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Abstract

Polymeric membranes are efficient at separating gas mixtures, typically by exploiting a

sieving mechanism. What controls the sieve size of a given polymer matrix is unclear, although

one line of thought implies that the local cage size, defined by the dynamic motions of the

glassy polymer matrix, is the relevant metric. Here, we use coarse-grained molecular dynamics

simulations and show that the sieve size is defined by a static cavity size controlled by polymer

chain stiffness (a packing-driven metric) combined with the local cage-like motions of the

polymer host. The best separation performance for a pair of gases is when this combined

metric is roughly half way between the diameters of the gases in question, with the static and

dynamic quantities contributing roughly equally. For the various models simulated we find

the existence of an upper bound correlation which passes through this optimal point and has a

slope expected from the Freeman model, namely λ =
(

d2
B

d2
A
−1
)

, where the d’s correspond to

the kinetic diameters of the gases in question. Our results thus demonstrate that the relevant

free volume size that affect gas tranport in these condensed phases is defined by both static and

dynamic measures.

∗To whom correspondence should be addressed
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1 Introduction

Membrane based gas separations, which strive to maximize the permeability of a desired species

(“flux") while being selective towards it (“purity"), is the key to many clean energy applications,

such as carbon dioxide capture and natural gas purification.1 However, typical membranes ex-

hibit a trade-off between permeability PA and (ideal) selectivity αAB = PA/PB.2,3 The central goal

for membrane design is thus to identify materials with both high PA and αAB. In the canonical

solution-diffusion model, the permeability P = D× S is the product of the diffusivity (diffusion

coefficient) D and solubility S.4 Although many types of materials, such as carbon, ceramics and

zeolites, can be used to make membranes, 95% of the total industrial market consists of polymeric

membranes.5 An early analysis of existing polymeric membranes suggested that logαAB is indeed

negatively correlated with logPA on a “Robeson plot” and this scatter plot is bounded from above

by an empirical line logαAB =−λ logPA+κ .6 Such an upper bound defines the optimal separation

performance practically; understanding whether an upper bound limit exists theoretically and what

factors affect its position is currently unknown.

Kinetic arguments proposed by Freeman shed some light on the quantitative form of the up-

per bound, for instance, that its slope depends purely on the sizes (dA,dB) of the two gases,

λ = (dB/dA)
2−1 ≡ λF .7 In practice, it has been found that the position of the upper bound (i.e.,

its intercept) increases over time as more polymer materials are discovered, but that the slope

itself remains relatively unchanged.8 The Freeman model is based on the assumptions that pene-

trant motion through polymers is an activated “anomalous” process9 with D ∼ e−Ea/kBT and the

activation energy Ea ∼ d2. Previous computer simulations confirmed this picture under certain

conditions and showed that the Robeson plot of a given polymer at different densities falls on a

single line of slope λF .10 To move beyond this upper bound, new types of polymers with increasing

local stiffness have been synthesized - these “thermally rearranged" polymers, for example, have

performance that is better than the accepted upper bound correlation for commonly encountered

polymers. Given these facts we ask if there is truly a well-defined upper bound correlation in a

Robeson plot for a pair of gases. If so, what defines the intercept of this upper bound - this of
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course assumes that the slope of the plot remains unchanged and equal to its Robeson value.

To answer this question, we perform coarse-grained molecular dynamics simulations of pen-

etrant diffusion inside different types of polymers. To focus on the role of chain stiffness, we do

not consider other effects such as solubility and non-spherical penetrants. We find that the chain

stiffness alone provides a mechanism for the upper bound limit. The optimal chain stiffness (with

best separation performance) can be identified by combining the concepts of static free volume

and dynamic segmental motion, and we find that the optimal material (i.e., the one with the high-

est selectivity) corresponds to one where the combined “free volume" size is midway between the

kinetic diameters of the gases in question.

2 Models and Methods

We disperse trace amounts (Ns = 100) of spherical penetrants into Nc = 500 coarse-grained poly-

mers each of chain length Np = 120 with monomer size σ . All monomers and penetrants are of

the same mass, m0. Any pair (i, j) of particles (penetrants or monomers) interact via the purely

repulsive Lennard-Jones (LJ) potential, uLJ(ri j) = 4ε[(σi j/ri j)
12− (σi j/ri j)

6]+ ε (ri j < rc), trun-

cated and shifted at a cutoff rc = 1.12σi j. Neighboring monomers on a chain are connected by

finite extensible nonlinear elastic (FENE) bonds uFENE(r) = −0.5K0R2
0 ln[1− (r/R0)

