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We study slip-avalanches in two-dimensional soft athermal
disks by quasi-static simulations of simple shear deforma-
tions. Sharp drops in shear stress, or slip-avalanches, are
observed intermittently during steady state. Such stress
drops are caused by restructuring of the contact networks,
accompanied by drastic changes of the interaction forces,
∆ f . The changes of the forces happen heterogeneously in
space, indicating that collective non-affine motions of the
disks are most pronounced when slip-avalanches occur.
We analyze and predict the statistics for the force changes,
∆ f , by transition rates of the contact forces and angles,
where slip-avalanches are characterized by wide power-law
tails. We find that the transition rates are described by a
q-Gaussian distribution regardless of the area fraction of
the disks. Because the transition rates quantify structural
changes of the force-chains, our findings are an important
step towards linking macroscopic observations to a mi-
croscopic theory of slip-avalanches in the experimentally
accessible quasi-static regime.

The mechanics of amorphous solids, e.g. glasses, ceramics, col-
loidal suspensions, and granular materials, is of crucial impor-
tance in engineering science1. Continuously shearing amorphous
solids, one observes plastic deformations after yielding, where
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stress exhibits intermittent fluctuations around a mean value2. If
the system consists of grains (as granular materials3), the stress
drops, or so-called slip-avalanches4, are triggered by complicated
rearrangements of the constituents. In general, it is challeng-
ing to make a connection between the macroscopic mechanical
response, like at slip-avalanches, and the micro-scale mechanics
during yielding of amorphous materials1.

Recently, researchers have extensively studied mechanical (and
rheological) properties of yielding amorphous materials2. Es-
pecially, molecular dynamics (MD) and quasi-static (QS) sim-
ulations are powerful tools to provide insights into the micro-
structure of the materials. For example, it is found by MD
simulations of soft athermal disks in two dimensions5–9 (as
well as particles in three dimensions10) that the resistance to
shear is a result of anisotropic force-chains, i.e. contact and force
anisotropies, where probability distributions of contact forces
show clear directional dependence under shear. In addition, MD
and QS simulations well reproduce characteristic avalanche-size
distributions11–15 observed in experiments of, e.g. bulk metallic
glasses16,17 and granular materials18–21. The merit of QS sim-
ulations is that the strain-rate is approximated to zero, which is
relevant to laboratory experiments21, and both methods converge
concerning the stress-strain evolution of the system22. Note that
stress-controlled quasi-static simulations can be realized also by
the geometric quasi-static method (GQSM)23 which resembles a
stress-controlled boundary condition. It is then revealed that non-
affine displacements of the constituents are unusually enhanced
and span the system when slip-avalanches occur24–26. Many re-
searchers have studied the statistics for contact forces, avalanche-
sizes, and non-affine displacements27–30, however, their connec-
tions to structural changes of force-chains, i.e. “micro-scale me-
chanics of amorphous solids"31, are still unclear.

In this Communication, we investigate microscopic structural
changes of force-chain networks by QS simulations. As a model
of amorphous solids, we simulate disordered soft athermal disks
in two dimensions. In our system, slip-avalanches are caused
by restructuring of the force-chain networks (accompanied by
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drastic changes of the forces between the disks) under shear.
These structural changes of force-chains are analyzed by intro-
ducing transition rates as previously studied for isotropic defor-
mations32. The transition rates describe the development of force
distributions through a master equation. We find that (i) despite
the anisotropic nature of the force distributions and the strain
field, fluctuations of the force changes are isotropic and (ii) slip-
avalanches are characterized by power-law tails of the transition
rates, which are described by q-Gaussian distributions regardless
of the area fraction of the disks.

Numerical methods.— To study force-chains under shear, we use
QS simulations of two-dimensional soft athermal disks. The inter-
action force between the disks (i and j) in contact is modeled by
a linear elastic spring, i.e. fi j = kξi j for ξi j > 0, where k is the
stiffness and ξi j ≡ Ri +R j− ri j is defined as the overlap between
the disks with their radii, Ri and R j, and interparticle distance,
ri j. To avoid crystallization, we prepare 50 : 50 binary mixtures of
the N = 8192 disks, where different kinds of disks have the same
mass, m, and different radii, RL and RS (with ratio, RL/RS = 1.4).
We randomly distribute the N disks in a L×L square periodic box
such that the area fraction is defined as φ ≡ ∑

N
i=1 πR2

i /L2. Then,
we relax the system to a static state by the FIRE algorithm33 until
the maximum of disk acceleration becomes less than 10−6kd0/m
with the mean disk diameter, d0 ≡ RL +RS

34,35. In this study, we
choose the area fractions always higher than the value at isotropic
jamming, φ > φJ ' 0.843336.

