of clusters, which yield
the compositions of phases {φ α

i }. In the present work, we em-
ployed the scikit-learn package52 to compute the centers of clus-
ters. In analogy with PCA method, it is important to filter out
the interfacial points, otherwise the centers of clusters may be
shifted away from the actual compositions (see Fig. 4). With the
caveats noted above, the compositions of phases obtained from
the K-means clustering method agree very well with the composi-
tions obtained from the convex hull method described in Section
2 (see Fig. 4).

Once the compositions of phases are known, we can use this
information to construct local phase indicator functions {ηα (~r)}
such that

ηα (~r) =

{
1 in the bulk phase α,

0 in the bulk of all other phases.
(17)

For each grid point~r, we can prescribe that the local composition
{φi(~r)} is a mixture of P phases with volume fractions {ηα (~r)},
such that

φi(~r) = ∑
α

φ
α
i ηα . (18)

These phase indicator functions can be thought of as proxies for
the intensity of fluorescent markers that are often employed in
experiments to mark individual phases. In the bulk of each phase
β the local concentration φi(~r)≈ φ

β

i and hence ηα (~r)≈ δαβ . The
system of N equations for the P≤N unknowns {ηα (~r)} in Eq. (18)
can be approximately solved by calculating the pseudo-inverse of
the N×P matrix Φ≡ φ α

i . The phase indicator functions can then
be calculated as

ηα = Rα jφ j, R =
(

Φ
T

Φ

)−1
Φ

T . (19)

Note that within the interfacial regions the values of ηα may be-
come negative or larger than 1. To remedy this, we apply the
following transformation to regularize the indicator functions44:
we set ηα = 1 if ηα > 1, and ηα = 0 if ηα < 0. After this, we nor-
malize the indicator functions such that ∑α ηα = 1. In this way,
we ensure that ηα ∈ [0,1] and represents the fractions of different
phases at a given location.

Fig. 5 Schematic of morphologies in a system with three phases α,
β , and γ based on the magnitudes of surface tensions γαβ ≥ γαγ ≥ γβγ .
(a) Mechanically stable triple-phase junctions. Finite contact angles be-
tween different phases are related to the force balance via surface ten-
sions. (b) Mechanically unstable triple-phase junctions. Phase γ com-
pletely wets phases α and β so as to minimize the overall interfacial
energy.

4 Morphology of coexisting phases
In previous sections we described how the number of coexist-
ing phases P and their compositions {φ α

i } can be obtained ei-
ther with the convex hull construction of the free energy function
(Sec. 2) or by analyzing the dynamic evolution of the mixture to-
gether with the PCA and K-Means clustering methods (Sec. 3).
In this section we compare the results of these two approaches
for the case of 4-component mixtures. Furthermore, we investi-
gate the microstructure of P coexisting phases that depends on
both the surface tensions {γαβ } between phases and on the vol-
ume fractions of the phases, which are functions of interaction pa-
rameters {χi j} and average compositions {φ i}, respectively. Note
that for any triplets of phases α, β , and γ, with surface tensions
γαβ ≥ γαγ ≥ γβγ , the triple-phase junctions are mechanically sta-
ble (unstable) when γαβ < γαγ + γγβ (γαβ > γαγ + γγβ )53. When
triple-phase junctions are mechanically unstable, the phase γ pen-
etrates between phases α and β to minimize the total interfacial
energy (see Fig. 5). The

(P
3
)

inequalities between surface tensions
thus dictate the equilibrium morphology of phase separated mix-
tures. We show that the packing morphologies found in simula-
tions are consistent with the estimated surface tensions in Eq. (8)
from the Cahn-Hilliard formalism. While the microstructure is
primarily determined from equilibrium properties, we show an
example where kinetic pathways, which lead to multi-stage phase
separation, are responsible for the formation of “pearled-chain”
structures.

