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Buckling of geometrically confined shells

Lucia Stein-Montalvo,a† Paul Costa,b Matteo Pezzulla,a,c and Douglas P. Holmesa‡

We study the periodic buckling patterns that emerge when elastic shells are subjected to geomet-
ric confinement. Residual swelling provides access to range of shapes (saddles, rolled sheets,
cylinders, and spherical sections) which vary in their extrinsic and intrinsic curvatures. Our experi-
mental and numerical data show that when these moderately thick structures are radially confined,
a single geometric parameter – the ratio of the total shell radius to the amount of unconstrained
material – predicts the number of lobes formed. We present a model that interprets this scaling
as the competition between radial and circumferential bending. Next, we show that reducing the
transverse confinement of saddles causes the lobe number to decrease with a similar scaling
analysis. Hence, one geometric parameter captures the wave number through a wide range of
radial and transverse confinement, connecting the shell shape to the shape of the boundary that
confines it. We expect these results to be relevant for an expanse of shell shapes, and thus apply
to the design of shape–shifting materials and the swelling and growth of soft structures.

Shells are notorious for their nonlinear response to mechanical
loading, and subtle changes to how they are held, or constrained,
can have profound affects on how they deform. Confinement
of soft shells can induce dramatic deformations as illustrated in
Fig. 1, where radial confinement is increased from left to right.
These mechanics are relevant to soft biological tissues, as their
morphology often depends on a combination of mechanical forces
imparted along their boundaries, and non–mechanical forces that
drive growth or swelling. Confinement of soft tissues can result in
the wrinkling and scar formation of surgical wounds1, and these
changes in shape or morphology are not purely cosmetic. For ex-
ample, during the embryogenesis of the ciliary body of an avian
eye, differential growth induces wrinkles that radiate outward
from the retina2, a stiff region that resists deformation. Cap-
illary blood vessels form in the valleys of these wrinkles, while
molecules that promote neural cell adhesion fail to express in
the regions where these epithelial tissues wrinkle3,4. These ef-
fects are entirely mechanical, as evidenced by experiments that
induced wrinkles in the chick eyes by swelling them in ethanol2,4.
Similar studies on the differential swelling and growth of artificial
tumors5,6 and biofilms7,8 described the role of confinement and
the mechanics of these circumferential wrinkles in much greater
detail. Radial confinement occurring within airways and arter-
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ies9, as seen in buckling and folding of mucous membranes, can
cause the collapse or closure of the oesophagus10, blood ves-
sels11, and gastrointestinal tract12.

Fig. 1 As the extent of confinement increases from left to right, the a.
saddle, b. rolled sheet, c. cylinder and d. spherical segment exhibit more
lobes. In a. and b., shells are clamped between acrylic plates of increas-
ing diameter. The cylinder and sphere cut to varied c. heights and d.
latitudes, and fixed with an acrylic ring at the base. Shells are made of
polyvinylsiloxane (PVS). Scale bars represent 30 mm.

Beyond these biological systems, the ability to prescribe and
control the shape of objects has ushered in an age of designer
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Fig. 2 a. Schematics showing pre-residual swelling configurations and
relevant geometric parameters for the i. saddle, ii. rolled sheet, iii. cylin-
der, and iv. spherical segment. Pink areas will "shrink" while green
ones will "grow" upon residual swelling, and grey represents areas con-
strained by acrylic plates. b. Table displays initial (accented "o") and post-
swelling (subscripted "avg") Gaussian K and mean H curvatures for
each shape.