We apply simple shear deformations to the system by the Lees-
Edwards boundary conditions37, where the box size, L, is fixed
and the amount of shear strain is given by γq = q∆γ with integer,
q = 1,2, . . . , and small strain increment, ∆γ = 10−4. In each strain
step, from γq to γq+1, every disk position, ri = (xi,yi), is replaced
with (xi +∆γyi,yi) and then the system is relaxed to a new static
state by FIRE. Therefore, our system is driven by quasi-static de-
formations14, where the shear rate is approximately zero, γ̇ → 0.
In the following, we analyze the data in steady state (the applied
strain ranges between 1≤ γq ≤ 2) and scale every mass and length
by m and d0, respectively.

Distributions of avalanche-size and interval.— We measure the
macroscopic mechanical response of the system by the shear
stress. Figure 1(a) displays a typical stress-strain curve, where the
shear stress at γq is calculated according to the virial, i.e. σq =

−(1/L2)∑i< j ri j fi jni jxni jy = −(1/2L2)∑i< j ri j fi j sin(2θi j). Here,
ni jα (α = x,y) and θi j are the α-components of the unit vector, ni j

(parallel to the relative position), and the contact angle between
ni j and the x-axis, respectively (see Fig. 1(b)). As shown in the
inset of Fig. 1(a), the shear stress in steady state (1.95≤ γq ≤ 1.98)
exhibits characteristic slip-avalanches: σq suddenly drops to a
lower value, σq+1, after the (almost) linear increase with γq.

To quantify the statistics of slip-avalanches, we define
avalanche-size11–13 as ∆σq ≡ σq − σq+1 for each σq > σq+1 and
avalanche-interval as ∆γs≡ γq−γq−s, where the shear stress almost
linearly increases in the previous past s steps. Figure 2 shows
the complementary cumulative distributions4 of (a) the avalanche-
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Fig. 1 (a) The stress-strain curve (red solid line), where the shear stress
is scaled by the stiffness, k, and the shear strain ranges between 0 ≤
γq ≤ 2. The inset shows zoom-in to 1.95< γq < 1.98, where the avalanche-
size, ∆σq, and avalanche-interval, ∆γs, are represented by the vertical and
horizontal double-headed arrows, respectively. Here, the area fraction
is φ = 0.9. (b) A sketch of the disks, i and j, in contact, where ni j (red
arrow) is the unit vector parallel to the relative position. The contact angle
between ni j and the x-axis (horizontal arrow) is introduced as θi j such
that ni j = (ni jx,ni jy) = (cosθi j,sinθi j).
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Fig. 2 (a) A double-logarithmic plot of the cumulative distributions of the
avalanche-size, F(∆σq), where the lines represent power-laws with expo-
nential cutoff at large ∆σq. (b) A semi-logarithmic plot of the cumulative
distributions of the avalanche-interval, F(∆γs), where the lines are Gaus-
sian fits to the tails. In both (a) and (b), the area fraction, φ , increases as
indicated by the arrows and listed in the legend of (a).

(a) (b)

Fig. 3 Snapshots of force-chains (solid lines) at the strain steps, γq =

1.9632 (a) and 1.9633 (b), before and after a large slip-event, where the
area fraction is given by φ = 0.9 and the system is sheared along the
horizontal arrows. The line width is proportional to the difference between
contact forces, |∆ fi j|, and line colors, red and blue, represent the increase
(∆ fi j > 0) and decrease (∆ fi j < 0) of contact forces, respectively.
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Fig. 4 Scatter plots of the scaled force changes, ∆ fi j/(kri j∆γ), and con-
tact angles, θi j, where the area fraction and strain steps in (a) and (b) are
as in Figs. 3(a) and (b), respectively. The solid lines represent the affine
prediction, ∆ f a

i j/(kri j∆γ) = −(1/2)sin(2θi j), while the green dashed lines
are sinusoidal fits to the data, −Asin(2θi j), with amplitudes, A = 0.338 (a),
smaller than 1/2, and −22.0 (b) much larger. Note the different vertical
scales in (a) and (b).