4.1 Symmetric quench
First, we analyze the simplest possible case, where all the inter-
action parameters are equal χi j ≡ χ, (i 6= j), and also the aver-
age compositions for all components are equal to φ̄i ≡ 1/N. The
N-component mixture is thus completely symmetric and either
stays mixed in a single phase, or phase separates into N coexisting
phases, each of which is enriched with one of the components. In
each phase, the N− 1 minority components have a composition
0 < φ ≤ (1/N), while the majority component has composition
1− (N− 1)φ . Note that the φ = 1/N case corresponds to an ini-
tially equimolar mixture. Due to the symmetry of the system, the
free energy density can be expressed in terms of a single variable
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Fig. 6 Four distinct morphologies of 4-component mixtures that include a pair of strongly interacting components. (a) Stable two-phase region, (b-
c) stable three-phase regions, and (d) metastable two-phase region. Bottom row displays points in the composition space, where large colored dots
mark the phase compositions obtained from the convex hull algorithm. Top row displays indicator functions of phases in real space (colors correspond
to the colored dots in the bottom row). The majority phase, which is marked with the gray dot in the composition map, is transparent in top rows. The
interaction parameters were set to χ14 = χ41 = 5.50 and all others χi j = 2.70,(i 6= j).

φ as

f̃FH(φ) = (N−1)φ lnφ +[1− (N−1)φ ] ln [1− (N−1)φ ]

+ χ(N−1)φ
(

1− N
2

φ

)
, (20)

where f̃FH(φ) = fFH(φ)/(c0RT ) is the dimensionless free energy
density.

This special case can thus be mapped to an equivalent binary
mixture, which can be analyzed with standard tools. For suffi-
ciently large value of the interaction parameter χ > χc, the sys-
tem phase separates into N coexisting phases. For a symmetric
solution with many components (N� 1) we find that the critical
interaction parameter scales as χc ∼ 2lnN and in each phase the
concentration of minority components scales as φ ∼ 1/N2. Note
that the spinodal region, where the free energy becomes locally
unstable for the uniform mixture, is achieved only when the in-
teraction parameter becomes very large (χ ≥ N � χc). Thus, for
χ ≈ χc, the system phase separates via nucleation and growth
by crossing an energy barrier ∆ f̃ ∼ (lnN)/4, as estimated from
Eq. (20).

4.2 Pair of strongly repelling components

Next, we investigate a slightly more complicated case, where a
pair of two components repel very strongly (large value of χ),
while all the other interactions are moderate. As a representative
system, we take a 4-component solution, where the components
1 and 4 interact strongly (χ14 = 5.50), while for all other com-
ponents, χi j = 2.70. Because of the strong repulsion, the system
typically phase separates into at least two phases (see Fig. 6),
where one of the phases (α) is enriched with component 1 and
devoid of component 4, while another phase (β) is enriched with

component 4 and devoid of component 1. Note that when the av-
erage composition {φ i} is in a region of composition space, where
the system separates into 3 phases, then the additional phase γ,
which is enriched with components 2 and 3, penetrates between
the phases α and β in order to minimize the total interfacial en-
ergy (see Fig. 6b,c). This happens whenever surface tensions sat-
isfy the inequality

γαβ > γαγ + γβγ , (21)

which makes the triple-phase junctions mechanically unstable.
For the parameters used in Fig. 6b,c, we estimated dimensionless
surface tensions {γ̃αβ = 0.708, γ̃αγ = 0.109, γ̃βγ = 0.107} from the
Cahn-Hilliard procedure in Eqn. (8), where dimensionless surface
tensions are defined as {γ̃αβ } ≡ {γαβ /(2λc0RT )}. The estimated
surface tensions are consistent with the inequality in Eqn. (21).
While the phase γ penetrates between phases α and β in both
Fig. 6b and 6c, the two morphologies are quite distinct due to
differences in the volume fractions of the three phases.

Here, we make another observation. In some regions of com-
position space, the convex hull construction predicts 3 coexisting
phases, while in simulations of noise-free model B dynamics we
see only 2 coexisting phases (see Fig. 6d). This is due to the fact
that our dynamics is restricted to the spinodal region, and hence
the system can get trapped in metastable states in the absence of
thermal noise.