materials

13. By dictating the volumetric strain in specific re-
gions of soft elastomers, researchers have been able to morph
2D sheets into 3D shells14–16, with features spanning multi-
ple length scales17,18. Differential swelling, sometimes accom-
plished by using the residual polymer chains left in portions of
cured elastomers, has been used to fabricate helical ribbons19,
rolled sheets20, saddles21, pinched spheres22, and wavy strips
and discs23–25. Even for free, unconstrained plates and shells
the shape selection process is non–trivial. The shapes that result
from differential swelling can be determined by examining how
swelling alters the metric tensor of the middle surface of the plate,
an approach described by the so–called theory of unconstrained
non–Euclidean plates26. When swelling only imparts a local cur-
vature change along the middle surface, as is the case for the
residual swelling of bilayer plates and shells, the non–mechanical
swelling process can be cast as a mechanical stimulus which al-
ters the natural curvature of the shell22, and the stability of these
structures can be evaluated using techniques common to applied
mechanics. The inverse problem – knowing a desired shape and
searching for the correct initial conditions necessary to achieve it
– is a problem that has received far less attention, but will likely
be more desirable. Work by Dias et al. demonstrated how to find
the metric for a variety of axisymmetric shapes27, while more re-
cent work has shown how to find the metric for a wide range of
shapes, including a human face, when a curvature can be pre-
scribed at any point28.

In the effort to understand and control shape change in soft and
thin structures, the interplay between intrinsic geometry and geo-
metric constraints is still not well understood. Confining a simple
1D object, i.e. an elastica, within a rectangular box is a nontrivial
problem, in part due to the unknown and evolving location of the
point of contact between the elastica and the walls29–33. Similar
problems emerge in the packing of thin sheets, for instance push-
ing a plate through a ring causes it to form a developable cone, or
d–cone34–39, and in the confinement of a thin plate between two
hemispheres40 or onto a droplet of water41. Confinement of in-
trinsically curved shells has received less attention, with an excep-

tion being the behavior of shells under indentation42, including a
hybrid experimental-numerical study of the response of positively
curved shells to indenters of varied geometries43. In this work,
we present a primarily experimental study on how geometric con-
finement facilitates pattern formation in structures with intrinsic
curvature. We consider shells with various mean and Gaussian
curvatures under a range of radial confinement, and we exam-
ine the combined role of radial and transverse confinement on
negatively curved shells, or saddles. We focus our study on four
categories of shapes, shown in Fig. 1 and schematically in Fig. 2a:
saddles, rolled sheets, cylinders, and spherical segments. Each is
initially axisymmetric and exhibits periodic postbuckling patterns
when subjected to geometric constraints. These geometries were
chosen to access a range of average Gaussian and mean curva-
tures in their reference ( ˚Kavg, ˚Havg) and deformed (Kavg, Havg)
configurations.

The range of structures studied is outlined in Fig. 2b. Of the
four shapes we study, two start out as flat plates – one of these
changes its average mean curvature, and the other changes its
average Gaussian curvature after fabrication. Our study omits
spherical caps, which have been well-characterized, e.g. in Ref.43.
These shells are relatively thick as compared to recent work on
thin film confinement41,44,45, and we will show that the charac-
teristic pattern of deformation can be described by a single geo-
metric parameter that appears to be independent of shell thick-
ness in this regime.

1 Radial Confinement

Each of the unconstrained, residually stressed shapes are shown
in the leftmost column of Fig. 1. We begin by constraining the
rolled sheets and saddles in the radial direction by clamping the
shells between two rigid acrylic sheets of radius Rc. In Fig. 1a&b,
we increase Rc from left to right while keeping the shell radius R
and thickness h constant, and we see that the number of lobes N,
or wavenumber, increases. Three-dimensional simulations were
implemented in COMSOL Multiphysics to validate these experi-
ments for the three bilayer geometries (rolled sheets, cylinders,
and spheres). Residual swelling is represented by an inelastic dis-
tortion field, and Dirichlet boundary conditions around a ring of
radius Rc act as the external constraint (see Supplemental Infor-
mation for details on fabrication and simulations).

The wavenumber appears to be insensitive to changes in
thickness in the range of h/R we considered (Fig. 3a), h/R 2
[0.008,0.13] – thicker shells behave more like 3D bodies, while
thinner shells made from these materials (see: Supplemental In-
formation) deform significantly under gravity. Instead, it appears
that the wavenumber is inversely proportional to the length of
material that is unconstrained, i.e. r ⌘ R�Rc.

The bending energy of the shell, which we assume to be de-
coupled from the stretching energy, is known to scale as Ub ⇠
B
2

R
r2dw. The quantity r = (k � ko) represents the curvature

strains – the difference between the deformed curvature k and
the curvature in the reference (unconstrained) state ko – and dw
is the area element.

