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Abstract

24 We present an integrated experimental and quantitative theoretical study of the mechanics of self-

crosslinked, slightly charged, repulsive pNIPAM microgel suspensions over a very wide range of 

26 concentrations ( ) that span the fluid, glassy and putative "soft jammed" regimes. In the glassy 𝑐

regime we measure a linear elastic dynamic shear modulus over 3 decades which follows an 

28 apparent power law concentration dependence , a variation that appears distinct from prior 𝐺′~𝑐5.64

studies of crosslinked ionic microgel suspensions. At very high concentrations there is a sharp 

30 crossover to a nearly linear growth of the modulus. To theoretically understand these observations, 

we formulate an approach to address all three regimes within a single conceptual Brownian 

32 dynamics framework. A minimalist single particle description is constructed that allows microgel 

size to vary with concentration due to steric de-swelling effects. Using a Hertzian repulsion 

34 interparticle potential and a suite of statistical mechanical theories, quantitative predictions under 

quiescent conditions of microgel collective structure, dynamic localization length, elastic modulus, 

36 and the structural relaxation time are made. Based on a constant inter-particle repulsion strength 

parameter which is determined by requiring the theory to reproduce the linear elastic shear 

38 modulus over the entire concentration regime, we demonstrate good agreement between theory 

and experiment. Testable predictions are then made. We also measured nonlinear rheological 

40 properties with a focus on the yield stress and strain. A theoretical analysis with no adjustable 

parameters predicts how quiescent structural relaxation time changes under deformation, and how 

42 the yield stress and strain change as a function of concentration. Reasonable agreement with our 

observations is obtained. To the best of our knowledge, this is the first attempt to quantitatively 

44 understand structure, quiescent relaxation and shear elasticity, and nonlinear yielding of dense 

microgel suspensions using microscopic force based theoretical methods that include activated 

46 hopping processes. We expect our approach will be useful for other soft polymeric particle 

suspensions in the core-shell family. 

48
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I. Introduction

50 Colloidal suspensions have been a major area of interest in the soft matter community for 

decades. Much fundamental research has been done with model hard-sphere colloids, with or 

52 without small polymer depletants, which have elucidated the understanding of physical 

phenomenon such as crystallization, phase separation, glassy dynamics, and nonlinear rheology 

54 [1-3]. Other widely studied systems are dense suspensions of soft colloids [4,5]. However, they 

bring additional complexities since the particles are deformable with a fluctuating internal 

56 polymeric microstructure, which can lead to their size and even shape becoming a function of 

thermodynamic state (volume fraction, temperature, ionic strength) and deformation. Most 

58 microgels are charged and can be created with diverse chemistry, which introduces concentration-

dependent complexities associated with osmotic decompression, the poorly known internal density 

60 profile (often core-shell), and variable single particle mechanical stiffness. Hence, the effective 

interaction potential between microgel particles is a complex issue, consistent with a lack of 

62 universal signatures in their rheology [6,7]. Moreover, microgels can exist as dense Brownian 

suspensions that can form kinetic glasses or gels, or at ultra-high concentration as paste-like 

64 materials characterized by literal contacts between deformed particles. If the latter exist, the system 

is typically viewed as in a "soft jammed" regime. However, whether the physics in this regime is 

66 entirely akin to granular materials where large scale motion requires the application of external 

mechanical energy is not well understood, and the answer may depend on system and 

68 thermodynamic state.  

In this paper, we perform a coordinated experimental and theoretical study of the dynamics 

70 and rheology of soft, thermoresponsive poly(N-isopropylacrylamide) (pNIPAM) based microgel 

suspensions under conditions where they are swollen in a good solvent and repel. There have been 
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72 extensive prior studies of similar systems [5, 8-11], albeit mainly in the soft jamming regime with 

ionic microgels which are chemically crosslinked and can osmotically de-swell with changing 

74 concentration [5, 8-9]. Such microgel pastes are generally viewed as effectively athermal or 

granular. 

76 Our study has several not very common features: (a) there is no chemical crosslinking via 

added molecules of the microgel particles, (b) the microgels are only slightly charged, and (c) 

78 experiments are performed over an exceptionally wide range of concentration that spans the low 

viscosity fluid, glassy Brownian, and soft jammed regimes. These aspects distinguish our 

80 experimental system from most others, and isolates particle compression as solely due to many 

body steric effects with negligible ion-induced deswelling. We will show that points (a) and (b) 

82 lead to mechanical behavior with features significantly different than prior studies. Point (c) is also 

a strong focus of this work where in the first two concentration regimes there are no literal inter-

84 particle "contacts" and the mechanical response is influenced by Brownian caging processes driven 

by thermal fluctuations and external stress [12-13]. The possibility that the ultra-dense regime is 

86 not granular-like is also explored.

The remainder of this article is structured as follows. In section II we describe the 

88 experimental materials and methods. Our key experimental results for the linear and nonlinear 

rheology are presented in section III. Section IV presents the basics of our theoretical modeling of 

90 single microgel structure, and the equilibrium and dynamical statistical mechanical tools we 

employ to make predictions for collective packing structure, linear elasticity, structural relaxation, 

92 and aspects of nonlinear rheology. Quantification of microgel effective volume fraction is 

discussed in section V, and predictions made for the linear dynamic shear modulus and packing 

94 structure, with the former compared with our measurements. Theoretical results for the equilibrium 
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structural relaxation time, its variation with deformation, and yielding properties are presented in 

96 Section VI, with some comparison to experiment. The paper concludes with a discussion in Section 

VII. Additional experimental characterization and rheological results are presented in the 

98 Supplementary Information (SI).

II. Materials and Methods

100 A. Microgel synthesis and characterization

Slightly charged self-crosslinked pNIPAM microgels were synthesized under a 

102 ‘crosslinker free’ condition following the protocol described in literature [14] with modifications 

(see Supplementary section 1 for details). Free-radical polymerization of NIPAM in water was 

104 initiated using potassium persulfate in the absence of added cross-linker. This leads to the 

formation of stable nanospheres instead of linear chains if the solution is incubated at temperatures 

106 well above the lower critical solution temperature (LCST) of PNIPAM (~ ). The formation of 32℃

gel nanospheres is attributed to self-crosslinking by chain transfer reaction during and after 

108 polymerization [15]. Microgels prepared with a similar preparation protocol have been referred to 

as neutral in their charge [14, 45]. Here, we refer to such microgels as ‘slightly charged’, because 

110 the initiator used may possibly leave some charge on the colloids. A stock solution of  𝑐 = 9 𝑤𝑡%

was then diluted with deionized water to achieve the desired concentration of the slightly charged 

112 microgel suspension. 

The particle radius was determined by dynamic light scattering (DLS) (Zetasizer Nano ZS, 

114 Malvern) and a Helium-Neon gas laser emitting at  on a very dilute suspension (632.8 𝑛𝑚

) with a beam diameter of  (See Supplementary Figure S1). The present work 0.04 𝑤𝑡% 0.63 𝑚𝑚

116 focuses on the lower temperature regime where microgels are swollen and interact via repulsive 
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forces. In dilute solution, the microgel particles have a mean diameter of  at 2𝑅 = 551 ± 71 𝑛𝑚

118 . 10℃

B. Rheological Characterization 

120 Rheological experiments are performed over a very wide range of microgel concentration 

from  to . Viscoelasticity was probed using a rotational rheometer (model 0.03 𝑤𝑡% 9 𝑤𝑡%

122 Discovery Hybrid 3, TA instruments and model MCR702 from Anton Paar) with plate-plate 

geometry. These are both torque-controlled instruments (a.k.a. combined-motor-transducer type). 

124 A  grit, adhesive-back sand paper (Norton Abrasives) was adhered to the contact surfaces to 600

suppress wall slip. The plate diameter was varied depending on the sample concentration to obtain 

126 a measurable response higher than the minimum torque resolution. A  plate was used for 60 𝑚𝑚

dilute samples ,  plate for ,  for 0.03 ― 0.25 𝑤𝑡% 40 𝑚𝑚 (0.25 ― 1.5) 𝑤𝑡% 20 𝑚𝑚 (0.5 ― 4.5)

128  , and  for  samples. The typical gap in all experiments was between  𝑤𝑡% 8 𝑚𝑚 (4.5 ― 9) 𝑤𝑡%

, far larger than the particle size, thus eliminating confinement effects. A solvent (550 ― 750) 𝜇𝑚

130 trap, with a wet-tissue adhered to its interior, was used to minimize solvent evaporation during the 

measurements. The temperature of the bottom plate was controlled using a Peltier-system. To 

132 suppress sample aging effects and erase any history, all samples were rejuvenated by shearing at 

 for  and then allowed to relax for  before taking measurements [5]. 50 𝑠 ―1  60𝑠 12 𝑚𝑖𝑛

134 Two types of rheological characterization were performed: oscillatory shear and steady 

shear. To probe the linear response, frequency sweeps were performed from 𝜔 = (0.03 ― 100)

136  at a strain amplitude of  at . To probe the nonlinear response, strain sweeps of  𝑟𝑎𝑑/𝑠 1% 10℃

amplitude  at a fixed frequency of  were performed. In the steady shear 𝛾0 = (0.1 ― 300)% 1 𝑟𝑎𝑑/𝑠

138 experiments, shear rates were typically varied from  while waiting for the system (300 ― 0.01) 1/𝑠

to reach an apparent steady state as deduced by  variation in torque over a period of  .< 5% 30 𝑠
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140 III. Experimental Results

A. Linear Rheology

142 Figure 1A shows the frequency-dependent linear storage, , and loss , , moduli as a 𝐺′  𝐺′′

function of frequency. One sees a nearly frequency independent , with a smaller  that also is  𝐺′  𝐺′′

144 weakly frequency-dependent. Hence,  for all concentrations above  and the 𝐺′′ < 𝐺′ 0.4 𝑤𝑡%

response is predominantly solid-like with the structural or flow relaxation time obeying 𝜏𝛼 > 𝜔 ―1
𝑙𝑜𝑤

146 . No crossover between  and  was observed in the range of frequencies probed, ≈ 100 𝑠 𝐺′ 𝐺′′

indicating the microgels do not show significant diffusion or structural relaxation on the probing 

148 time scales. 