2](r < R0)

with force constant K0 = 30ε/σ2 and R0 = 1.5σ . Interactions within polymer chains also in-

clude a harmonic bond angle potential uangle(θ) = K1(θ − θ1)
2 with stiffness constant K1 (in

units of ε/rad2) and equilibrium angle θ1 = 109.5◦ or 120◦, as well as a dihedral angle potential

utorsion(φ) = K2[1+ cos(nφ)] with stiffness constant K2 (in units of ε) and the number of minima

in one full rotation n = 1 or 3. We tune these parameters in various regimes to implement five

different polymer models, as summarized in Table 1. We focus on the penetrant pair with a fixed

diameter ratio 0.8: (dA,dB) = (0.32,0.4) (in unit of σ ), which falls in the range of typical gas

size ratios in this coarse-grained description.11 These sizes are motivated by the knowledge that

one polymer segment represents a Kuhn length, with size ∼ 1nm. Typical gas molecules of our
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Table 1: Five polymer models used in this work and their number density range at fixed pressure
p = 12 and temperature T = 1.

model K1 θ1 K2 n ρ

I. angle-109.5 0–1000 109.5 0 – 1.026–1.000
II. torsion-300 300 109.5 1–100 3 0.990–0.755
III. trans 300 109.5 1–100 1 1.01–0.83
IV. angle-120 10–500 120 0 – 1.030–1.014
V. torsion-10 10 109.5 1–20 3 1.02–0.96

interest are 0.25-0.4 nm in size, justifying these choices. Note that we run the polymer with a given

penetrant (either 0.32 or 0.4) so that we are only enumerating the diffusion of pure tracers in each

case.

Molecular dynamics (MD) simulations are performed with a time step ∆t = 0.002 (in units of

τ0 ≡ σ
√

m0/ε) at constant temperature T = 1.0 (in units of ε/kB) and pressure p = 12 (in units

of ε/σ3), maintained by the Nose-Hoover thermostat and barostat using the LAMMPS package.12

The corresponding monomer number density ρ in most systems is close to 1.0, except for ex-

tremely stiff chains (Table Table 1). After equilibrating the system for up to t ∼ 106, over which

no volume drift is noticeable on logarithmic time scale, we compute the mean squared displace-

ment (MSD) ∆r2 of the penetrants and chain segments over a time period of t ∼ 105. This time

scale is long enough for the motion of small penetrants to become diffusive, yet still too short for

any long-time chain relaxation to occur. Besides dynamic properties, we also measure the spatial

distribution of static free volumes by randomly inserting probing hard spheres and growing them

until they touch a neighboring particle.13,14 A final histogram is drawn over the diameters d f of all

successfully inserted spheres.

3 Results

We calculate the diffusion coefficients (DA,DB) of the penetrant pair with sizes (dA,dB)= (0.32,0.4)

from their MSD in all the polymer systems. The corresponding diffusivity Robeson plot of logαD
AB

vs. logDA at T = 1 and p = 12 is constructed in Figure 1. The data point corresponding to
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a flexible bead-spring polymer melt, with both bond angle and torsion interactions turned off, is

marked by a cross. If the system were to obey the Freeman theory, the upper bound should fol-

low the dashed line with a slope λF = 0.5625; we have previously showed that these trends can

be realized by changing the density (pressure) of the flexible polymer systems, without chaging

chain architecture or interactions.10 By increasing the chain stiffness (either K1 or K2), the sepa-

ration performance is able to move above the flexible chain upper bound. The actual trends can

be divided into two categories. As chain stiffness increases through the addition of a bond angle

potential (cases I and IV), the system goes from right to left on the Robeson plot (DA decreases)

when bond angle is not rigid (K1 . 300). At the same time the data “exceed" the flexible chain

upper bound. The addition of a torsional angle potential causes the curve to move from right to

left when bond angle is close to be fixed (K1 & 300). The best separation performance is achieved

on the upper left corner in Figure 1, where the large K1 makes the bond angle θ almost fixed at

θ1. After reaching this optimal spot, increases in stiffness (K2) will not lead to any further upward

movement on the Robeson plot. It appears that there is a well-defined upper bound for this collec-

tion of models - we believe that this corresponds to a line with slope λF passing through the green

point on the upper left hand region of the figure.

10−14×10−2 6×10−2 2×10−1

DA

100

2×100

3×100

αD A
B

I. angle-109.5 ←
II. torsion-300 →
III. trans →
IV. angle-120 ←
V. torsion-10 ↻

Figure 1: The diffusivity Robeson plot for the five polymer models at T = 1 and p = 12. The
arrows in the legend point to the direction of increasing chain stiffness (the trend for model V is
non-monotonical). The result for totally flexible chains (K1,K2 = 0) is marked by a black cross,
through which an upper bound assuming the Freeman theory slope λF = 0.5625 is drawn (dashed
line). Error bars are estimated from two independent simulations.