The bending energy penalizes high curvatures, so in the cir-
cumferential direction, long wavelengths are preferable. We as-
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Fig. 3 a. In the thickness range we study, the wavenumber is insensitive
to changes in thickness, h. Instead, the amount of unconstrained ma-
terial, quantified by `, sets the wavenumber: for `p in a fixed range, but
h/R varied, N (shown for rolled sheets) is unaffected. b.&c. The number
of lobes N may be reduced to one geometric parameter, ` = R/r, which
quantifies the relative amount of constraint. The evolution of N is a lin-
ear function of `. Triangles are experimental data points and circles are
from simulations. Solid lines of best fit, and their slopes, are shown in
each plot. Free of constraints, each shape has two lobes (dotted line).
Solid horizontal axes are drawn according to the minimum value for `.
b. For saddles (purple) and rolled sheets (green), `p = R/(R�Rc), and
min(`p) = 1. Inset: Results from simulations for rolled sheets for (bottom
to top) `p = {2.2,3.2,4.5,5.8}. c. For cylindrical shells (red) with height
r, `s = R/r. For spherical segments (orange), `s = sinf f /(fc � f f ). The
minimum of `s is 0.

sume that the q -direction wrinkle curvature will scale with the
amplitude and wavelength as k(q) ⇠ A

l 2

, so r(q) ⇠ ( A
l 2

� Ao
l 2

o
).

When the two initial lobes, each of amplitude Ao, are split into
N lobes, the amplitude becomes A = 2Ao/N – the total length
does not change. Thus, Ao ⇠ NA, and similarly lo ⇠ Nl , so that
r(q) ⇠ A

l 2

(N�1

N ). Again by inextensibility, l ⇠ A, so we can also
say r(q) ⇠ l�1(N�1

N ). To leading order the unconstrained area of
the shell will scale as w ⇠ Rr, such that

U (q)
b ⇠ B

2

Z ✓
N �1

N

◆
2

l�2 ·Rr. (1)

The question in regard to these constrained shells is: what
opposes the circumferential bending energy to produce shorter
wavelengths? Typically in (unconstrained) shell problems, com-
petition between bending and stretching drives deformation.
However, stress distributions of similarly confined structures ob-

tained experimentally23 and numerically46 suggest that stretch-
ing in the radial direction is concentrated in a small region near
the inner boundary. Further, since in this thickness regime the
shell thickness does not appear to play a dominant role in setting
the wavelength, or wavenumber (Fig. 3a), of these constrained
shells, we expect that any energy comparison should be indepen-
dent of thickness to leading order. Thus, we hypothesize that
bending in the radial direction is the other relevant contribution
to the energy ⇤: along the length r: the radial bending energy
prefers short wavelengths (smaller amplitudes).

In the radial direction, the curvature k(r) ⇠ A
r2

, so we can say

r(r) ⇠ (k(r) � k(r)
o ) ⇠ (A� Ao)/r2. With the same arguments as

before applied to the numerator, the bending energy in the radial
direction is given by

U (r)
b ⇠ B

2

Z ✓
N �1

N

◆
2 l 2

r3

·R. (2)

.
Balancing the two energies in (1) and (2) gives l ⇠ r. With

l = 2pR/N ⇠ R/N, and defining ` ⌘ R/r, we arrive at a scaling
of the wavenumber as a function of the unconstrained, or free
length of the shell:

N ⇠ `. (3)

In Fig. 3b, we plot experimentally and numerically obtained
wavenumbers N as a function `p, which is ` for the shells that
initially started as flat plates. When the constraint Rc ! 0 the
dimensionless length `p ! 1, and experiments on unconstrained
shells confirm that N ! 2 (Fig. 1), suggesting that for rolled sheets
and saddles equation (3) should be modified to N ⇠ `p + 1. This
scaling is plotted as a solid line on Fig. 3b, with a slope of 1.72
found via linear regression. We would expect the slope to be
of O(1) if the scaling is valid, and these results suggest that our
approximations were reasonable.