At higher frequencies, the commonly observed frequency dependence of for a 𝐺′′~𝜔1/2 

150 loosely and randomly packed emulsion is very roughly observed for the  and  0.75 𝑤𝑡% 1 𝑤𝑡%

samples [16]. However, there are systematic deviations -- power laws are often not well developed, 

152 and apparent scaling exponents, if force fit, can be larger or smaller than 0.5, and tend to decrease 

as concentration grows. For concentrations below , the inertia of the measuring system 1 𝑤𝑡%

154 influences the torque measurements significantly and makes it difficult to observe any reliable 

signatures [17] for high frequency measurements. 

156 The linear storage modulus at a fixed frequency of  and a strain amplitude of 𝜔 = 1 𝑟𝑎𝑑/𝑠

 is shown in Figure 1B. It monotonically grows with increasing concentration (as also 𝛾0 = 1%

158 found at slightly higher temperatures, see Supplementary Figure S3). Three distinct regimes of 

behavior are observed. For concentrations below , no measurable elastic modulus is 𝑐 = 0.4 𝑤𝑡%

160 detected above the minimum torque limit of the instrument. This seems consistent with 

measurements of the high shear rate viscosity (Supplementary Figure S2), where an excellent 
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162 agreement with the Einstein prediction of the dilute intrinsic viscosity is observed in the 

concentration range , beyond which the viscosity strongly grows. Since the (0.03 ― 0.35) 𝑤𝑡%

164 microgels are only slightly charged, the latter is presumably due to repulsive inter-microgel forces 

and transient caging in the suspension. Such a fundamental change in the concentration range 

166  is consistent with a dynamic crossover to a regime where there is little particle (0.4 ― 0.5) 𝑤𝑡%

motion on the experimentally probed time scales [11,18]. In hard sphere glasses the characteristic 

168 modulus scale is set by the thermal energy per particle volume [4,13], , where  𝐺 ∼ 𝑘𝐵𝑇/(2𝑅)3 𝑘𝐵

is Boltzmann’s constant, is temperature, and  is the particle radius, which for our system is 𝑇 𝑅 𝐺′

170  for . This estimate is fairly close to when we first observe a solid-like = 0.024 𝑃𝑎 2𝑅 = 550𝑛𝑚

response:  and  for and  concentrations, respectively. 𝐺′ = 0.04 𝑃𝑎 𝐺′ = 0.14 𝑃𝑎 0.4 𝑤𝑡% 0.5 𝑤𝑡% 

172 In the intermediate concentration range, defined as , the elastic modulus (0.4 ― 1.25) 𝑤𝑡%

shows a dramatic dependence on microgel concentration. A variance weighted fit of all data yields 

174 , but it seems clear the effective exponent weakly decreases with concentration. 𝐺′~𝑐5.64 ± 0.28

Similar observations have been made in literature [5,11], but the apparent power law exponent in 

176 Fig. 1B is generally very different for previous work using pNIPAM based suspensions (see 

Supplementary Figure S4 for comparison). For example, Menut et al. [5] observed power law 

178 exponents of ,  and , respectively, for three p(NIPAAm-co-AAc) ionic microgel 4.4 6.1 14

suspensions of increasing single particle stiffness as synthesized by precipitation polymerization 

180 with varying cross-linker concentration. Pellet and Cloitre [11] observed a power-law exponent of 

 for a suspension of polyelectrolyte microgels synthesized by emulsion polymerization. Given 9.1

182 the narrow range of data in the "glassy regime" of that study, such a high apparent exponent may 

simply indicate exponential growth. 
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184 In the highest concentration range of our experiments, defined as , the (1.5 ― 9) 𝑤𝑡%

elastic response again qualitatively changes. The modulus now grows weakly in a nearly linear 

186 manner with concentration (variance weighted fit, ). How to interpret this solely 𝐺′ ∼ 𝑐1.17 ± 0.07

from mechanical data is neither obvious nor unique. We can envision three possibilities. (1) It 

188 could indicate a transition to what is usually called a "soft jammed" state where microgels are in 

literal contact, particles may deform and form facets, and elastic energy is stored in a granular 

190 manner. This scenario predicts [11], which to be consistent with our data seems 𝐺′ ∝ (𝜙 ― 𝜙𝑗𝑎𝑚) 

to require the effective volume fraction grows linearly with microgel concentration (which is a 

192 priori unclear). (2) Discrete microgel particles could somehow effectively "fuse" in the practical 

sense that the suspension behaves as a connected macroscopic network of flexible "elastically 

194 active chains or strands". From the classical theory of rubber elasticity, this scenario implies 

elasticity is fundamentally of single strand (conformational) entropic origin, with

196  where  is the polymer concentration divided by the number of monomer units in each 𝐺′ ~ 𝜌𝑥𝑘𝑇 𝜌𝑥

polymer strand, [5,19]. A comparison between our experimental data and the rubber elasticity 𝑁𝑥 

198 model [20] is given by the red line (variance weighted fit parameter, ) in Figure 1B. (3) 𝑁𝑥 = 3903

A third scenario is the change in concentration dependence of  reflects a crossover from 𝐺′

200 sterically-induced weak compression of core-shell microgels to a regime where the microgels 

isotropically shrink in a manner that keeps its effective volume fraction fixed. This scenario retains 

202 the discrete picture of microgel particles, does not invoke facets or literal interparticle contacts, 

and posits an interparticle collective origin of stress storage. It will theoretically be developed in 

204 section IV, and shown to also lead to a linear growth of  with microgel concentration. While we 𝐺′

cannot completely rule out there might be components of scenario (1) or (2) that contribute to the 

206 observed linear growth of elastic modulus of our system, in this article we take a minimalist 

Page 9 of 47 Soft Matter



10

approach of exploring a Brownian glassy suspension scenario for the entire concentration regime 

208 without invoking athermal soft jamming.

The inset of Figure 1B shows elastic modulus data from other labs for different types of 

210 microgels, all of which are ionic. Clearly, one sees that at fixed concentration in , different 𝑤𝑡%

microgel samples display a wide variety of modulus levels and sensitivity to concentration. This 

212 emphasizes that our present self-crosslinked slightly charged microgel system with different 

chemistry does display a distinct elastic response. It also emphasizes the far larger range of 

214 concentration probed in our study (factor ~25) versus prior studies (typically factor of 3-10). 

However, these prior studies all observe, to varying degrees, a stronger growth of  at lower 𝐺′

216 concentration followed by a much weaker growth at very high microgel concentrations.

218 Figure 1 - Linear rheological response ( closed symbols, open symbols) of the slightly 𝐺′ 𝐺′′ 

charged, self-crosslinked microgel suspensions. (A) frequency dependence at . 𝛾0 = 1%

220 Suspensions at  do not flow on the longest probed time scales ( ). Experimental 𝑐 > 0.4 𝑤𝑡% ~100 𝑠

limits shown by the dotted horizontal line (minimum torque limit) and the dashed line (instrument 
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222 inertia limit) following [17]. (B) Concentration dependence of linear storage modulus, . For low 𝐺′

concentrations ( ),  varies over 3 orders of magnitude and roughly follows a power 𝑐 < 1.5 𝑤𝑡% 𝐺′

224 law concentration dependence, . Above , the concentration 𝐺′ ∼ 𝑐5.68 ± 0.28 𝑐 = 1.5 𝑤𝑡%

dependence changes to a roughly linear relation, . The red line shows a fit using the classic 𝐺′ ∼ 𝑐

226 rubber elasticity model (with monomer molecular weight of 113.6 g/mol and 3903 monomer units 

each polymer chain) discussed in the text. (inset) Comparison of the concentration dependent 

228 storage modulus as observed in the current work that employs self crosslinked slightly charged 

microgel suspensions (black circles) and prior studies of cross-linked ionic microgels (yellow 

230 diamonds [11] and blue, green and red triangles [5]). A wide concentration range spanning the 

glassy and "soft jammed" regimes is shown for all the data with different concentration 

232 dependences of shear modulus in the glassy regime. A qualitative universality exists for soft 

microgels in the sense that, independent of chemistry, all soft particles show a stronger 

234 concentration dependence in the glassy regime and roughly linear growth in the "soft jammed" 

regime. However, the apparent power laws and soft jamming crossover points are highly variable, 

236 depending on microgel chemistry, preparation protocol, their internal crosslink density, and the 

nature of the steric and/or ionic driven deswelling behavior.