To understand these trends, we quantify the size of static free volumes in the polymers. For
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each polymer system, we take four equilibrated configurations and insert 10000 probing spheres

in the background of frozen polymers. The spheres are grown till they contact one of the chain

monomers. These probing spheres are randomly distributed in space (Figure 2 inset). The his-

tograms of the resulting maximum sphere diameters d f are collected and fitted with the distribution

p(d f ) =
√

2/π〈d f 〉2e−d2
f /2〈d f 〉2 (d f ≥ 0), which is characterized by one parameter – the average

diameter 〈d f 〉. As chain stiffness, as characterized by the torsional potential, increases, the system

exhibits larger voids (Figure 2). However, the stiffness of the bond angle potential (K1 alone) only

has a minor effect on p(dF). This last result is a manifestation of the fact that, although we in-

crease bond stiffness by increasing K1, the chain has considerable rotational flexibility. Thus, the

chains pack well and there is basically no change to the static free volume size. The addition of the

torsional angle potential with say a single dominant minimum, on the other hand, tends to force

the chains to be planar - poor packing of these planar objects then leads to additional free volume.

This trend, of course, cannot go on without bound since a transition to a liquid-crystalline (or a

crystal) will take place.

Figure 2: The distribution p(d f ) of the diameters d f of probing spheres fitted by the half-normal
distribution for three polymer systems. Inset: an example snapshort of the spatial distribution of
probing spheres (blue), compared to the size of one monomer outside of the simulation box (red).

We next turn to a dynamic measurement of void sizes based on the Debye-Waller (DW) factor15

of chain MSD at a certain time τ , u(τ) =
√

∆r2(τ). Previous studies have suggested that the DW

factor is an appropriate measure of the local elastic fluctuations of the polymer matrix, which

facilitate the activated motion of large enough penetrants even when the polymer is in its deeply
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quenched glassy state.16 We pick τ = 100, a typical intermediate timescale that separates the short-

time and long-time segmental motions (Figure 3) and find that the resulting u exhibits a sigmoidal

dependence on chain stiffness (Figure 3 inset).

Figure 3: The segmental MSD for polymer model I at K1 = 0,5,10,20,50,100,300 (from top to
bottom), whose height at τ = 100 (vertical dashed line) is used to measure chain dynamics. Inset:
the corresponding DW factor u(τ = 100) as a function of K1.

Figure 4: The effective cage size is ∆ = 〈d f 〉+u versus DW factor u for the five polymer models.
Optimal separation occurs when ∆ is minimzed (dashed line). Inset: a penetrant is trapped inside
the cage formed by segments, which defines a static free volume size d f (blue arrow). The slow
motion of segments adds a dynamic contribution (red arrow) to the overall cage size.

Small penetrants like gases diffuse through a polymer matrix via an activated hopping mecha-

nism, when the segmental dynamics becomes caged and the penetrant size is larger than a critical

value defined by the surrounding cage size.10 Here, we propose a quantity ∆ = 〈d f 〉+ u, which
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characterizes the effective cage size felt by the penetrant, by combining the contributions from

both static free volume resulting from polymer packing and dynamic fluctuations due to chain

movement (Figure 4 inset). When ∆ is plotted against u for all the polymer systems we studied,

a minimum ∆min appears at u ≈ 0.2 (∆=0.37), which corresponds to the optimal separation spot

in the Robeson plot (Figure 1 and Figure 4). Interestingly, this optimal effective cage size is be-

tween the sizes of the two gases, i.e. dA < ∆min < dB, which may explain why the smaller gas is

most efficiently separated from the larger one by polymers with ∆ = ∆min. As mentioned above,

u is a measure for chain stiffness (or Tg), and thus divides polymers into two extreme categories

in Figure 4. At large u (small d f ), polymers are dense but flexible rubbers or melts. At small u

(large d f ), polymers are sparse but rigid glasses. Polymers with best separation performance are

stiff enough to form stable cages, but not too stiff to open up big cavities due to thermal motions of

the chain segments. We thus conclude that both static and dynamic metrics appear to be in balance

in this sweet spot corresponding to the most selective polymer gas separation medium, which also

appears to have the the largest intercept for an upper bound correlation in a Robeson plot.

4 Conclusion

In this work, we show that chain stiffness can impose a theoretical limit for the upper bound of

the Robeson plot of a polymeric membrane’s gas separation performance. This limit can be quan-

titatively approached by considering the static free volume and the dynamic segmental motion

together. Our findings can help to explain why the separation performance of semi-rigid polymers,

e.g. polymers with intrinsic microporosity (PIMs) and thermally rearranged polymers (TRs), can

exceed ordinary polymers.17 Early on, it was recognized that, to improve separation performance,

one should inhibit intersegmental packing (increase d f ) while simultaneously hindering the back-

bone mobility (reduce u).18 Such a protocol corresponds to reducing u on the right branch of our ∆-

u plot (above u & 0.2). Here we show that this process has an apparent optimum at the limit of best

separation, beyond which the trend reverses. Finally, it is worth noting that the real upper bound
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in experimental systems depends on other factors not considered here. For instance, although sol-

ubility is often secondary to diffusivity,10 certain systems are actually solubility-selective.19 Also,

many real gases are not spherically shaped; in these cases entropic factors can also contribute

significantly to the overall separation.20
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