4.3 Multistage phase separation

In binary mixtures, spinodal decomposition occurs instanta-
neously, while in mixtures with more components, phase sepa-
ration can happen in several stages. Here, we report on an exam-
ple of such behavior in a 4-component mixture with symmetric
interaction parameters χi j ≡ 4.5, (i 6= j). The solution with aver-
age composition {φ̄i}= {0.10,0.10,0.10,0.70} first separates into 2
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Fig. 7 Multistage phase separation. a) At t = 1,000τ, the initial instability leads to the formation of two phases α and α ′. b) At t = 150,000τ, a secondary
instability causes phase α ′ to split into three equilibrium phases β , γ, and δ , which form the “pearl chain”–like structure. c) At t = 292,000τ, pearled
chains break into triplet “Janus particle”-like droplets due to the Plateau–Rayleigh instability. Bottom row displays points in the composition space,
where large colored dots mark the phase compositions obtained from the convex hull algorithm. Top row displays indicator functions of phases in real
space (colors correspond to the colored dots in the bottom row). The majority phase, which is marked with the gray dot in the composition map, is
transparent in top rows. Interaction parameters were set to χi j ≡ 4.50,(i 6= j), with an average composition {φ̄i}= {0.1,0.1,0.1,0.7}.

phases, and subsequently one of the phases demixes into 3 phases
(see Fig. 7 and Video S2).

This can be understood by considering the local stability of
the free energy function. The Hessian matrix Hi j =

∂ 2 fFH
∂φi∂φ j

evalu-
ated at the initial composition, has one negative value with the
corresponding eigenvector {φ e

i } = {−0.2,−0.2,−0.2, 0.94}. At
early stages of the phase separation process, the mixture thus
initially forms two phases by following the free energy gradi-
ents, which are initially primarily oriented in the direction of
the eigenvector {φ e

i }. By minimizing the free energy in the di-
rection of the eigenvector {φ e

i } we find two local minima lo-
cated at {φ α

i } = {0.0234, 0.0234, 0.0234, 0.9298} and {φ α ′

i } =
{0.31, 0.31, 0.31, 0.07}. These are approximately the composi-
tions of the two phases α and α ′ that form at the initial stages
of the phase separation process (see Fig. 7a). By analyzing the
eigenvalues of Hessian matrix at compositions {φ α

i } and {φ α ′

i }
we find that the phase α corresponds to a local minimum (pos-
itive eigenvalues), while the phase α ′ actually corresponds to a
saddle point (two negative eigenvalues). Therefore the phase α ′

eventually phase separates into 3 phases (see Fig. 7b,c), leading
to the emergence of all 4 equilibrium phases.

We can also rationalize the resulting morphology of the sys-
tem via the following arguments. From Eq. (4) we can estimate
the volume fractions ηα = 0.7 and ηα ′ = 0.3 of the two phases
that form initially. Because the volume fraction of phase α ′ is
above the percolation threshold54, the two phases form a bicon-
tinuous structure. After α ′ phase separates, the three new phases
form within a bicontinuous structure. As a consequence, the sys-
tem initially forms “pearl chain”–like structures of the 3 phases

(see Fig. 7b), while during the later coarsening stage, these
long chains break into droplets, courtesy of the Plateau–Rayleigh
instability53,55, leading to the formation of triplet “Janus-like”
droplets. We note that if the volume fraction of the intermedi-
ate phase α ′ was below the percolation threshold, then the sys-
tem would first form droplets of the phase α ′, which subsequently
phase separate into triplet “Janus particle”-like droplets.

4.4 Nested structures

In this section we briefly comment on how one can rationally de-
sign nested “Russian doll”-like droplets by tuning the surface ten-
sions between different phases. In Sec. 4.2 we already mentioned
that in order to make a nested structure with 3 phases α, β and
γ, surface tensions have to satisfy the inequality in Eq. (21). The
nested structure in Fig. 6b satisfies this inequality, but does not
form droplets, as the volume fraction of the intermediate green
phase is large enough that it percolates. However, once the in-
equality between surface tensions is satisfied, then it is straight-
forward to tune the volume fractions of the coexisting phases by
changing the average compositions {φ i} [see Eq. (4)] to get the
“core-shell” droplets for the 3 phases structures (see Fig. 8a).