238 B. Nonlinear Rheology

Our nonlinear oscillatory shear measurements are shown in Figure 2. Only the first-

240 harmonic responses are plotted, representing the average storage and loss of mechanical energy, 

here indicated as  and , respectively.  The response at all concentrations is similar. At low 𝐺′1 𝐺′′1

242 strains, the response is in the linear regime, with roughly a constant value of  and  and 𝐺′1 𝐺′′1 𝐺′1 > 𝐺′′1

. At large strains, the response becomes nonlinear with  showing a monotonic decrease while 𝐺′1

244  exhibits a maximum. An increasing  indicates more dissipation presumably due to 𝐺′′1 𝐺′′1
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deformation-induced microgel motion which can be qualitatively viewed as a stress driven solid-

246 to-fluid like transition or yielding [5,13]. One measure of the latter is the strain at which , 𝐺′1 = 𝐺′′1

which occurs at rather high strain values of  with systematic variation with ~25 ― 50%

248 concentration difficult to discern. More precise definitions and analysis of yielding will be given 

in section VI.

250

Figure 2 – Nonlinear viscoelastic moduli (first harmonic closed symbols, open symbols) 𝐺′1 𝐺′′1 

252 measured at varying strain amplitudes at a fixed frequency ω = 1 rad/s. At low strains, the response 

is predominantly elastic,  and  constant. Beyond the linear regime,  monotonically 𝐺′1 > 𝐺′′1 𝐺′~ 𝐺′1

254 decreases, while  achieves a maximum value as the material undergoes yielding. With further 𝐺′′1

increase in strain, suspensions at all concentrations have a dominant liquid-like response, with both 

256  and  showing a monotonic decrease and . The dotted line shows the minimum torque 𝐺′1 𝐺′′1 𝐺′1 < 𝐺′′1

limit of the instrument and the dashed line shows the instrument inertia limit [17].

Page 12 of 47Soft Matter



13

258 Figure 3 shows the steady state flow curve of the microgel suspensions. Below 

, the response resembles a shear thinning fluid at high shear rates. At higher 𝑐 = 0.4 𝑤𝑡%

260 concentrations, , the stress-strain rate response resembles that of a yield-stress fluid, 𝑐 > 0.4 𝑤𝑡%

although for most samples there is no rigorous low shear plateau and the degree to which the data 

262 is flat does not vary systematically with concentration. Such a response can be adequately captured 

by the empirical Herschel-Bulkley (HB) model given by: , where  is the 𝜎(𝛾) = 𝜎HB
𝑦 +𝐾(𝛾)𝑛 𝜎HB

𝑦

264 apparent yield strength,  is the flow index, and  describes the shear-thinning behavior at 𝑛 𝐾(𝛾)𝑛

high shear rates for  [13]. The parameter  has dimensions that depend on and does not 𝑛 < 1 𝐾 𝑛 

266 represent a physical quantity. However, we can instead use a modified form of the HB model [21],

                                                                                                           (1)𝜎(𝛾) = 𝜎𝐻𝐵
𝑦 (1 + ( 𝛾

𝛾𝑐
)𝑛)

268 where the characteristic shear rate, , is associated with a crossover from rate-𝛾𝑐 = (𝜎HB
𝑦

𝐾 )1/𝑛

independent plastic flow to rate-dependent viscous flow. Equation (1) is used to fit the 

270 experimental data which directly yields the parameter . 𝛾𝑐
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272 Figure 3 - Steady state shear flow curves for various suspension concentrations. For 𝑐 ≥  0.4 𝑤𝑡%

, all suspensions show an apparent yield stress response, achieving a near plateau at low shear 

274 rates. For , the response closely resembles a shear thinning fluid (power law stress-𝑐 <  0.4 𝑤𝑡%

rate scaling with an apparent exponent smaller than 1) in the range of shear rates probed. The solid 

276 curves are the Herschel-Bulkley model fits,  (Eq.(1)). The dotted horizontal 𝜎(𝛾) = 𝜎𝐻𝐵
𝑦 (1 + ( 𝛾

𝛾𝑐
)𝑛)

line shows the minimum torque limit of the instrument [17]. 

278  The HB fits to the data (assuming constant error weighting) and corresponding fit 

parameters ( ) are shown in Figure 4. Similar to the observations made earlier for the 𝜎𝐻𝐵
𝑦 , 𝛾𝑐 , 𝑛

280 linear elastic modulus, we find a strong concentration dependence of in the intermediate 𝜎𝐻𝐵
𝑦 ~𝑐4.5 

concentration regime, which is however clearly weaker than that of the  data in Fig.1B. We will 𝐺′

282 refer to such behavior as indicating the "glassy regime". At higher concentrations the yield stress 

grows roughly linearly with concentration, which for descriptive purposes we refer to as the "soft 

284 jamming" regime. The flow index, ,  decreases monotonically with the concentration in the glassy 𝑛
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regime, , followed by a nearly constant value of  in the soft jamming regime. The 𝑛~𝑐 ―0.48 0.41

286 lower inset of Fig.4 shows that the characteristic shear rate  is roughly constant in the glassy 𝛾𝑐

regime and follows a power law relation, , in the soft jammed regime. As true of the linear 𝛾𝑐~𝑐 ―2.5

288 elastic modulus, Figure 4 shows that the yielding properties of our microgel suspensions follow 

quite different trends from previous studies [11] of different ionic microgel systems. Specifically, 

290 the yield stress in the soft jamming regime displays a stronger concentration dependence ( ), ~𝑐2

the exponent  values are generally larger, and  increases with the concentration in the glassy 𝑛 𝛾𝑐

292 regime until appearing to plateau in the soft jamming regime.

294 Figure 4 – Concentration dependence of the Herschel-Bulkley model fit parameters, Eq.(1), for 

our slightly charged microgel suspensions (black circles, from data in Fig.3). Data for the ionic 

296 microgel suspensions of ref. [11] are shown as red triangles. Power-law scaling exponents are 

indicated for each fit line.  (Inset) Corresponding characteristic shear rate data determined as 

298 defined below Eq(11).
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IV. Theoretical Approach: Microgel Model, Packing, Elasticity, Dynamics, and Rheology 

300 A. Overview and Modeling of Single Microgel Structure in the Condensed Phase

 Much theoretical progress has been made in recent years by many workers [22-25] for 

302 understanding the slow dynamics and rheology of simple colloidal particles which can be treated 

as soft or hard spheres that interact via a central pair potential,  [6]. If  is known, then 𝑉(𝑟) 𝑉(𝑟)

304 one can use a litany of statistical mechanical methods to analyze their collective structure, 

equilibrium dynamics under Brownian conditions, and nonlinear rheology. The approach 

306 Schweizer and co-workers have developed and widely applied in prior work [26] is used here and 

proceeds in a series manner as follows. (1) Construct a single particle model and . (2) Use 𝑉(𝑟)

308 liquid state integral equation methods to predict the intermolecular pair correlation function, , 𝑔(𝑟)

and its Fourier space collective structure factor, . (3) Use (1) and (2) to construct predictive 𝑆(𝑘)

310 dynamical theories of thermally activated equilibrium structural relaxation dynamics and 

mechanical properties, and (4) combine (1)-(3) to construct a theory for the effect of deformation 

312 on non-equilibrium dynamics and mechanics. 

The daunting difficulty to quantitatively carryout such a program for microgels is that they 

314 are soft fluctuating polymeric particles with many internal degrees of freedom. Quantitative 

knowledge of their internal structure in dense suspensions, as a function of thermodynamic state 

316 variables (concentration, temperature), is scarce. This renders an a priori theoretical analysis at the 

monomer level very difficult or impossible. It has led to almost all theoretical and simulation 

318 studies adopting a coarse-grained center-of-mass (CM) level description of the polymer microgel 

which interacts via a pair decomposable isotropic soft repulsive potential where the influence of 

320 all internal degrees of freedom are effectively pre-averaged. This corresponds to  becoming a 𝑉(𝑟)

free energy or potential-of-mean force (PMF) quantity. But an a priori quantitative theoretical 
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322 construction of such a PMF for real chemical systems is extremely difficult since it requires the 

following information. (i) How a global measure of mean size (radius, R) of a single microgel 

324 changes as a function of concentration and temperature, i.e. what is  ? (ii) What is the (𝑐,𝑇)

functional form of  and how does it change with thermodynamic state? (iii) Even for a simple 𝑉(𝑟)

326 such as the Herztian contact model (see below), the single particle modulus is variable, 𝑉(𝑟) 

depending on chemistry, preparation method, and crosslink density, and is a priori unknown. (iv) 

328 How does the experimental concentration variable (weight percent) map to an effective volume 

fraction as a function of concentration and temperature, i.e. ? 𝜙𝑒𝑓𝑓(𝑐,𝑇)

330 The inability to a priori answer the above questions forces one to adopt models constrained 

by incomplete knowledge. Physical ideas must be invoked, and parameters introduced, with the 

332 goal of retaining some predictive power. Here we outline our approach, which is summarized in 

Figure 5. 