We now turn our attention to shells with initially nonzero
mean and Gaussian curvatures. Physically, the scaling from equa-
tion (3) suggests that the wavenumber will increase linearly as
the free, unconstrained length of the shell decreases. For the
cylinders and spherical segments constrained at their base, the
free length that decreases from left to right on Fig. 1c&d is the ar-
clength r of material from the clamped base to the shell opening,
and similar to the rolled sheets and saddles, as this free length
is decreased the wavenumber increases. Therefore, we anticipate
that equation 3 will also capture the wavenumber of these con-
strained shells, provided the appropriate limits on N and `s are
met, where `s is ` for shells that have are initially curved. Here,
the unconstrained shell corresponds to r ! •, or `s ! 0, which
is analogous to the two lobe deformation (i.e. N ! 2) observed
with a “pinch in a pipe”47. This suggests that for cylinders and
spherical segments, we expect that equation 3 should be modified

⇤ Inherently, these assumptions are contradictory – bending in both directions
throughout the free area implies stretching, which we have chosen to neglect. We an-
ticipate that a more thorough analysis is needed to relieve this contradiction. Here,
we assume these stretching effects are small compared to bending. We are grateful
to James Hanna who provided helpful insight to clarify this scaling.
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to N ⇠ `s +2. In Fig. 3c, we plot experimentally and numerically
obtained wavenumbers N as a function `s for cylinders and spher-
ical segments. The scaling N ⇠ `s +2 is plotted on Fig. 3c, with a
slope of 1.50 found via linear regression. These results seem to
be in good agreement with this reduced order model, suggesting
that the wavenumber of a wide range of constrained shells can
be characterized with a dimensionless parameter corresponding
to the free length of the shell.

2 Transverse confinement

We will now relax the radial confinement to investigate shell be-
havior under varying amounts of transverse confinement. We fo-
cus primarily on an experimental analysis of saddles, because to
our knowledge there are only limited examples of the transverse
confinement of saddles in the literature, and the experiments on
saddles are the most practically feasible out of the structures dis-
cussed in section 1. We constrain the shells in the transverse di-
rection with quasi-static, displacement-controlled tests in which a
saddle is compressed between pairs of acrylic plates of radius Rc.
Initially, the distance d between the top and bottom plates equals
the saddle’s thickness, i.e. d = d �h = 0 (Fig.4a&b,i.), which rep-
resents the limit discussed in Section 1.

As we separate the distance between the two plates by an
amount d , there is a non-monotonic decrease in the applied com-
pressive load, and the number of lobes decreases, as shown in
Fig. 4a, (a more detailed experimental protocol is discussed in
the Supplemental Information, and a video may be found in the
Electronic Supplementary Information). The decrease in the com-
pressive load is nearly linear for d/A << 1, and then reaches a
minimum when one point of contact between the acrylic plate and
the saddle is lost, thus beginning the mode shape transition from
N =N

max

to N�1 lobes. The load immediately increases, and once
the saddle has reaches N � 1 (asymmetric) lobes (Fig.4a&b,ii.)
the load once again decreases. When a new symmetric shape
is reached at N � 1 lobes, the slope of the force-displacement
curve decreases but remains positive, and the process repeats un-
til d ' A, F ' 0, and there are N = 2 lobes (Fig.4a&b,iv.). The
slope of the force-displacement curves through these transitions
appears to gradually decrease, pointing to a diminishing effective
stiffness as d increases. Fig. 4b shows these trends in a force-
displacement curve for a representative sample that achieves a
maximum of 5 lobes at d = 0.