size, F(∆σq), and (b) avalanche-interval, F(∆γs)
§, where the area

fraction increases as indicated by the arrows. In Fig. 2(a), the
distributions are well captured by a power-law with an expo-
nential cutoff, F(∆σq)∼ ∆σ−ν

q e−∆σq/∆σ 0
q (lines)14. The exponent,

ν = 0.35, is used for all the area fractions, φ , while the cut-off,
∆σ0

q , monotonously increases with φ . On the other hand, the dis-
tributions of the avalanche-interval decay faster than exponential,
exhibiting Gaussian tails (lines in Fig. 2(b)). This means that the
avalanches are uncorrelated (if ∆γs & 10−3) and randomly occur
in steady state. Note that both of the distributions are sensitive
to the area fraction and their connections to the micro-scale me-
chanics are still unclear.

Non-affine responses of contact forces.— At microscopic scale,
slip-avalanches are caused by changes of the micro-structure, i.e.
contact and force-chain networks, accompanied by changes of the
contact forces, ∆ fi j ≡ fi j(q+1)− fi j(q) (the arguments represent
strain steps). Since we apply affine deformation to the system,
where every disk position, (xi,yi), is replaced with (xi+∆γyi,yi) in
each strain step, every contact force changes to

f a
i j(q+1)' fi j(q)−

∆γ

2
kri j sin(2θi j) (1)

immediately after the affine deformation (see ESI†). The affine
response, Eq. (1), predicts homogeneous anisotropic changes of
the contact forces, e.g. slight increase and decrease in the com-
pression (θi j = −π/4) and decompression (θi j = π/4) directions,
respectively. However, since the disks are randomly arranged,

§ The complementary cumulative distribution is introduced as F(x) =
∫

∞

x P(x′)dx′,
where P(x) is the probability distribution of x.
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Fig. 5 A three-dimensional plot of the PDF of contact force and angle,
Pγq (f), where the force is scaled by the mean value, 〈 f 〉, and the PDF is
averaged during steady state, 1≤ γq ≤ 2.

their force balance is broken by the affine deformation and they
are rearranged to relax the system to mechanical equilibrium.
Then, the contact force changes from f a

i j(q+ 1) to fi j(q+ 1) af-
ter the energy minimization, which we call non-affine response of
the contact forces. Figure 3 displays snapshots of force-chains in
situations with (a) a linear increase of the shear stress and (b)
a slip-avalanche. The width of force-chains (at strain step, γq)
is proportional to the difference34,35, |∆ fi j| ≡ | fi j(q+1)− fi j(q)|,
while the sign is represented by color. As in Fig. 3(b), the non-
affine response exhibits significantly larger differences, |∆ fi j|, and
a heterogeneous structure in space, when the system undergoes a
slip-avalanche. Figure 4 displays the angular dependence of the
difference, ∆ fi j, where the solid lines are the affine responses, Eq.
(1), i.e. ∆ f a

i j ≡ f a
i j(q+ 1)− fi j(q) ' −(∆γ/2)kri j sin(2θi j). In Fig.

4(a), the dependence of ∆ fi j on θi j is the same as for the affine
response, where the mean value is given by 〈∆ fi j〉 = −Asin(2θi j)

(dashed lines). However, its amplitude, A, is weakened through
the relaxation process and there are huge fluctuations around
〈∆ fi j〉. The amplitude and fluctuations extremely increase in the
case of a slip-avalanche (Fig. 4(b)) ¶. It is also remarkable that
the fluctuations are isotropic, i.e. independent of θi j, despite the
anisotropic nature of the mean value, 〈∆ fi j〉, which is governed
by the strain field.