334 Soft microgels are generally globally compact and compressible objects that are swollen 

in a good solvent but have a (dense) core - (more dilute/hairy) corona structure [24,27]. We take a 

336 microgel to be, on average, a spherical soft object. Its internal density  decreases continuously 𝜌(𝑟)

in a non-universal manner upon transitioning from its center to edge, ultimately becoming 

338 effectively zero at  In the dilute low concentration regime the microgel size is fixed and 𝑟 = 𝑅𝑒𝑓𝑓.

one can define a volume fraction  which grows linearly with concentration. As 𝜙 =
4𝜋
3 𝜌𝑅3

340 suggested by experiments of Schurtenberger et. al. [7,28], in an intermediate concentration regime 

of  (per the notation of Fig.5) the microgels begin to de-swell due to steric repulsions 𝑐1 < 𝑐 < 𝑐2 

342 between particles, in a manner that experiments suggest is initially weak. Crudely, experimental 

data in the latter regime can be modeled as a power law,  where , implying an 𝑅~𝑐 ―1/𝑥 𝑥 > 3 
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344 effective volume fraction that scales as . Motivated by the experimental data of Figure 𝜙~𝑐(1 ―
3
𝑥)

5A of ref. [28], we estimate . Beyond a "high enough" , one expects the more fuzzy 𝑥 = 1/6 𝑐 ≥ 𝑐2

346 "corona" of the microgel is largely squeezed out, leaving a dense core which further decreases in 

size as concentration grows due to isotropic compression in the sense that , as again 𝑥 = 1/3

348 suggested in ref [28]. This leads to  where the linear growth of microgel particle number 𝜙~𝑐0

density ( ) with concentration is perfectly compensated by their shrinking size. Ultimately, beyond 𝜌

350 an even higher concentration , the internal concentration of microgels presumably saturates at a 𝑐3

maximum value akin to a collapsed molten globule with radius . 𝑅𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒𝑑

352 Quantitative knowledge of such a complex, continuous, and material-specific variation of 

microgel size with concentration is unknown for our system. Thus, we adopt the model of Fig. 5 

354 which has 3 crossover concentrations, one exponent parameter " ", and 3 characteristic sizes. The 𝑥

crossover concentrations are determined using our elastic modulus data and theory as explained in 

356 detail in section V. Here we summarize the model adopted there.

We assume that the lowest concentration regime extends up to  and the 𝑐 = 0.4 𝑤𝑡%

358 microgel size is constant and the same as in the  dilute limit as determined from our DLS 𝑐→0

measurements,  nm. A second regime is defined starting at  (0.4 wt%) and 2𝑅 = 2𝑅0 = 551 𝑐1

360 ending at  wt% (onset of "soft jamming" behavior of ). Here we assume the microgels 𝑐2 =  1.5 𝐺′

begin to weakly contract and employ  as suggested in ref. [28]. This implies at  the 𝑥 = 1/6 𝑐2

362 microgel diameter is  . Beyond  a third regime is entered and we adopt the 1/3 2𝑅 =  442 𝑛𝑚 𝑐2

exponent to describe microgel shrinkage. This implies at the highest concentration we study (9 

364 wt%) one has  . Interestingly, as Fig. S1 shows, this is roughly the size of dilute 2𝑅 ≈ 244 𝑛𝑚

microgels at high temperature beyond the LCST where they undergo an enthalpy-driven collapse. 
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366 Although a collapsed microgel driven by poor solvent conditions need not be exactly the same size 

as what can be attained via interparticle steric repulsion, it is not unreasonable they could be 

368 similar. Hence, in terms of the scenario of Fig. 5 we deduce as a rough approximation  , 𝑐3~9 𝑤𝑡%

and our present measurements do not probe the ultra-high concentration fourth regime which may 

370 be impossible to explore in practice.   

We employ a suite of older and recently developed theoretical tools to model our system. 

372 The rest of this section provides a brief summary without derivation of these methods. All details 

can be found in original papers, and for consistency we employ the same notation developed in 

374 these prior theoretical works. Our present work is the first time the new activated dynamics 

(ECNLE) theory in equilibrium and under deformation has been employed to study soft colloids.

376

Figure 5 - Schematic of our model for microgel radius as a function of concentration. In principle, 

378 there can be four regimes. At low concentration, the size is fixed at its dilute limit value as 𝑐→0 

measured by DLS. Two intermediate regimes have different concentration dependences in the 
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380 glassy and “soft jammed” regimes which we envision as physically indicating first compression 

of the corona and then stronger shrinkage of the core due to interparticle steric repulsions. The 

382 final, perhaps not observable, regime is when the core is maximally compressed and microgel size 

saturates.   

384 Finally, for clarity we again emphasize that our goal is to attempt to understand all 

concentration regimes (fluid, glassy suspension, so-called "soft jammed") for our lightly 

386 crosslinked polymeric microgel based on the assumption of thermal equilibrium in the Boltzmann 

sense. No athermal granular jamming or contact mechanical force network concepts are invoked. 

388 This does not contradict the fact that the interparticle soft repulsive interaction and the 

corresponding forces (modeled via the elastic Herztian model described below) are very strong 

390 compared to the thermal energy scale.  Our goal is to predict the equilibrium structure and relate 

it using statistical dynamical ideas to intermolecular stress storage, the dynamic plateau shear 

392 modulus, and relaxation. 

B. Center-of-Mass Hertzian Repulsion Model

394 The vast majority of modeling studies of soft microgels has employed the repulsive 

Hertzian contact or harmonic interaction model. We adopt the former which is given by [22,29],

396         (2)                                                                   𝛽𝑉(𝑟) = {4𝐸
15(1 ―

𝑟
𝑑)

5
2
 𝑖𝑓 𝑟 < 𝑑 = 2𝑅𝑒𝑓𝑓

0   𝑖𝑓 𝑟 ≥ 𝑑

where is the inverse thermal energy,  is the interparticle separation, and  is the 𝛽 = (𝑘𝐵𝑇) ―1 𝑟 𝑑

398 particle diameter. The front factor  is the inverse dimensionless temperature that controls 4𝐸
15

the elastic stiffness of a particle and hence repulsion strength.  is a priori unknown for our system, 𝐸
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400 and  where  of the core-corona particle. From its mechanics derivation,  is related 𝑑 ≈ 2𝑅 𝑅 ≈ 𝑅𝑔 𝐸

to the sphere diameter , Young's modulus , and Poisson ratio , as:𝑑 𝑌  𝜈

402 . (3)𝐸 =
𝑌𝑑3

2𝑘𝐵𝑇(1 ― 𝜈2)

Depending on the magnitude of the dimensionless temperature, the Hertzian potential can describe 

404 ultra-soft microgels ( ), intermediate soft microgels ( ), and effective hard 𝐸 ≤ 103 103 ≤ 𝐸 ≤ 106

spheres ( ). The literal hard sphere limit is smoothly obtained as . Very recent 𝐸 ≥ 106 𝐸→∞

406 simulations of soft microgel suspensions that explicitly considered the polymeric internal degrees 

of freedom found the Hertzian pair potential to work fairly well [30]. Again, no ionic interactions 

408 are taken into account in our modeling.

C. Equilibrium Packing Structure

410 We use the standard Ornstein-Zernike (OZ) integral equation [31, 32] approach to compute 

the inter-particle pair structure. The OZ equation relates the non-random part of the interparticle 

412 pair correlation function,  (where  is the pair correlation or radial distribution ℎ(𝑟) = 𝑔(𝑟) ―1 𝑔(𝑟)

function), and the direct correlation function,  via [31, 32],𝑐(𝑟)

414 (4)ℎ(𝑟) = 𝑐(𝑟) +𝜌∫𝑐(|𝑟 ― 𝑟′|)ℎ(𝑟′)𝑑𝑟′

where  is the particle number density. Collective density fluctuations are controlled by the static 𝜌

416 structure factor which in Fourier space is

. (5)𝑆(𝑘) = 1 + 𝜌ℎ(𝑘) =
1

1 ― 𝜌𝐶(𝑘)
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418 Numerical solution of the OZ equation requires a closure approximation that relates , 𝑐(𝑟) 𝑔(𝑟)

, and thermodynamic state (density, temperature). For soft colloids the hypernetted chain , 𝑉(𝑟)

420 closure (HNC) relation works well and is given by,

(6)𝑐(𝑟) = ―𝛽𝑉(𝑟) ― 𝑙𝑛 (𝑔(𝑟)) +ℎ(𝑟)

422 D. Dynamic Localization and Elasticity: Naive Mode Coupling Theory 

The starting point for describing the dynamics of a tagged particle in a liquid is the 

424 Generalized Langevin Equation (GLE) for its position and velocity [31,32],

(7)𝑚
𝑑𝑉(𝑡)

𝑑𝑡 + 𝜁𝑠𝑉(𝑡) = ―
𝛽
3∫∞

0 𝑑𝜏 〈𝑓𝛼(𝑡).𝑓𝛼(𝑡 ― 𝜏)〉 + 𝛿𝑓𝛼(𝑡) + 𝜉(𝑡)

426 where  is a short time friction constant,  is the force on a tagged particle due to the 𝜁𝑠 𝑓𝛼(𝑡)

surrounding particles, and  and  represent the random white noise (Gaussian) force 𝛿𝑓𝛼(𝑡) 𝜉(𝑡)

428 associated with the short time process. The naive ideal Mode-Coupling Theory (NMCT) of single 

particle dynamics calculates the force-force time correlation function or memory function by 

430 quantifying dynamical constraints at the pair structural level as [26]:

(8)𝐾(𝑡) = 〈𝑓𝛼(0).𝑓𝛼(𝑡)〉 =
𝛽 ―2

3 ∫∞
0

𝑑𝑘

(2𝜋)3𝜌|𝑀𝑁𝑀𝐶𝑇(𝑘)|2 𝑆(𝑘)𝛤𝑠(𝑘,𝑡)𝛤𝑐(𝑘,𝑡)

432 where  is the wave vector resolved effective force on a tagged particle, and 𝑀𝑁𝑀𝐶𝑇(𝑘) = 𝑘𝐶(𝑘)𝑘

the "dynamic propagators"  are the  normalized single and collective dynamic 𝛤𝑠(𝑘,𝑡),𝛤𝑐(𝑘,𝑡) 𝑡 = 0