We now aim to provide some mechanistic insight as to the lobe
transitions from N

max

to N = 2 for saddles as the transverse con-
straint is reduced. Here, we know the two limits: (1.) as d ! •
we expect that N ! 2, and (2.) as d ! 0 we expect that N ! N

max

as given by equation 3. The first limit can be simplified, because
the sheet will be unconstrained once d is larger than the ampli-
tude of the shell’s lobes, i.e. N ! 2 when d � A. In these exper-
iments, while in principle `p is fixed, in effect the free length of
the shell may be approximated as being a function of d , i.e. rd (d ),
with rd (0) = r from section 1. As an ansatz for rd that meets these
two limits, we chose a logistic function in the form

rd (d ) =
R

1+ Rc
r e�m d

A

, (4)

Fig. 4 a. As d increases from left to right, the number of lobes (N) de-
creases. The recessed images are mirrored views showing the back
side of saddles. b. Force-displacement curves of three displacement-
controlled tests on a single shell. Pink diamonds correspond to lobe
transition points with Roman numerals indicating the transition from five
(i.), to four (ii.), to three (iii.) to two (iv.) lobes. c. Wavenumber N vs. d for
the same sample. Solid points correspond to symmetric lobes, and open
circles correspond to transitions between lobes. We expect the solid the-
oretical curve to capture the points marked by pink diamonds. This curve
is equation (5) with m= 3.5. d. The same equation captures experimental
lobe switches (points, as in c) with different geometric parameters. Black
curves fix m = 4, and grey curves correspond to best fit m values: from
top, m = 3.68, m = 4.38, m = 8.00.

where m is an unknown constant that describes how quickly the
unconstrained length will transition between r and R. Substitut-
ing this ansatz into equations Ub and Uk for r, we can solve for
N(d ). Following some algebra, we find

N(d )⇠ `p +1� Rc

r

�
1� e�m d

A
�
. (5)

which reduces to equation 3 for plates when d = 0. In Fig. 4c, we
plot the experimentally observed wavenumber as a function of
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d . The transition process is highly nonlinear, and so we note the
transition between two wavenumbers with open symbols, while
highlighting the transition points from the local minima in the
force-displacement curve as filled diamonds. Equation 5 is plotted
as a solid black curve, with m = 3.5 chosen as a best fit parameter
to the transition points. Although m is effectively a fitting param-
eter, we anticipate that it will depend on the bending rigidity of
the saddle. We have not taken into account how the magnitude
of the saddle’s Gaussian curvature, which will be related to the
amplitude of the lobes, nor the shell thickness affect the transi-
tion points, however we expect that m will be a function of these
parameters. Further testing, in particular numerics, will help ex-
plain the contribution of K and h to the transition between mode
numbers. Still, we note that for the samples we tests, using m = 4

captures the transition points for shells with N
max

= 5, N
max

= 4,
and N

max

= 3 (Fig. 4d). Choosing the best fit values of m for each
sample (m = 3.7, m = 4.4, and m = 8.0) changes the critical d for
observing lobe transitions, but qualitatively provides similar val-
ues. In general, the form of (5) clarifies the relative contributions
of transverse (d) and radial (Rc) confinement. At low d values,
radial effects dominate. As the wave number depends on d expo-
nentially, however, the effects of reduced transverse confinement
quickly take over with increasing d .

3 Conclusions

In this work, we explored geometry’s fundamental role in the peri-
odic buckling patterns that emerge in confined shells. We studied
shells covering a range of Gaussian and mean curvatures, accessi-
ble via residual swelling. We first saw that one simple geometric
parameter, `, which relates the overall shell radius to the amount
of unconfined material, predicts the number of wrinkles (N) a ra-
dially confined shell will adopt. Then for negatively curved sad-
dles, we reduced the radial constraint by varying transverse con-
finement and measured the transition points between wavenum-
bers.

We observed that decreasing the amount of confinement,
whether in-the-plane or vertically, makes bending in the circum-
ferential direction costly – lower buckling modes are energeti-
cally preferable in a low-confinement regime. This interpretation
allowed us to generalize ` to include our range of transverse con-
finement. Thus, the model given by relation (5) captures a wide
range of bidirectional confinement.