Next, we will design a morphology with nested “Russian-doll”
droplets with 4 coexisting phases, such that phase α domains re-
side completely inside phase β domains, which themselves reside
inside phase γ domains, which in turn are surrounded by domains
corresponding to phase δ . To ensure that the triple-phase junc-
tions between any of the possible

(4
3
)
= 4 triplets are mechanically
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Fig. 8 Nested “Russian doll” droplets. (a) A 3-phase “Russian doll”, (b) an improper 4-phase “Russian doll”, and (c) a proper 4-phase “Russian doll”.
Bottom row displays points in the composition space, where large colored dots mark the phase compositions obtained from the convex hull algorithm.
Top row displays indicator functions of phases in real space (colors correspond to the colored dots in the bottom row). The majority phase, which is
marked with the gray dot in the composition map, is transparent in top rows. The interaction parameters and initial compositions were set to: (a) χ12 =

2.50, χ13 = 5.50, χ23 = 3.50, χi4 = 1.50, (i= 1,2,3) and {φ̄i}= {0.10,0.15,0.70,0.05}; (b) χ12 = 2.50, χ13 = 4.00, χ23 = 3.00, χ14 = 5.50, χ24 = 5.00, χ34 = 2.50
and {φ̄i}= {0.10,0.10,0.20,0.60}; (c) χ12 = 2.50, χ13 = 4.10, χ23 = 2.40, χ14 = 7.00, χ24 = 5.10, χ34 = 3.70, and {φ̄i}= {0.06,0.09,0.12,0.73}.

unstable, we now have 4 different inequalities for surface tensions

γαγ > γαβ + γβγ , γαδ > γαβ + γβδ ,

γβδ > γβγ + γγδ , γαδ > γαγ + γγδ . (22)

Note that if any of the above inequalities is not satisfied, then
some triple-phase-junctions are mechanically stable and the de-
sired nested structure does not form. An example of such be-
havior is displayed in Fig. 8b, where the inequality for the triplet
α, β , δ is slightly violated based on the estimated surface ten-
sions {γ̃αβ = 0.090, γ̃αγ = 0.474, γ̃αδ = 0.881, γ̃βγ = 0.264, γ̃βδ =

0.860, γ̃γδ = 0.142}, and, as a consequence, the red phase α ap-
pears “pinned” to the boundary with other phases.

The final question that remains is how do we choose Flory in-
teraction parameters {χi j}, such that the surface tension inequal-
ities in Eq. (22) are all satisfied? We note that in the 4-component
mixture, the 4 coexisting phase regions typically form only, when
the interaction parameters {χi j} are quite large. In this case, each
phase is enriched with one of the components, and thus the sur-
face tensions between different phases are approximately propor-
tional to the interaction parameters [see Eqn. (9)]. Therefore,
we can translate the inequalities for surface tensions in Eq. (22)
to similar inequalities for interaction parameters {χi j}. Using this
idea we were able to construct nested “Russian-doll” droplets with
4 coexisting phases (see Fig. 8c and Video S3). We verified that
the estimated surface tensions {γ̃αβ = 0.113, γ̃αγ = 0.457, γ̃αδ =

1.64, γ̃βγ = 0.0752, γ̃βδ = 0.940, γ̃γδ = 0.595} satisfy the inequali-
ties in Eq. (22).

5 Domain coarsening kinetics

Next, we turn to the quantitative description of domain growth
and coarsening kinetics during phase separation of multicompo-
nent mixtures. Upon quenching into the spinodal regions of the
phase diagram, small compositional heterogeneities are rapidly
amplified in time and lead to the formation of compositional do-
mains with a characteristic length scale, as evident in Fig. 7a.
Once the spinodal instability is exhausted, phase separating sys-
tems enter a so-called domain coarsening regime, during which
capillary forces drive competitive growth of larger domains at the
expense of smaller ones so as to minimize the total interfacial en-
ergy of the system. In two phase liquid systems, coarsening can be
quantitatively captured via a single time-dependent length scale
(average domain size of the minority phase droplets) R(t) ∼ ta,
where the coarsening exponent a = 1/3 for systems in which dif-
fusive transport processes dominates over advective ones25–28.
Importantly, in this so-called scaling regime, morphologies are
self-similar, and structural correlation functions only depend on
r/R(t). Bray26,27 has argued that when scaling behavior is ob-
served in systems with more than two coexisting phases, the
coarsening exponent should still be given by a = 1/3. Below, we
first introduce appropriate structure factors and subsequently ex-
amine domain coarsening kinetics in systems with 4 coexisting
phases in light of Bray’s theoretical prediction.