434 structure factors (decay to zero in a fluid phase, non-zero for solids). At long times, localized states 

can exist and the Gaussian Debye-Waller factors are non-zero, , where  𝛤𝑠(𝑘,𝑡→∞) = 𝑒
―

𝑘2𝑟2
𝐿

6 𝑟𝐿

436 is the dynamic localization length associated with a kinetically arrested state. The collective 

propagator is accounted for in a de Gennes narrowing manner as [33],
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438 . (9)𝛤𝑐(𝑘,𝑡→∞) ≡ 𝛤𝑠( 𝑘
𝑆(𝑘),∞) = 𝑒

―
𝑘2𝑟2

𝐿
6𝑆(𝑘)

A self-consistent equation in the long time limit for the particle displacement can be 

440 derived and is given by:  . From this, the ideal NMCT self-consistent 〈𝑓𝛼(0).𝑓𝛼(𝑡→∞)〉𝑟2
𝐿

2 =
3𝑘𝐵𝑇

2

localization equation is [34]

442 . (10)
1

𝑟2
𝐿

=
𝜌

18𝜋2∫
∞
0 𝑑𝑘 𝑘4𝐶(𝑘)2𝑆(𝑘)𝑒 ― 

𝑘2𝑟2
𝐿

6 (1 + 𝑆 ―1(𝑘))

One can also compute the elastic shear modulus associated with such an ideal glass state. The 

444 calculation is relevant in practice if the product of the frequency of the measurement and structural 

relaxation time obeys . A standard statistical mechanical formula for the dynamic elastic 𝜔𝜏𝛼 ≫ 1

446 shear modulus, based on projecting microscopic stress onto a bilinear product of the collective 

density fields followed by factorization of multi-point correlations to the 2-point level, is [31]:

448 (11)𝐺′ =
𝑘𝐵𝑇

60𝜋2∫
∞
0 𝑑𝑘 [𝑘2 𝑑

𝑑𝑘𝑙𝑛 (𝑆(𝑘))]2
𝑒

―
𝑘2𝑟2

𝐿
3𝑆(𝑘) ≈ 𝑎𝜙

𝑘𝐵𝑇

𝑑 𝑟2
𝐿

= 𝑎(𝜌𝑘𝐵𝑇)( 𝑑
𝑟𝐿)

2

where "a" is a numerical prefactor. The final approximate "microrheology-like" relation can be 

450 analytically derived for hard spheres and works well for Hertzian spheres [12]. Tighter dynamic 

localization (smaller ) leads to higher mechanical stiffness. 𝑟𝐿

452 We comment that one might interpret Eq. (11) as suggesting an apparent equivalence of 

the basic mathematical form of the “microrheology-like” relation to that of classic rubber 

454 elasticity, . But, there is no conceptual correspondence since  is the number of microgels 𝐺′~𝜌𝑥𝑘𝑇 𝜌

per unit volume in Eq.(11) and not the crosslink number density as in rubber elasticity. Moreover, 

456 the localization length is an emergent dynamic quantity associated with kinetic trapping of 
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particles due to interparticle forces and is a strong function of the thermodynamic state variables. 

458 Most fundamentally, the basis of Eq. (11) is the spatial correlation in a (transiently in practice) 

kinetically arrested state of collective interparticle microscopic stress defined by particle positions 

460 and interparticle forces, not the intra-strand entropic stress per rubber elasticity.

E. Quiescent Activated Structural Relaxation 

462 To go beyond ideal MCT to treat thermally activated events that lead to slow structural 

relaxation, the nonlinear Langevin equation (NLE) theory has been developed. It is based on the 

464 scalar displacement of a tagged particle, , as the central dynamic variable.  In the overdamped 𝑟(𝑡)

limit, the stochastic NLE for a particle trajectory is [33,34]

466 (12)𝜁𝑠
𝑑𝑟
𝑑𝑡 = ―

∂𝐹𝑑𝑦𝑛(𝑟)
∂𝑟 +𝜉(𝑡)

where  is a Gaussian white noise and the key quantity is the dynamic free energy, . The 𝜉(𝑡) 𝐹𝑑𝑦𝑛

468 gradient of the latter determines the instantaneous force on a moving tagged particle due to its near 

neighbors and is given by [34]

470 . (13)𝛽𝐹𝑑𝑦𝑛(𝑟) =
3
2𝑙𝑛 (3𝑑2

2𝑟2) ―
𝜌

2𝜋2∫
∞
0 𝑑𝑘 

𝑘2𝐶(𝑘)2𝑆(𝑘)

(1 + 𝑆 ―1(𝑘))𝑒
― 

𝑘2𝑟2
𝐿

6 (1 + 𝑆 ―1(𝑘))

The first contribution is an ideal entropy like term that favors the delocalized fluid state, and the 

472 second interaction free energy like term favors dynamic localization. The dynamic free energy is 

constructed to recover NMCT per . At and above a critical volume fraction  
∂𝐹𝑑𝑦𝑛(𝑟)

∂𝑟 |
𝑟 = 𝑟𝐿

= 0 𝜙 > 𝜙𝑐

474  for hard spheres [34]) a barrier in  emerges at   of height  with a ( ≈  0.43 𝐹𝑑𝑦𝑛(𝑟) 𝑟 = 𝑟𝐵 𝐹𝐵

corresponding transient localization length ; see Figure 6 for an example. The liquid structural 𝑟𝐿

476 relaxation time is estimated from the Kramers mean barrier hopping time as [34]

Page 24 of 47Soft Matter



25

(14)
𝜏𝛼

𝜏𝑠
= 1 +

2

𝑑2∫
𝑟𝐵

𝑟𝐿
𝑑𝑥 𝑒𝛽𝐹𝑑𝑦𝑛(𝑥)∫𝑥

0𝑑𝑦𝑒 ―𝛽𝐹𝑑𝑦𝑛(𝑦) ≈ 1 +
2𝜋

𝐾0𝐾𝐵
𝑒𝛽𝐹𝐵

478 where  is a short time process relaxation time and  and  are positive local curvatures of free 𝜏𝑠 𝐾0 𝐾𝐵

energy at  and , respectively. The approximate relation in Eq. (13) holds when .  𝑟𝐿 𝑟𝐵 𝛽𝐹𝐵 ≳ 1 ― 2

480 The short time scale is [35]:

(15)𝜏𝑠 = 𝑔(𝑑)
𝑑2

𝐷𝑆𝐸[1 +
1

36𝜋𝜙∫∞
0 𝑑𝑄

𝑄2(𝑆(𝑄) ― 1)2

𝑆(𝑄) + 𝑏(𝑄)  ]

482 where  is the Stokes-Einstein (SE) diffusivity in dilute solution. One can define a short time 𝐷𝑆𝐸

friction constant  where for a colloidal suspension 𝜁𝑠 = 𝜁0 [1 +
𝑑3

36𝜋𝜙∫∞
0 𝑑𝑄

𝑄2(𝑆(𝑄) ― 1)2

𝑆(𝑄) + 𝑏(𝑄) ] 𝜁0 = 𝜁𝑆𝐸

484 . In the above equation , , , and  where 𝑔(𝑑) 𝜏0 ≡
𝑑2

𝐷0
 𝐷0 =

𝑘𝐵𝑇
𝜁0

 𝑄 = 𝑘𝑑 𝑏 ―1(𝑘) = 1 ― 𝑗0(𝑘) + 2𝑗2(𝑘)

 is the spherical Bessel function of order .𝑗𝑛(𝑥) 𝑛

486 The above NLE based theory only captures the consequences of the local cage on tagged 

particle hopping. Most recently, the "Elastically Collective NLE" theory (ECNLE) has been 

488 developed, widely applied, and quantitatively validated for dense suspensions of hard sphere 

colloids, cold molecular liquids, and polymer melts [35,36]. It includes a longer range cooperative 

490 motion aspect of structural relaxation based on the idea that the fluid surrounding a particle cage 

must elastically dilate by a small amount (via a spontaneous thermal fluctuation) to accommodate 

492 large amplitude hopping. This elastic energy contributes an extra barrier to the activated hopping 

process given by:  where  is the harmonic spring constant 𝛽𝐹𝑒𝑙 = 2𝜋𝐾0∫∞
𝑟𝑐𝑎𝑔𝑒

𝑑𝑟 𝑟2𝜌𝑔(𝑟)𝑢(𝑟)2, 𝐾0

494 of the dynamic free energy which sets the energy scale of the elastic barrier,   is the elastic 𝑢(𝑟)

displacement field at a scalar distance  from the cage center , 𝑟 𝑢(𝑟) = 𝛥𝑟𝑒𝑓𝑓(𝑟𝑐

𝑟 )2
,  𝑟 > 𝑟𝑐 ∼ 1.5𝑑

496 and the amplitude   the explicit formula  for which is given elsewhere [35,36]. 𝛥𝑟𝑒𝑓𝑓 ≤  𝑟𝐿
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Physically, the local and elastic barrier are additive, so the hopping time is modified as a 

498 multiplicative factor in the Kramers time as  [35].𝑒𝛽𝐹𝑒𝑙 𝛽𝐹𝑇𝑜𝑡𝑎𝑙 = 𝛽𝐹𝐵 +𝛽𝐹𝑒𝑙

The conceptual ideas of ECNLE theory, key length and energy scales, and a representative 

500 dynamic free energy are shown in Fig.6 for the Hertzian model. The location of the maximum cage 

restoring force ( ) obeys  and the barrier location ( ), jump distance (𝑟 ∗ ∂2𝐹𝑑𝑦𝑛(𝑟)

∂𝑟2 = 0, 𝑟𝐵 𝛥𝑟 = 𝑟𝐵 ― 𝑟𝑙𝑜𝑐

502 ), and local barrier ( ) are also indicated. 𝛽𝐹𝐵

504 Figure 6 - A representative plot of the dynamic free energy in thermal energy units as a function 

of dimensionless single particle displacement from its initial position for a dense suspension. Here 

506  and , with all important length scales and the cage local barrier height 𝜙 = 0.70 𝐸 = 30,000

indicated. The local minimum of the dynamic free energy,   , defines the transient localization 𝑟𝑙𝑜𝑐

508 length,   is the particle displacement where the cage restoring force is a maximum, and the 𝑟 = 𝑟 ∗

particle hop or jump distance is . The schematic indicates a tagged particle at the center of a 𝛥𝑟

510 cage composed of its nearest neighbors, all of which undergo large amplitude hops. To allow the 
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latter, particles outside the cage region undergo a long-range collective elastic radial dilational 

512 displacement of small amplitude which results in an elastic contribution to the total dynamic 

activation barrier. 