There is much to be done in terms of more rigorously under-
standing why thickness and stretching appear to be unimportant,
and to put our scaling assumptions on firmer ground. A nice ana-
log to our transverse confinement of saddles is the transverse
confinement of an elastica31,32. In these works, solutions for
the confined elastica29,30 are extended to thin plates constrained
progressively in the vertical direction. Our problem has subtle
differences, notably that our shells are naturally curved, and our
confining plates are smaller than the shell size. However, the
transitions between buckling modes in our experiments are remi-
niscent of these studies, including qualitative features like planar
contact, free-standing folds, and rolling33. These parallels sug-
gest a way to pursue a more formal connection between the two
problems. The shells studied in this work are residually stressed,

and the magnitude of residual stress did not enter our mechani-
cal model. It was recently shown that the magnitude of residual
stress in shells will alter the critical point at which an instability
occurs, i.e. the load required to buckle the structures, but that
the instability remains qualitatively similar48. Also, as others43

have observed, contact plays an important role in transverse con-
finement. Further numerical analysis of these constrained shells
would be beneficial, in particular, such an analyses could also of-
fer a more geometric freedom, with regards to both shells and
their confining boundaries, beyond what is readily accessible ex-
perimentally. In general, we anticipate these results will aid in
the design of shape–shifting structures, and we believe there are
many open questions regarding the role of confinement when de-
signing structures that change shape on command.
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4 Supplementary Information

4.1 Structure Fabrication

To fabricate the shapes shown in Fig. 1, we use a technique known
as residual swelling20,21. We use two polyvinylsiloxane (PVS)
elastomers, which we will refer to as green (Zhermack Elite Dou-
ble 32, E=0.96 MPa) and pink (Zhermack Elite Double 8, E=0.23
MPa). The materials are cast in as fluids and allowed to thermally
crosslink, or cure, at room temperature for 20 minutes. After cur-
ing, the pink elastomer has residual polymer chains within the
material, and these residual free chains flow into the green elas-
tomer when the two materials are in contact with each other. The
local loss of mass causes the pink material to decrease in volume,
or shrink, while the green material correspondingly swells, thus
inducing a differential swelling in the structure which preserves
its total mass. Differential swelling in shells can lead to residually
stressed structures that emerge because the shell must deform to
accommodate a geometric incompatibility49. When the differen-
tial swelling occurs through the shell’s thickness, it deforms in a
nearly isometric manner in the bulk of the shell, away from shell’s
edges22, and when the differential swelling occurs in-the-plane of
the shell the deformation is dominated by stretching21. These op-
posing deformations explain why the initially flat shapes can be
morphed into either rolled sheets or saddles. As residual swelling
is a diffusive process, the time to deform scales with the square of
the dimension across which swelling occurs. This characteristic
dimension for swelling is either the thickness h ⇡ 1mm, or in the
case of saddles, where residual swelling occurs in-the-plane, the
radius, R = 30mm21.

To make homogeneous rolled sheets, we use a spin coater
(Laurel Technologies, WS-650-23) to deposit a pink layer of PVS
atop a laser-cut (Epilog Laser Helix, 75W) circular acrylic plate,
R 2 [25mm,35mm]. After it cures, we add a green layer in the same
manner. The residual swelling first bends the sheet into a shallow
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spherical cap, and then ultimately buckles it into a rolled sheet –
a cylinder–like shape that is open along its directrix. The rolled
sheet is nearly isometric away from its edges (i.e. Kavg = 0) and
its non–zero mean curvature is linearly proportional to the natu-
ral curvature imposed by residual swelling20,22,50. In the range
of thicknesses we study, the unconstrained mean curvature H

seems to have no effect on the wavenumber. Qualitatively, we
observe that higher H does, however, increase the amplitude of
wrinkles in constrained shells.

Saddles are made by laser-cutting a negative circular
mold (R = 30mm) from clear cast acrylic sheets of thick-
ness h: 0.794mm±

0.119mm (Inventables), 1.589mm (tolerance
�0.584mm to +0.254mm), 2.381mm (�0.034mm to +0.025mm),
or 3.175mm (�0.635mm to +0.381 mm) (McMaster-Carr). This
circular mold is glued atop a base acrylic plate, and a smaller cir-
cle, radius Rc 2 {12.5mm,28.25mm}, is centered and fixed to the
base plate. We then pour green PVS to form a ring, filling the
mold up to the acrylic sheet thickness. After the ring cures, the
smaller circle is removed and the remainder is filled with pink
PVS. After residual swelling, a saddle shape forms: Havg ⇡ 0 and
˚Kavg < 0 – the value of the latter depends on the ratio of pink
to green polymer20. In-plane swelling is quite a bit slower than
through-thickness swelling, since the characteristic length scale
changes from the thickness to the radius21. The dynamics can be
increased by extracting the free polymer chains in a solvent bath,
e.g. ethyl acetate.