As mentioned already in Section 3, we employ a family of phase
indicator functions {ηα} to characterize the morphology of the
phase separating N-component system. The indicator functions
are constructed such that, within domains of a particular phase β ,
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Fig. 9 Coarsening kinetics of two coexisting phases for (a) a binary
mixture (N=2) with an interaction parameter χ12 = 2.50 and composi-
tion {φ i} = {0.5,0.5}, and (b) the 4-component mixture in Fig. 6d that
is trapped in a metastable state. Solid black lines are linear fits to Rα at
large times.

ηβ = 1, while all other ηα = 0. In order to quantitatively calculate
the characteristic length scale of domains belonging to a specific
phase, we introduce the following structure factors

Sαβ

(
~k, t
)
= η̂α

(
~k, t
)

η̂β

(
−~k, t

)
, (23)

where η̂α

(
~k, t
)

denote the Fourier transforms of phase indica-

tor functions defined as η̂α

(
~k, t
)
=
∫
V d3~r e−i~k·~rηα (~r, t)/V . Given

a structure factor Sαβ

(
~k, t
)
, we define our characteristic length

scale in a commonly adopted way40,56–58 via

Rα (t) = 2π

∫
d3~k Sαα

(
~k, t
)∫

d3~k
∣∣~k∣∣Sαα

(
~k, t
) . (24)

As a benchmark, we first analyzed the coarsening of a binary
mixture, which reaches the usual asymptotic coarsening behavior
with exponent a = 1/3 at around (tD/λ 2)1/3 ≈ 15 (see Fig. 9a).
We first compare it to the coarsening of a 4-component mixture
that is trapped in a metastable region with two coexisting phases
(see Fig. 6d). This mixture also reaches the t1/3 asymptotic coars-
ening stage, but at a later time (tD/λ 2)1/3 ≈ 25 (see Fig. 9b).
Small deviations at large times can be attributed to the presence
of finite size effects.

In the case of 4-component mixtures with 4 coexisting phases,
our numerical coarsening data indeed indicate convergence to-
wards the predicted t1/3 behavior26,27, as shown in Fig. 10. Very
little coarsening takes place during the first stage of the multi-
stage phase separation process involving two coexisting phases
displayed in Fig. 7. Once all 4 coexisting phases have emerged,
however, the domains of all phases begin to coarsen at the
same rate and the asymptotic coarsening is achieved at around
(tD/λ 2)1/3 ≈ 30. On the other hand, in the case of the “Russian
doll” morphology in Fig. 8c, all phases appear roughly simulta-
neously, and begin to coarsen, albeit with different rates. We
attribute this to the fact that the initial formation of the nested
microstructure imposes correlations on the local compositions,
which are not accounted for in standard coarsening theories. On
the other hand, once the nested microstructure has formed, a
single length scale is sufficient to describe the morphology, and
hence a crossover to the predicted t1/3 behavior is reached at

Fig. 10 Coarsening of 4-component mixtures with 4 coexisting phases.
(a) Coarsening kinetics of the mixture with multistage phase separation
displayed in Fig. 7. The transition from the initial instability to the sec-
ondary one is denoted by the dashed line. (b) Coarsening kinetics for the
mixture with nested “Russian-doll” droplet morphology shown in Fig. 8c.
Solid black lines are linear fits for the characteristic length scale of the
majority phase (marked with gray crosses) at large times.

around (tD/λ 2)1/3 ≈ 30. Small deviations at large times are again
attributed to the presence of finite size effects. We expect that the
crossover time scale depends on the number of coexisting phases
and the droplet morphology, and plan to investigate this in more
detail in future work. We also note that small nested droplets
that are disappearing during the coarsening process gradually dis-
solve in a layer-by-layer fashion until they completely vanish (see
Video S3).