514 F. Rheology

The NLE and ECNLE theories can be extended to treat non-equilibrium materials under 

516 deformation. Extensive applications to hard sphere colloids, polymer-colloid depletion systems, 

polymer glasses, molecular colloids, and nanoparticle gels have been made [12,37-39]. The 

518 approach assumes the dominant effect is the direct consequence of applying stress to the material, 

which leads to an effective force on each particle in a micro-rheological spirit. Technically, a stress 

520 ensemble (creep) is adopted to formulate the basic ideas. It is asserted that a macroscopic stress 

manifests itself locally as a scalar applied force on any tagged particle given by [37]

522 (16)𝑓 = 𝑎𝑑2𝜎

where  Stress then modifies the dynamic free energy as [37]𝑎 = 𝜋
6𝜙 ―2/3.

524 . (17)𝛽𝐹𝑑𝑦𝑛(𝑟,𝜎) = 𝛽𝐹𝑑𝑦𝑛(𝑟,𝜎 = 0) ― 𝛽 𝜋 6𝜙 ―
2
3𝑑2𝜎 𝑟

External forces are assumed to not modify structural correlations on the local length scales 

526 dynamically relevant in the theory, nor the short time relaxation process in . Increasing the 𝜏𝑠

applied stress weakens the localizing constraints of the dynamic free energy, and hence reduces 

528 the barrier and can mechanically drive a glass-to-liquid transition. At a critical value of stress, 

called the "absolute yield stress",  the barrier is completely destroyed, indicating an athermal 𝜎𝑦,𝑎𝑏𝑠,

530 type of solid-to-liquid transition. With increasing force or stress below its absolute yield value, the 

localization length grows and the elastic shear modulus decreases continuously. A simple 

Page 27 of 47 Soft Matter



28

532 nonlinear elastic mechanical equation-of-state (relevant in practice at times short compared to 

stress relaxation times) previously adopted implicitly defines strain as [12,37]:

534 . (18)𝜎 = 𝐺′(𝜎)𝛾

This equation can be used to define an "absolute yield strain"

536 . (19)𝛾𝑦,𝑎𝑏𝑠 =
𝜎𝑦,𝑎𝑏𝑠

𝐺′(𝜎𝑦,𝑎𝑏𝑠)

Other types of yield strains such as a "dynamic yield strain" can also be defined as the strain at 

538 which  has a maximum within the framework of a one structural relaxation time model which 𝐺′′(𝛾)

is a function of applied deformation. The nonlinear loss modulus is modeled as [36,38]:

540 . (20)𝐺′′(𝛾) = 𝐺′(𝛾)
(𝜔𝜏𝛼(𝛾))2

1 + (𝜔𝜏𝛼(𝛾))2

"Mixed" yield strains can also be defined as  [12,37]:

542 . (21)𝛾𝑦,𝑚𝑖𝑥 =
𝜎𝑦,𝑎𝑏𝑠

𝐺′(0)

The stress dependent relaxation time follows from the same Kramers' hopping time 

544 expression but where all dynamic free energy quantities are now stress-dependent,  

. (22)
𝜏𝛼(𝜎)

𝜏𝑠
= 1 +

2𝜋
𝐾0(𝜎)𝐾𝐵(𝜎)𝑒

𝛽(𝐹𝐵(𝜎) + 𝐹𝑒𝑙(𝜎))

546 A predictive theory for the full stress-strain response, time-dependent creep, steady shear flow 

curve, etc. can be constructed [39] but this is beyond the scope of the present work.

548 V. Model Calibration, Glassy Shear Modulus, and Collective Structure Predictions 
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In this section, we employ the microgel model of section IVA to determine the effective 

550 volume fraction for our microgel suspensions. We then use this knowledge to perform theoretical 

calculations of the linear elastic shear modulus and compare to experiment.  

552 A.  Effective Microgel Radius and Volume Fraction in Dense Suspensions 

The effective volume fraction ( ) depends on concentration via the microgel 𝜙𝑒𝑓𝑓 =
𝜋
6𝜌𝑑3

554 diameter, . As discussed in section IVA and Figure 5, experiments suggest there are two 𝑑(𝑐)

regimes where the microgel radius first decreases weakly ( ) starting at  whence 𝑅𝑔 ∼ 𝑐 ―1/6 0.4 𝑤𝑡%

556 , which then changes beginning at  to a stronger shrinkage  and hence 𝜙 ∼ 𝑐1/2 1.5 𝑤𝑡% 𝑅𝑔 ∼ 𝑐 ―1/3

. The chosen crossover concentration is motivated by our physical hypothesis that the 𝜙𝑒𝑓𝑓 ≠ 𝑓(𝑐)

558 sharp change of the elastic modulus data in Fig.1B is an indication of a change of the scaling of 

microgel size with concentration. Figure 7 presents the quantitative model employed for microgel 

560 size and effective volume fraction as a function of concentration. The latter ranges from ~0.5 to 

0.88. As an independent estimate of the effective volume fraction for our  sample, we have 0.5𝑤𝑡%

562 applied our approach to data from literature [40] for a similar microgel system and find it gives 

 for , consistent with Fig.7.𝜙 = 0.45~0.55 𝑐 = 0.5𝑤𝑡%
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564

Figure 7 – Quantitative model employed for the microgel diameter (circles) and effective volume 

566 fraction (triangles) as a function of concentration (i.e., quantitative realization of the schematic of 

Fig. 5). Open symbols indicate the glassy regime while solid symbols indicate the “soft jamming” 

568 regime. Here  in dilute solution and we assume microgel compression starts at 𝑑 = 550𝑛𝑚 0.4 𝑤𝑡

.%

570 The one remaining unknown in our model is the dimensionless strength of the Hertzian 

repulsion, the parameter  in Eq.(1). For simplicity, and to avoid introducing an adjustable 𝐸

572 function, we assume this is a material constant invariant to concentration. This simplification 

seems consistent with the very recent simulation study [30] that included the internal polymeric 

574 degrees of freedom of a microgel. We can then apply the theory ideas of sections IVA, IVB and 

IVC to calculate the dynamic elastic shear modulus. We ask the question whether it is possible to 

576 theoretically predict the entire set of linear elastic modulus data in both the glassy and soft jamming 

regimes of Fig.1B based on a single constant value of varying . There is no guarantee the answer 𝐸

578 is yes.
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B. Linear Elastic Modulus: Theory versus Experiment 

580 The inset of Figure 8 shows model calculations of the dimensionless linear shear modulus, 

, over a wide range of  values. Recall that the data of Fig.1B in the glassy regime 𝐺′/(𝑘𝐵𝑇/𝑑3) 𝐸

582 covers almost  decades of modulus variation. Given the theoretical model calculations and ~3

experimental data, this places a constraint on possible values of . Values of  lower than those 𝐸 𝐸

584 shown in the inset of Fig.8 cannot possibly account for our observations. Based on these 

considerations, and visual comparison of the theory and experimental results for the elastic 

586 modulus, we choose  to explore the ability of the theory to account for the entire 𝐸 = 30,000 𝐺′ 

data set. This value corresponds to a single particle Young’s modulus of  ( ), 𝐸 𝑌 ≈ 1.5 𝑘𝑃𝑎 𝜈 = 0.5

588 which seems a reasonable value for our lightly self-crosslinked and slightly charged microgels.

Before quantitatively confronting theory with experiment, we note that the NMCT-based 

590 theory of the elastic shear modulus that employs the approximation of Eq.(11) is, of course, not 

exact. It has been successfully employed to understand how particle and thermodynamic state 

592 variables determine dependences and trends of the elastic modulus in diverse colloidal glass and 

gel forming suspensions [12,37,41] and molecular and polymeric liquids [36,42]. However, 

594 concerning the absolute magnitude of the dynamic modulus, multiple previous studies and 

comparisons with diverse experimental systems (colloids, molecules, polymers) have consistently 

596 shown that NMCT quantitatively overestimates particle localization and hence  which is at least 𝐺′,

partially likely a consequence of its formulation at the single particle dynamics level 

598 [12,36,37,41,42]. Specifically, Eq.(10) has been found to generically overpredict  by roughly 𝐺′

one order of magnitude. Thus, we introduce a numerical 'fudge-factor' to empirically rescale the 

600 theoretical result for all microgel concentrations, . 𝐺′ = 0.1𝐺𝑁𝑀𝐶𝑇
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To compare theory with experiment, we use the model of Fig.7 for the effective microgel 

602 diameter and volume fraction and  at room T. The results are shown in absolute 
𝑘𝐵𝑇

(100𝑛𝑚)3 = 4.2𝑃𝑎

units in the main frame of Fig.8, and the corresponding dimensionless unit comparison in its inset. 