Cylinders and spherical segments are poured as bilayers over
corresponding 3D molds. Spherical segments are formed by coat-
ing a metal ball-bearing with viscous PVS so that each layer
has approximately uniform thickness22,51. These spherical shells
have positive average mean and Gaussian curvatures both before
and after the swelling process. Cylinders are fabricated simi-
larly52 (see Fig.5), and like spheres, the initial mean curvature

˚H > 0, though ˚K = 0. After deformation, a "pinched pipe"
forms47, with Havg > 0 and Kavg ⇡ 0.

For the experiments described in Section 1, rolled sheets and
saddles are clamped in the center between two laser-cut acrylic
plates of equal size, Rc 2 {12.7mm,30.5mm}. Cylinders and spheri-
cal segments, on the other hand, are constrained by acrylic plates
glued to the base with a very thin layer of green VPS. Cylinders
are then cut to varied heights, and spheres are cut at different lat-
itudes: the angle f f is subtended by the arclength from the origin
(the north pole) to the top cut (the free surface). The base, where
the shell is constrained, is defined by the angle fc. Schematics of
the pre-swelling configurations, including constraints, are given
in Fig. 2. Thickness is measured at h = {0.25,0.45,0.75,1.5,4}mm
±

0.15mm for Section 1, and h 2 [2.381mm ±
0.1mm, 3.175mm

±
0.1mm] for the saddles discussed in Section 2.
The wavenumber in rolled sheets, cylinders, and spheres is in-

different to whether the constraint is applied before or after resid-
ual swelling occurs, and the experimental data in Fig.1b&c repre-
sents a mix of both scenarios.

For saddles, where the swelling gradient lies in-the-plane, the
confining plates are added after the swelling process. Our aim
in this paper was to examine how, given a saddle, constraints af-
fect its shape. Therefore, residual swelling is a tool to make these

Fig. 5 a. Fabrication process for a bilayer cylinder: (i.-ii.) The first pink
layer of PVS is poured to uniformly coat the steel cylinder. (iii.) After 20
minutes, the first layer has cured. The cylinder is flipped upside-down,
and the excess material is removed. (iv.-v.) A second layer of pink PVS
is poured in order to achieve a uniform thickness in the vertical direction.
(vi.-vii.) After another 20 minutes, both pink layers have cured. A green
layer is added in the same manner. (viii.) After 20 minutes, the excess
material is removed and the cylinder is flipped upside-down again. (ix.-x.)
The final green layer is added. (xi.-xii.) After the final layer has cured (20
minutes), the bilayer cylinder is cut from the mold using a straightedge.
(xiii.) The bilayer cylinder once peeled from the mold. Residual swelling
causes the cylinder to buckle into a “pinched pipe”. b. Thickness versus
(right) axial and (left) azimuthal (y = 0) position, corresponding to param-
eters shown in the images in c. Thickness is relatively uniform in both
directions, albeit more so in the radial direction. Measurements were
taken using ImageJ. c. Top view (left) and cut view (right) show parame-
ters relevant to the above plots. Right: to obtain thickness measurements
in the axial direction, the cylinder is cut, then glued between glass plates
to prevent rolling.

saddles. Applying the constraint beforehand leads to a different
question: how does confinement affect saddle formation in resid-
ual swelling?

If the radius of the pink PVS region Rp < Rc, the clamp forces
the pink region to stretch to conform to Rc. The inner perime-
ter of the green region is fixed, but the outer perimeter decreases
as free chains are lost from the green polymer. Then, instead of
buckling into a negatively curved saddle, the shape develops pos-
itive Gaussian curvature. This is analogous to Ref.21, in which
structures comprised of geometrically mismatched disks and an-
nuli buckle into saddles if the perimeters require that the annulus
stretches, and domes if the annulus must compress.
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4.2 Mechanical force testing

The saddles used in Section 2 were fabricated with a centered
2.25mm radius hole through which we guide a 2mm radius rod as
transverse confinement is varied. We determined this hole to be
necessary for maintaining the saddle’s position but negligible for
our purposes – it has no effect on lobe number. Care was taken to
align shells as close to centered as possible, as shells are sensitive
to initial conditions (see Electronic Supplementary Information).

