Phase behavior of main-chain liquid crystalline polymer networks synthesized by alkyne-azide cycloaddition chemistry

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Soft Matter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>SM-ART-09-2018-001913.R2</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Paper</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>09-Nov-2018</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | Wang, Yongjian; University of Connecticut, Chemical and Biomolecular Engineering
Burke, Kelly; University of Connecticut, Chemical and Biomolecular Engineering; University of Connecticut, Polymer Program, Institute of Materials Science; University of Connecticut, Biomedical Engineering |
1. Introduction

Liquid crystalline (LC) polymer networks (LCNs) are crosslinked macromolecules that organize into ordered phases at conditions that are dependent on chemical composition and polymer structure. Ordering induces phase-dependent properties in the network and is driven by molecules called mesogens that can be incorporated directly in the polymer backbone (main-chain LC) or as a pendant group (side-chain LC). In the absence of LC ordering, the networks behave like isotropic networks with properties (e.g. strength and extensibility) that are dependent on crosslink density. Upon formation of an ordered phase, the LCN’s mechanical and optical properties can be very different than isotropic networks, and switching between phases can be repeated without inducing degradation for some compositions. A key LCN behavior enabled by this switching is actuation, which is the reversible extension and contraction of a LCN when forming liquid crystalline (LC) and isotropic phases, respectively, under applied stress. The stress and stimuli required to induce actuation, as well as the change in dimensions that result, are determined by material design. Actuation was first proposed by de Gennes, who was subsequently demonstrated for both side-chain and main-chain LCNs, and has been augmented by experiment, theory, and simulation to reveal design principles for actuating networks. More recently, shape changing has been reported in more than one direction, including the bending of films and cantilevers, closure of apertures, wrinkling and other topographical changes, and 3D origami. These more complex shape changes have resulted from advances in methods to control molecular orientation and, in some cases, combining LC materials with other non-actuating materials in novel ways.

Because of the inherent link between molecular scale organization and macroscopic properties, as well as the ability to control mesogen orientation using advanced synthetic and processing techniques, LCNs have been desired for potential applications as valves, topographical displays, and artificial muscles for soft robotics. More recently, LCNs blended with materials that enable Joule heating for material actuation near 37°C, without requiring significant heating of the surroundings. These materials have been
demonstrated compatible with cells for in vitro culture, where they are of interest for their ability to stretch and contract like muscle. Other liquid crystal network compositions have also been shown to be compatible with cells, but the cellular compatibility of main-chain polymer-based LCNs prepared using alkyne-azole Click chemistry has not been reported. One challenge with existing LCN compositions used for culture matrices is that their chemistries are not as readily adaptable to include biological molecules, such as peptides that are often amine, carboxyl, thiol, N-hydroxysuccinimide (NHS), maleimide, or azide-terminated. While necessary for use as a culture substrate, being able to incorporate protein sequences that assist in cell attachment or enzymatic degradation of the material would allow for functionality that may enhance the relevance of these synthetic substrates. The closest platform that is most readily adapted to incorporate such building blocks are the thiol-alkene (hereafter: thi-ene) “Click” syntheses. While highly efficient and powerful due to the ability to afford spatial control over polymerization of the free radical initiator and exposure to either heat or ultraviolet (UV) light. Recent data suggests that carefull selection of free radical initiator may be the most important factor to limiting toxicity from radical chemistries. This work sought to investigate an alternative approach: the synthesis of LCNs using alkyne-azole cycloaddition (AAC) chemistry using polyether spacers. The polyether spacers were included for their ability to associate with water, which may facilitate transport of materials in aqueous environments and increase a LCN’s utility in biological applications. This work reports on the synthesis and characterization of main-chain LCNs using alkyne-azole cycloaddition (AAC) “Click” chemistry, selected for its efficiency and lack of byproduct formation under mild reaction conditions. Click reactions have been conducted at room temperature as well as with or without a catalyst, depending on the solvent and type of alkyne employed. Here, alkyne-terminated mesogens were polymerized with azide-terminated polyether segments to allow some flexibility in the polymer chain. Two polymerizations were investigated in this work: poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO). The length and chemical composition of the polyether segments was varied because it was anticipated that a certain amount of flexibility would be required to promote LC organization, but that too long of a segment may hinder LC phase formation by allowing the polyether to crystallize or providing too much chain entropy that the LC phase would not form successfully. Recent work supports this reasoning, having shown that PEO crystallizes in networks prepared by polymerizing PEO dithiol (molecular weight (Mw) ~1500 Da) with alkyne-terminated mesogens, and that lower molecular PEO dithiol (Mw ~182 Da) does not crystallize when polymerized with acrylate-terminated mesogens. All the LCEs in this work were synthesized in dimethylformamide (DMF), at room temperature, and without the need for ultraviolet (UV) light or heating, which may be advantageous for incorporation of more sensitive molecules. Two different LC monomers (mesogens) (SyH and SyMe) and one non-LC monomer (SyTe) were polymerized with different polyether spacers (PEO and PPO) and a polyether crosslinker to generate networks. The thermal, mechanical, and microstructural properties were characterized to elucidate mesogen organization and phase behavior in these soft networks. This work is synthetically distinct from previous reports of LCNs prepared using polyether spacers in several ways: the synthetic platform used, the compositions of mesogens, and the chemical composition and length of the polyether chain extenders, and the characterization described reveals distinct properties based on these composition differences. Further, the workup developed is a way to reduce the toxicity of the networks and suggests compatibility with cells, though more extensive characterization on this is the subject of current study. Ultimately, this work seeks to lay the synthetic groundwork to a new synthetic platform for LCNs that can be adapted to include biological molecules, which may increase their utility in biological and environmental applications.