604 We first discuss the glassy regime. One sees from the main frame that, rather remarkably and 

nontrivially, all the experimental data points essentially fall onto the theoretical curve based on 

606 using E=30,000. Considering the high uncertainties of the data for the lowest microgel 

concentration , we have chosen to ignore this data point for the purpose of assessing 𝑐 = 0.4𝑤𝑡%

608 the quality of the theoretical analysis. The last data point in the glassy regime (  𝑐 = 1.5𝑤𝑡%)

corresponds to . As discussed in the next section, this is very close to where structural 𝜙 = 0.88

610 "soft jamming" is predicted based on our calculations of the equilibrium structure of the suspension 

where the volume fraction at which the cage peak of  is a maximum is the metric [43] adopted 𝑔(𝑟)

612 to operationally define the soft jamming crossover. 

The sensitivity of our elastic modulus predictions to the value of is illustrated in Figure 𝐸 

614 8. The blue solid curve is for , while the gray band covers results over the range of 𝐸 = 30,000

. Red and black points show experimental data below and beyond the onset 𝐸 = 20,000 𝑡𝑜 40,000

616 of “soft jamming”. The blue theory curve follows well a power law concentration dependence of 𝐺′

 in the glassy regime, very similar to experiment. Our calculations agree well with the (𝑐) ∼ 𝑐5.6

618 data in the glassy regime for this relatively narrow range of , but not outside of it. 𝐸

At concentrations beyond , the effective volume fraction is fixed per the 𝑐 = 1.5𝑤𝑡%

620 isotropic microgel compression idea discussed in section IVA. Thus, this idea alone, in conjunction 

with Eq(11), immediately predicts a crossover of  to a linear growth with concentration since 𝐺′

622 the dynamic shear modulus scales as  and the ratio  is a constant if the effective volume 𝐺′~
𝑘𝐵𝑇

𝑑3 ~𝑐
𝑟𝐿

𝑑
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fraction is constant. The blue line in Fig.8 beyond the soft jamming onset is the predicted linear 𝐺′

624  dependence, and agrees rather well with the data.  (𝑐)~𝑐

We emphasize that our theoretical analysis in the very high concentration regime is not in 

626 the spirit of granular jamming and a literal force contact network, nor the idea that the suspension 

acts as a homogeneous rubber network, scenarios (1) and (2) discussed in section IVA. Effectively 

628 we retain a discrete particle picture with stresses of interparticle Brownian origin due to caging. 

The "soft jamming crossover" in Fig.1B is thus interpreted as a consequence of the particle size 

630 decreasing as the 1/3 root of concentration, which implies a constant effective volume fraction, 

but a shear stress scale of  that grows linearly with concentration. 𝑘𝑇/𝑅3

632

Figure 8 -  Linear elastic shear modulus in Pascals as a function of concentration. Points indicate 

634 experimental data and curves are theoretical calculations using . Beyond , 𝐸 = 30,000 𝑐 = 1.5 𝑤𝑡%

volume fraction is constant and  , which agrees well with the experimental results. (Inset) 𝐺′~𝑐

636 Dimensionless modulus versus volume fraction for =  𝜙 𝐸 5000,  10,000,  30,000 𝑎𝑛𝑑 105

 At high  beyond soft jamming, the theoretical  results tend to saturate or  (𝑏𝑜𝑡𝑡𝑜𝑚 𝑡𝑜 𝑡𝑜𝑝). 𝜙 𝐺′
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638 very weakly decrease, trends that are consistent with previous findings for soft microgel potentials 

[12]. After the last experimental data point in inset, the volume fraction of the system is essentially 

640 constant as described in Figure 7. The gray bands in the main frame and inset indicate the range 

of variation of the predicted elastic modulus as the repulsion strength in the Hertzian potential 

642 varies over the range of  𝐸 = 20,000 𝑡𝑜 40,000.

Finally we briefly note that the trends of our experimental shear modulus data in Fig.1B 

644 and our corresponding theoretical calculations are both in qualitative accord with the 

micromechanical model simulations of ref. [46]. Quantitative comparison is not appropriate given 

646 the sensitivity to system details as illustrated in the inset of Fig.1B, use of a measure of volume 

fraction in the theory work not identical to that of the simulations, and most importantly that the 

648 simulations employ the essentially infinite frequency or equilibrium formula for the shear elastic 

modulus of Zwanzig and Mountain [48]. The latter is in conceptual contrast to our statistical 

650 dynamical theory which analyzes a dynamically relaxed plateau shear modulus at finite frequency 

which is the emergent consequence of particle localization. 

652 C. Predicted Intermolecular and Collective Equilibrium Structure  

Given the apparent success of our single microgel model for predicting the dynamic shear 

654 modulus of our system, we now use it to explore its consequences for measurable aspects of 

equilibrium structure. Figure 9 shows predictions for the real and Fourier space pair structure using 

656 the "best fit" value of  over a wide range of volume fractions. Figure 10 quantifies 𝐸 = 30,000

various metrics of the structural correlations in wave-vector and real space. Figures 9 and 10 show 

658 that as the effective volume fraction grows, the "contact value" (local maximum) of  (crucial 𝑔(𝑟)

for transmitting repulsive forces between microgels) first grows but then goes through a maximum 
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660 at a volume fraction of  and decreases beyond that; there is also a splitting of the second ≈ 0.85

peak. This behavior was previously found theoretically [12], and in the simulations and 

662 experiments of Liu, Yodh and coworkers [43, 46, 47]. The maximum of the contact value was 

taken to be an empirical measure of the "soft jamming crossover" by the latter workers. The 

664 emergence of a split second peak occurs at essentially the same value of volume fraction  𝜙𝐽 ≈ 0.85

as where the first peak is a maximum, which is far beyond  of jammed hard sphere 𝜙𝑟𝑐𝑝 = 0.64

666 suspensions.  We note in passing that our calculations based on OZ-HNC integral equation theory 

are in qualitative accord with the simulations of refs [46,47], as also previously discussed by Yang 

668 and Schweizer [12]. On the other hand,  shows a monotonic growth of cage coherence defined 𝑆(𝑘)

as the amplitude of the first peak of the static structure factor, , with increasing volume 𝑆(𝑘 ∗ )

670 fraction. 

672 Figure 9 - Equilibrium pair correlation function as a function of reduced interparticle separation 

for a fixed repulsion strength of  over a wide range of indicated volume fractions. 𝐸 = 30,000

674 (Inset) Static collective structure factor, , for the same value of  and volume fractions. The 𝑆(𝑘) 𝐸
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cartoon shows soft microgels in a transiently kinetically arrested state which are modeled here as 

676 Hertzian elastic spheres.

The inset of Figure 10 presents calculations of the zero wave-vector value of , 𝑆(𝑘) 𝑆0 = 𝜌

678  , which is a dimensionless measure of the osmotic compressibility of the suspension. It 𝑘𝐵𝑇𝜅𝑇

decreases strongly and monotonically with increasing volume fraction. Integration over 

680 concentration of the inverse of this quantity provides the osmotic pressure [44]. In principle the 

results of Figures 9 and 10 can be tested via new experiments on our microgel samples such as 

682 confocal imaging, scattering, and thermodynamic measurements. We now use the obtained 

structural knowledge to make further dynamical and rheological predictions in the next section. 

684

686

Figure 10. Characteristic structural features as a function of volume fraction  for Hertzian 𝜙

688 spheres at a fixed repulsion strength of  Amplitude of the first peak of , denoted 𝐸 = 30,000. 𝑔(𝑟)

as , is a measure of the degree of real space short range order between nearest neighbors in 𝑔(𝑑)
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690 the liquid. Amplitude of the first peak of the collective static structure factor as defined in section 

VC,  which quantifies the collective coherence of cage packing associated with the nearest 𝑆(𝑘 ∗ ),

692 neighbors. (Inset) Zero wave-vector value of the collective static structure factor, 𝑆0 ≡ 𝑆(𝑘 = 0) =

 , which is a dimensionless osmotic compressibility. 𝜌𝑘𝐵𝑇𝜅𝑇

694 VI. Dynamics and Rheology Predictions and Comparison to Experiment

` To convert our dimensionless theoretical time scales into absolute time scales relevant to 

696 our system, we estimate the short relaxation time of Eq(15) and find   since the peak 𝜏𝑠 ≥ 200 𝑠

value of  obeys , and the factor in square brackets in Eq(14) is ~100 at the high 𝑔(𝑟) 𝑔(𝑑) ≥  4

698 effective volume fractions of interest. This estimate also employed the experimental particle 

radius, the SE diffusivity  , a water viscosity of , and  . We note  𝐷𝑆𝐸 =
𝑘𝐵𝑇

6𝜋𝜂𝑅 10 ―3𝑁.𝑠/𝑚2 𝑇 = 10℃

700  for a nm diameter particle.𝜏 =
𝑑2

𝐷𝑆𝐸
= 0.4𝑠 𝑑 = 550

A. Quiescent Relaxation

702 To test if our theoretical approach is consistent with the nearly flat frequency dependence 

of the shear modulus observed experimentally (Fig.1A), we consider a simple Maxwell model 

704 defined as

(23)𝐺′(𝜔) = 𝐺′
(𝜔𝜏𝛼)2

1 + (𝜔𝜏𝛼)2

706 where  is given by Eq(11). A flat frequency dependence requires . In the experiments 𝐺′ 𝜔𝜏𝛼 ≥  1

the lowest frequency probed is ~  . Using this and our calculation of the short time 10 ―2 𝑟𝑎𝑑.𝑠 ―1

708 scale , we find . Indeed, the actual structural relaxation time, estimated here 𝜏𝑠 ≥  200 𝑠 𝜔𝜏𝑠 ≥  2

as the Kramers time, is much larger than . Since we interpret in a Maxwell model spirit the 𝜏𝑠
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710 structural and longest stress relaxation times to be essentially the same to leading order, the 

inequality  applies and thus the dynamic theory is consistent with the observation of no 𝜔𝜏𝛼 >> 1

712 terminal flow on the experimental time scale under quiescent conditions. 