We investigate transverse confinement with a setup designed
for the INSTRON 5943. We attach a drill-type grip (Instron
0.375in Keyless Drill-Type Chuck Assembly) to the load cell to
secure an aluminum rod (2mm radius), which is screwed to an
internally threaded acrylic plate of radius Rc. A second partially
threaded rod is attached to the underside of this top plate, point-
ing downward. The rod is guided through the saddle’s center hole
and then through a hole also of radius 2.25mm in the center of
the acrylic base plate, which itself has radius Rc. The base plate
is affixed to a thick tube of outer radius < Rc, inner radius 3.5mm
and height 44.45mm. This tube is comprised of stacked acrylic
rings each of thickness 6.35mm, glued together and closed at the
base. The base of the tube is screwed to a tapped optical table.

Displacement-controlled tension tests are performed at a rate
of 4 mm/min and force is measured with a 500N load cell (res-
olution 0.0025N). Videos were taken with a Nikon D610 DSLR
Camera and were used for post-processing in conjunction with
Instron data.

4.3 Numerics

For the three bilayer geometries where residual swelling occurs
through-the-thickness, we sought to validate the experiments
from Section 1 with simulations developed in COMSOL Multi-
physics. We created a 3D model within the context of elasticity
with large distortions using a Neo-Hookean incompressible ma-
terial model53. The residual swelling stimulus is represented by
a spherical distortion field ~Fo = a(h3)~I where h3 is the general
coordinate normal to the midsurface (i.e. across the thickness).
Shells are composed of two layers: in the swelling (green) layer,
a(h3)= lo, and in the other (pink) layer, a(h3)= 2�lo, where lo

represents an inelastic stretching factor (see Fig.6). This ensures
that the conformal stretching factor Lo ' 1, as was found exper-
imentally for residual swelling bilayers50. The constraints were
modeled with Dirichlet boundary conditions imposed around a
ring of radius Rc in each case, reflecting the experimental setup.
Solving for the deformed shape while varying geometric param-
eters, we confirmed our experiments from section 1 for rolled
sheets, cylinders, and spheres.

4.4 Buckling dynamics

We know from Ref.50 that for the unconstrained rolled sheet (`p =

1), the critical buckling curvature (normalized by the thickness)
is

kbh =

q
10+7

p
2

⇣ h
R

⌘
2

. (6)

We examine the effect of constraint on this value – our numer-

Fig. 6 Top: Schematics depicting the distortion field and boundary con-
ditions applied in COMSOL to the bilayer geometry, and the resulting
deformation. Bottom: Top-down images from simulations showing the
geometry, mesh, and deformation.

ics allow us to extract the critical curvature required for buckling
for various values of `p. This is shown in Fig. 7 by ¯k, which repre-
sents the ratio of the buckling curvature of the constrained struc-
ture over an unconstrained but otherwise geometrically identical
sheet (according to (6)). We observe that the buckling curvature
increases with `p or, in other words, that more constrained struc-
tures require more curvature to buckle.

1 2 3 4 5 6

1

25

50

75

`p

̄

Fig. 7 The critical buckling curvature for rolled sheets increases with the
extent of constraint, quantified by `p. ¯k is the ratio of the critical buckling
curvature to that of the unconstrained case, from (6).

Curvature continues to develop past the critical buckling point,
and we generally observe that lobes become increasingly pro-
nounced, as in Fig. 8a. However, when ` corresponds to an in-
termediate N value, the lobe-selection process can be unstable
(Fig. 8b.) A similar bistability between two mode numbers is seen
in some shells after residual swelling is complete.
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Moderately thick shells constrained in the radial and transverse directions buckle to a 
wavenumber set by a single geometric parameter.
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