A stochastic description of the non-affine responses.— To con-
nect the avalanche-size, ∆σq, with structural changes of the force-
chain networks (Fig. 3), we apply methods for the analysis of
stochastic processes38 to the non-affine responses of contact force
and angle, i.e. fi j(q)→ fi j(q+ 1) and θi j(q)→ θi j(q+ 1) for ∀q.
The development of the force and angle is assumed to be stochas-
tic, i.e. fi j(q) and θi j(q) are considered as stochastic variables.
Then, introducing their probability distribution function (PDF)
as Pγq(f) with f ≡ ( f ,θ), we express the shear stress as a statis-
tical average of the virial, σq = −(1/2L2)

∫∫
f r sin(2θ)Pγq(f)df5,

where the subscripts, i j, are omitted from fi j, θi j, and ri j. As
shown in Fig. 5, the PDF exhibits a sinusoidal dependence on
the contact angle, θ 6–10. Now, the avalanche-size is given by
∆σq = (1/2L2)

∫∫
f r sin(2θ)∆Pγq(f)df with the difference of the

PDF, ∆Pγq(f) ≡ Pγq+1(f)− Pγq(f). If any correlations between the
forces (angles) in different strain steps are neglected, i.e. if the

¶ If a slip avalanche occurs, the amplitude becomes negative, A < 0, such that ∆ fi j ∼
|A|sin(2θi j) and the avalanche-size is positive, ∆σq ∼ ∆ fi j sin(2θi j)∼ |A|sin2(2θi j)> 0.
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Fig. 6 A double-logarithmic plot of transition rates, T (f|f′), where θ ′ =
θ =−π/4 and the area fraction, φ , increases as listed in the legend. The
force difference (horizontal axis) is given in units, kd0. The open and solid
symbols are the results of slip-avalanches and linear increases of shear
stress, respectively. The solid and dotted lines are the q-Gaussian fits,
Eq. (3), to the data for slip-avalanches and linear increases, respectively.

stochastic processes are assumed to be Markovian, the develop-
ment of the PDF is described by a master equation38,

∂

∂γ
Pγ (f) =

∫∫ [
T (f|f′)Pγ (f′)−T (f′|f)Pγ (f)

]
df′ , (2)

where f′ ≡ ( f ′,θ ′) represents another set of contact force and an-
gle, and the shear strain, γq, is replaced with a continuous one,
γ (corresponding to the limit, ∆γ → 0). On the right-hand-side
of Eq. (2), T (f|f′) is introduced as the transition rate from f′ to f,
which is directly obtained from numerical data of contact forces
and angles (see ESI† for full details). Note that the master equa-
tion (2) is established and well tested for the case of isotropic
(de)compression of soft athermal disks32,39.

The transition rates, T (f|f′), are equivalent to conditional prob-
ability distributions of the force and angle (which are intuitively
understood to be the distributions of ∆ f (dots) around 〈∆ f 〉
(dashed lines) in Fig. 4) divided by the strain increment38. It
quantifies the statistical weight of the changes from f′ to f. For
example, the affine response, Eq. (1), is deterministic so that
the transition rate is given by a delta function, i.e. T a(f|f′)∆γ =

δ (f− fa) with fa ≡ ( f a,θ a) ‖. On the other hand, the non-affine
responses fluctuate around the mean values (Fig. 4) so that the
transition rates, T (f|f′), must have finite widths. Figure 6 shows
the transition rates, where the angles are fixed to the compres-
sion direction, θ = θ ′ = −π/4. In this figure, all the data with
different area fractions are nicely collapsed and well fitted by the

‖ The affine response of contact angle is given by θ a
i j(q+1)' θi j(q)+(∆γ/2)cos(2θi j)

in first-order approximation of the strain increment, O(∆γ). See also ESI†.

q-Gaussian distribution40 (lines) ∗∗,

T (f|f′) =Cq
c(∆θ)

w(∆θ)

[
1+(q−1)

{
∆ f −〈∆ f 〉

w(∆θ)

}2
]− 1

q−1

. (3)

Here, Cq ≡
√
(q−1)/πΓ(1/(q− 1))/Γ((3−q)/2(q−1)) with the

gamma function, Γ(x), and the prefactor, c(∆θ), are necessary
to satisfy the normalization condition,