As discussed in section IVE, the dynamic free energy has several key length scales per 

714 Fig.6. Fig. 11 shows examples using . All length scales are 1-2 decades smaller than 𝐸 = 30,000

the particle size. The transient localization length ( ) and location of maximum force (  𝑟𝑙𝑜𝑐 𝑟 ∗ )

716 monotonically decrease (initially strongly) with volume fraction, and then tend to saturate as the 

soft jamming point is approached. The jump distance grows monotonically. Our predictions of 

718 localization length can potentially be tested using confocal microscopy or simulations. 

720 Figure 11.  Characteristic length scales of the dynamic free energy (c.f. Fig. 6) as a function of 

volume fraction for fixed . Dimensionless dynamic localization length,  (red), 𝐸 =  30,000 𝑟𝑙𝑜𝑐/𝑑

722 and location of maximum cage restoring force, (green). (Inset) Particle jump distance, 𝑟 ∗ /𝑑 = 𝑟𝐵

 .― 𝑟𝑙𝑜𝑐
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724 Calculations of the local cage, collective elastic, and total barriers discussed in section IVE 

are shown in Fig.12a. All grow monotonically and strongly with volume fraction over the range 

726 shown. The collective elastic barrier increases more strongly with concentration, as also true for 

hard spheres and other glass forming liquids [35,42]. The elastic and local barriers cross at a much 

728 higher volume fraction than for hard spheres, and the crossing point decreases as  grows (not 𝐸

shown). 

730

Figure 12. (A) Dimensionless dynamic free energy barriers (c.f. Fig.6) for . The local, 𝐸 = 30,000

732 elastic, and total dynamic barriers discussed and defined in section IVE are shown as a function of 

volume fraction.  (B) Alpha relaxation time (in seconds) for five microgel concentrations in  𝑤𝑡%

734 as a function of stress in Pascals.

B. Nonlinear Response

736 With increasing deformation or stress, both dynamical barriers decrease and the structural 

relaxation time strongly decreases. Figure 12b shows this is an extremely dramatic effect for five 

738 different concentrations below the soft jamming threshold. The last point in each plot corresponds 
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to when the localized form of the dynamic free energy is first destroyed (and hence the total barrier 

740 vanishes), which signals the absolute yield stress. 

Figure 12b can also be used to operationally define a dynamic yield stress in the spirit of a 

742 mechanically-driven glass to liquid transition.  Typically, the kinetic criterion used is set by the 

maximum experimental observation time. For example, the dynamic yield stress could correspond 

744 to the stress value when   s where  But here we choose to do a simpler analysis 𝜏𝛼 = 10𝑥 𝑥~2 ― 4.

by defining [12,37] a dynamic yield stress as  in analogy with 𝜎𝑦,𝑑𝑦𝑛 = 𝛾𝑦,𝑑𝑦𝑛 ×  𝐺′  (𝛾𝑦,𝑑𝑦𝑛)

746 Eq.(18), where  is the dynamic yield strain defined at the maximum of the strain dependent 𝛾𝑦,𝑑𝑦𝑛

loss modulus, ) of Eq(20). Another way of defining yield strain is where the strain dependent 𝐺′′(𝛾

748 storage and loss moduli cross, ). Within the simple nonlinear Maxwell model 𝐺′′(𝛾) = 𝐺′(𝛾

framework of Eq. (20), these two definitions are the same. Experimentally, these two criteria may 

750 be different (Figure S5). We take the peak in G" as the dynamic yield strain and the crossover as 

the absolute yield strain for comparison to theory. Figure 13 presents our theoretical results for the 

752 dynamic and absolute yield stresses and strains, and compares them in a no adjustable parameter 

manner to experiment. 

754 Figure 13 shows rather good agreement between different theoretical measures of the yield 

stress (smooth curves) and experimental data analyzed in 3 different ways (data points) in both the 

756 glassy and soft jamming regimes (except for the lowest concentration sample for which the data is 

most uncertain). The inset compares yield strains from theory and experiment. Overall, the 

758 agreement is good in the glassy regime where the system has yield strains of modest magnitude, ~ 

. Agreement between theory and experiment is not very good beyond the putative "soft 10 ― 20 %

760 jamming" crossover. While theory predicts , experiment suggests a strong yield strain 𝛾𝑦~ 𝑐0

dependence on concentration at very high concentrations, leading to a large yield strain value of 
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762  for the  sample. This is much larger than the theoretical predictions and may reflect  ~72% 9 𝑤𝑡%

the arbitrariness of defining yield strains from real experimental data. Using a different definition, 

764 the mixed yield strain (defined in Eq. (21)) evaluated using our experimental data as the ratio of 

the HB yield stress to plateau modulus ( ), results in a nearly constant yield strain 𝛾𝑚𝑖𝑥
𝑦 = 𝜎𝐻𝐵

𝑦 /𝐺0

766  in the highest concentration regime. 𝛾𝑚𝑖𝑥
𝑦 ~ 𝑐0

768 Figure 13. Comparison of the yield stress and yield strain from experiment (symbols) and theory 

with no additional fit parameters (solid curves). Experimental Hershel-Buckley (black), dynamic 

770 (blue), and absolute (green) yield stresses as defined in Sec.VI B (from data in Fig. 2, Fig. 3 and 

Fig. S4). (Inset) Experimental yield strain values (points) and the predicted theoretical dynamic 

772 and absolute yield strains as defined in Sec.VI B.  These theoretical results are based on the 

parameters deduced by aligning theory and experiment for the linear shear modulus and involve 

774 no horizontal or vertical shifts.

VII. Summary and Conclusions
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776 We have presented an integrated experimental and quantitative theoretical study of the 

linear and nonlinear rheology of self-crosslinked, slightly charged pNIPAM microgel suspensions 

778 at low temperatures where they repel. An exceptionally wide range of concentrations were studied 

that span the fluid, glassy and so-called "soft jammed" regimes. In the intermediate glassy regime, 

780 we measured over 3 orders of magnitude an apparent power law dependence of the elastic shear 

modulus on concentration, . This variation appears distinct compared to prior studies of 𝐺′~𝑐5.64

782 crosslinked ionic microgel suspensions. At high enough concentrations, there is a rather sharp 

crossover to a nearly linear growth of the dynamic shear modulus. To theoretically understand 

784 these quiescent observations within a single framework we constructed a minimalist model of 

single microgel size as a function of concentration that includes steric de-swelling effects 

786 (neglecting any ion-induced deswelling) which differ in the so-called glassy and highest 

concentration or soft jammed regimes. Using a Hertzian repulsion interparticle potential and a 

788 suite of statistical mechanical theories, we made quantitative predictions for the microgel 

collective structure, dynamic localization length, and elastic shear modulus. Based on a constant 

790 Hertz repulsion strength parameter ( ), determined by requiring the theory to reproduce the 𝐸

measured elastic modulus over the entire concentration regime studied, we demonstrated good 

792 agreement between theory and experiment for . The various parameters used in theory 𝐸 ≈ 30,000

are summarized in table S1. Experimentally testable predictions were made for the structure of the 

794 suspensions.

We also measured several nonlinear rheological properties with a focus on the yield stress 

796 and strain. Again significant differences of our data compared to published studies using 

crosslinked ionic microgels were found [5,8-11]. A theoretical analysis was also performed (now 

798 with no adjustable parameters) to predict the structural relaxation time in equilibrium, how it 
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changes under deformation, and the yield stress and strain as a function of microgel concentration. 

800 Reasonable agreement with our observations was obtained. To the best of our knowledge, this is 

the first theoretical attempt to quantitatively understand structure, quiescent relaxation and shear 

802 elasticity, and yielding of dense microgel suspensions using microscopic force based methods that 

include activated hopping processes. 

804 We expect the ideas and approach presented here will be useful for other realizations of 

microgel suspensions based on different chemistries and also other types of soft polymeric 

806 particles in the core-shell family. A key input to the modeling is knowledge of the interparticle 

pair potential and the microgel size and effective volume fraction as a function of concentration. 

808 Given these, the statistical mechanical theories discussed in this article can be employed to predict 

packing structure in real and Fourier space, the shear elastic modulus, structural relaxation time, 

810 and nonlinear rheological properties. Our integrated experimental-theoretical approach will be 

applied in a future article to study how heating induced changes of microgel size and stickiness 

812 impact linear and nonlinear viscoelasticity.
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