6 Design of target microstructures
In this section we discuss how one can rationally design the inter-
action parameters {χi j} and average compositions {φ i} to achieve
target microstructures. As was already alluded to in previous sec-
tions, the equilibrium microstructure is completely determined
from surface tensions between phases and their volume fractions.
In general, the relation between the surface tensions and inter-
action parameters is quite complex. However, it can be drasti-
cally simplified in the limit where interaction parameters {χi j} are
large. In this limit the surface tensions are approximately propor-
tional to the interactions parameters [see Eq. (9)]. By using this
relationship, we discuss how one can rationally design three dif-
ferent microstructures in 5-component mixtures with 5 coexisting
phases: ‘’Russian-doll” droplets , encapsulated triple “Janus-like”
droplets, and encapsulated “micro-emulsions” (see Fig. 11).

The “Russian-doll” droplets with P = N phases α1, α2, . . . ,
αN , such that the phases are numbered sequentially with α1

(αN) being the innermost (outermost) phase of the nested struc-
ture, require that the surface tensions for an arbitrary triplet
αi−α j −αk of phases satisfy the inequality γαiαk > γαiα j + γα jαk ,
where i < j < k. By relating the surface tensions to interaction
parameters according to the Eq. (9) and by satisfying these in-
equalities, we were able to generate the “Russian-doll” droplets
with 5 phases (see Fig. 11a). Note that the formation of droplets
requires that the volume fraction of the outermost phase αN is
sufficiently large to prevent the formation of a nested bicontinu-
ous structure (see Fig. 6b). While we were able to successfully
generate “Russian-dolls” in this 5-component solution, this might
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Fig. 11 Designed nested morphologies for 5-component mixtures with 5 coexisting phases. (a) “Russian-doll” droplets, (b) encapsulated triplets,
and (c) encapsulated “emulsions”. By increasing the volume fraction of the lubricating gray phase in (c), we obtained emulsion with 4 different
types of droplets in (d). The majority phase is completely transparent in all panels. The internal structure can be seen in Videos S4, S5, S6, and
S7. Interaction parameters and initial compositions were set to: (a) χ12 = 2.50, χ13 = 5.10, χ23 = 2.40, χ14 = 6.00, χ24 = 5.75, χ34 = 2.75, χ15 =

7.75, χ25 = 7.50, χ35 = 6.50, χ45 = 3.00, {φ̄i} = {0.06,0.07,0.08,0.09,0.70}; (b) χ14 = χ15 = χ45 = 4.25, χ23 = 4.00, χi2 = 3.00, χi3 = 7.00, (i = 1,4,5),
{φ̄i} = {0.067,0.10,0.70,0.066,0.066}; (c) χ14 = χ15 = χ45 = 6.00, χ23 = 4.00, χi2 = 3.00, χi3 = 7.00, (i = 1,4,5), {φ̄i} = {0.05,0.15,0.70,0.05,0.05}; (d)
χ14 = χ15 = χ45 = 6.00, χ23 = 4.00, χi2 = 3.00, χi3 = 7.00, (i = 1,4,5), {φ̄i}= {0.16,0.42,0.15,0.14,0.13}.

be more challenging in solutions with N > 5 components within
the Flory-Huggins approach. This state of affairs arises due to the
fact that the number of inequalities between surface tensions

(N
3
)

is larger than the number of interaction parameters
(N

2
)
. Thus,

it might not be possible to satisfy all the inequalities within the
Flory-Huggins model.

Next, we discuss how to design encapsulated triple “Janus
particle”-like droplets, which we refer to as triplets (see Fig. 11b).
For simplicity, we assume that the 3 phases α, β , and γ, that are
forming the triplets, are equivalent, such that their surface ten-
sions γαβ = γαγ = γβγ . The phase δ that is encapsulating triplets is
shielding them from the surrounding matrix phase ε. Therefore,
the surface tensions must satisfy the inequalities γµε > γµδ + γδε ,
where µ ∈ {α ,β ,γ}. By satisfying these inequalities and by set-
ting the volume fraction of the matrix phase ε to be sufficiently
large, we were indeed able to obtain encapsulated triplets (see
Fig. 11b).