∫∫
T (f|f′)∆γdfdf′ = 1 (see

ESI†), where ∆θ ≡ θ − θ ′ is the difference between the con-
tact angles. The shape of the distribution is controlled by the
q-index, e.g. q→ 1 corresponds to normal distributions. When
we observe slip-avalanches (open symbols in Fig. 6), the tran-
sition rates exhibit strong non-Gaussianity with q ' 2.45 (solid
line). In addition, the wide power-law tails with the exponent,
−2/(q− 1) ' −1.38, i.e. T (f|f′) ∼ (∆ f − 〈∆ f 〉)−1.38, are reminis-
cent of large heterogeneous changes of the force-chain networks
(Fig. 3(b)) and can be linked to the exponent of the PDFs of
avalanche-sizes, i.e.−(ν+1) =−1.35, through a relation between
the micro- and macro-pictures (Eq. (19) in ESI†). The width of
the transition rate, w(∆θ), monotonously increases with ∆θ such
that drastic changes of contact force and angle tend to happen si-
multaneously (ESI†). Moreover, the transition rates do not show
strong dependence on the initial angle, θ ′ (ESI†), consistent with
isotropic fluctuations of the force change around its mean value
(Fig. 4). For comparison, we also measure the transition rates
for the case of linear increases of shear stress (solid symbols in
Fig. 6), where q ' 1.77 (dotted line) and the power-law tails are
narrowed to T (f|f′) ∼ (∆ f −〈∆ f 〉)−2.59 (but still remarkably non-
Gaussian) as the force-chain networks change only slightly and
more homogeneously in space (Fig. 3(a)). We note that the Levy
statistics for (macroscopic) strain increments found by the stress-
controlled GQSM23 have an interesting link to our results. The
Levy-like huge “jumps" are due to slip-avalanches of the whole
system, whereas we report wide power-law tails of the transi-
tion rates of the (microscopic) contact forces and angles, which is
more the statistics at microscopic scales. For a connection of the
micro- and macro-viewpoints, see Sec. 5 in ESI†.

Summary and outlook.— We have studied slip-avalanches in a
model of amorphous solids by QS simulations. Our focus is the re-
lationship between the avalanche-size, ∆σq (a sharp drop in shear
stress), and the changes of contact forces, ∆ f . The average force
change, 〈∆ f 〉, follows the shear-strain field with sinusoidal de-
pendence on the contact angle, θ , while the huge fluctuations of
∆ f are isotropic (independent of θ). The avalanche-size is con-
nected with the change of the PDF of contact forces and angles,
where the statistical weight of the changes of force, f ′ → f , and
angle, θ ′ → θ , is measured by the transition rates. It is found
that slip-avalanches are characterized by wide power-law tails
of the transition rate, and remarkably, the transition rates are
uniquely determined by a q-Gaussian distribution, Eq. (3). This
is in marked contrast to the avalanche-size distribution and the
PDF of contact forces and angles, where both are very sensitive to
the area fraction of the disks. Note that the transition rates under

∗∗Eq. (3) is a function of ∆ f and ∆θ . We show its three-dimensional plot in ESI†.
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(de)compressions are well scaled by the ratio between the incre-
ment of area fraction, δφ , and the proximity to jamming, φ −φJ ,
i.e. δφ/(φ −φJ)

32, which is not the case for the simple shear de-
formations studied here, because the area fraction is a conserved
quantity, δφ = 0.

Because the transition rates can be used for the master equa-
tion (2), it is possible to predict the development of the shear
stress by solving the master equation. Therefore, our numeri-
cal findings are useful for theoretical predictions of the rheol-
ogy and mechanics of amorphous solids41,42 or non-Newtonian
(yield-stress) fluids in general2. In this study, however, we did
not analyze the cases of opening (breaking) contacts, f ′→ 0, and
closing contacts, 0→ f . These contact changes43,44 will introduce
additional transition rates, i.e. T (0|f′) and T (f|0), in the master
equation32, which are beyond the scope of this paper and will be
discussed elsewhere. In addition, data collapse of the transition
rates may be improved by including the weak coupling between
contact forces and angles, and other effects of the parameters, e.g.
strain increment, and conditions, e.g. fixed stress instead of fixed
volume boundary conditions, more carefully. Because we per-
formed quasi-static deformations, the shear rate is approximately
zero, γ̇ → 0, such that our results do not include any dynamical
effects. Thus, it is interesting to study also the dependence of
transition rates on finite shear rates, γ̇ > 045,46. Furthermore, it is
important to investigate the effects of realistic interaction forces,
e.g. friction39 and cohesive forces47, on the transition rates and
three-dimensional analyses are crucial to practical applications of
this study.
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by transition rates which have a link to avalanche-size distributions.

Page 6 of 6Soft Matter