Finally, we comment on how to modify interaction parameters
to transform the encapsulated triplets to emulsions of 3 differ-
ent encapsulated phases. This time, the phase δ must also shield
the phases α, β , and γ from each other. The surface tensions
thus need to obey the following inequalities: γµν > γµδ + γδν ,
where µ,ν ∈ {α ,β ,γ,ε}. By tuning the volume fractions of in-
dividual phases one could obtain either encapsulated emulsions
of 3 phases (see Fig. 11c, where ε is the majority phase) or emul-
sions of 4 phases (see Fig. 11d, where δ is the majority phase).

To summarize, we demonstrated the first steps towards re-
verse engineering interaction parameters {χi j} and average com-
positions {φ i} to construct the target microstructure. To spec-
ify the morphology of P coexisting phases, there are

(P
3
)

differ-
ent inequalities between surface tensions. To ensure that there is
enough flexibility, there must be sufficient number of components
N, such that there are at least as many interaction parameters
{χi j} as there are inequalities between surface tensions

(N
2
)
≥
(P

3
)
.

The average compositions {φ i} must be chosen, such that they lie
in a region of phase space that correspond to the P coexisting
phases with compositions {φ α

i }. By moving the average compo-

sitions {φ i} inside that region one can tune the volume fractions
of phases [see Eq. (19)]. This can be a very complicated task
for mixtures with many components and many coexisting phases
within the Flory-Huggins model.

7 Conclusions
In this paper we investigated phase diagrams, coarsening and
morphologies of 4- and 5-component mixtures. The algorithm
developed for constructing phase diagrams based on the convex
hull construction of free energy functions is general and can be
adapted to an arbitrary physical system with N ≤ 5 components.
The PCA and K-Means clustering methods in turn provide conve-
nient means to extract both the number of coexisting phases and
their compositions from a given physical realization, also in sys-
tems with N > 5 components that are not directly amenable to
phase diagram analysis.

In agreement with the predictions by Bray26,27, we found that
the coarsening kinetics of multiphase mixtures approaches the
t1/3 scaling in the long-time limit. However, our data show that
phase separation can occur in several stages, and it remains un-
clear how the coarsening during intermediate stages depends on
the number of coexisting phases and their morphology.

As for the equilibrium packing morphology of coexisting fluid
phases, it is completely determined by volume fractions and sur-
face tensions between phases. To this end, we provided guide-
lines for a rational design of parameters in the Flory-Huggins
model that produce target nested morphologies, such as “Russian
doll” droplets, encapsulated triplets, and encapsulated emulsions
in 5 component systems with 5 coexisting phases. The design of
such structures provides the first steps towards the design of novel
self-assembled, autonomic, and hierarchical compartments, that
could be used, e.g., for controlled-release systems in medical ap-
plications, capable of encapsulating more components than cur-
rently achievable with other methods. We note that it might be
hard to design arbitrary morphologies in mixtures with more than
5 components within the Flory-Huggins approach, given that the
number of inequalities between surface tensions becomes larger
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than the number of free parameters. This is simply a limitation
of the Flory-Huggins model, while other models with more ad-
justable parameters (or real systems) may provide enough flexi-
bility to achieve the desired structure.

An appealing feature of the Cahn-Hilliard approach employed
in the present work is that it naturally incorporates both interfa-
cial and bulk thermodynamics (with the former driving the coars-
ening process), and accounts for complex topological changes as-
sociated with splitting and merging of droplets. On the other
hand, in order to properly numerically resolve the diffuse inter-
faces, our simulations are limited to systems with linear dimen-
sions on the order of ∼ 100λ , where λ is the interfacial width.
Extending simulations to much larger scales in order to assess
the convergence to the asymptotic coarsening behavior remains a
challenge.

We note that the work reported in this manuscript solely fo-
cused on phase separation processes involving spinodal decompo-
sition. At the present time, how nucleation and growth proceeds
in multicomponent systems with complex energy landscapes with
many local minima and energy barriers, remains an open ques-
tion. In closing, we hope our work will stimulate further experi-
mental, numerical, and theoretical investigations of phase behav-
ior and phase transitions in multicomponent systems.
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