2. Experimental

2.1 Reagents.

4-hydroxybenzoic acid (99%), 5-chloro-1-pentynyl (98%), hydroquinone (99%), methyl hydroquinone (99%), anhydrous dichloromethane (DCM, 99.8%), 1,3-dicyclohexylcarbodiimide (99%), 4-(dimethylamino)pyridine (99%), potassium hydroxide (≥ 90%), copper(I) bromide (Cu(I)Br, 98%), N,N-dimethylformamide (DMF, ≥ 99.9%), triethylamine (≥ 99%), anhydrous pyridine (99.8%), 4-pentyn-1-ol (97%), terephthaloyl chloride (99%), anhydrous tetrahydrofuran (THF, ≥ 99.9%), sodium bicarbonate (≥ 99.5%), sodium azide (99.5%), poly(propylene oxide) (PPO, Mw~425 Da), deuterated chloroform (CDCl3, 99.8 atom%), and ethylenediaminetetraacetic acid (EDTA, ≥ 98.5%). All reagents were purchased from Millipore Sigma (Burlington, MA). Hydrochloric acid (ACS Plus grade), dichloromethane (DCM, 99.9%), methanol (CH3OH, 99.9%), hexanes (Certified), 2-propanol (99.9%), glacial acetic acid (Certified ACS Plus), ethyl acetate (99.8%), 6-bromohexanoyl chloride (97%), anhydrous magnesium sulfate (MgSO4, Certified), Dulbecco’s modified eagle medium (DMEM), Neutral Red (pure, high purity biological stain), fetal bovine serum (FBS, qualified), phosphate-buffered saline (PBS, 1x, sterile), and Antibiotic-Antimycotic (anti-anti, 100X) were purchased from Fisher Scientific (Waltham, MA). A tetrafunctional azide-terminated poly(ethylene oxide) (PEO) crosslinker (Mw~2000 Da, referred to here as PEO-tetraazide) was purchased from Creative PEGWorks (Chapel Hill, NC). PEO diazide chain extender with Mw~1000 Da (referred to here as PEOO-diazide) was also purchased from Creative PEGWorks (Chapel Hill, NC). PEO diazide chain extender with Mw~244 Da (referred to here as PEO3-diazide) was purchased from BroadPharm (San Diego, CA). Human mesenchymal stem cells (hMSC) derived from bone marrow (Passage 1) were a gift from Prof. David Kaplan of Tufts University and were expanded until used at Passage 5. Ultrapure 2 | J. Name., 2012, 00, 1-3
water (dH2O, 18 MOhm.cm) was obtained from an in-house system. Hydroquinone and methyl hydroquinone were purified by recrystallization in toluene (approx. 10g/L) to yield white crystals. Cu(I)Br was purified by washing with glacial acetic acid followed by 2-propanol. DMF was deoxygenated prior to the experiments by nitrogen bubbling for 2-3 h. All the other reagents were used as received.

2.2 Instruments.

Standard differential scanning calorimetry (DSC) experiments were performed on a TA Instruments Q100/Q20 DSC (New Castle, DE). The DSC data was collected by the Q Series Software (version 5.3.0) and analyzed by using the Universal Analysis software (version 4.5A) from TA Instruments (New Castle, DE). Dynamic mechanical analysis (DMA) experiments were performed on a DMA 2980 or a Q800 Dynamic Mechanical Analyzer from TA Instruments (New Castle, DE) using film tension clamps. The DMA data was collected with Thermal Advantage software (Version 1.1A) and analyzed using the Universal Analysis Software (version 4.5A), both from TA Instruments (New Castle, DE). Confirmation of the product of both reactions was a white solid with the yield of 55%. 1H NMR spectroscopy using a Bruker ADVANCE 300 MHz spectrometer and TopSpin 2.1 software from Bruker Corporation (Billericia, MA). MestReNova (Version 9.0) software from Mestrelab Research S.L. (Escondido, CA) was used to analyze NMR data. Small-angle X-ray scattering (SAXS) and 2D wide-angle X-ray scattering (WAXS) experiments were performed on an Xcalibur PX Ultra, and data was collected and analyzed using CrysAlisPro (Version 1.171) from Oxford Diffraction (Concord, MA). Voigt peak fitting was used to deconvolute 1D spectrum of WAXS patterns using OriginPro (Version 8.1) from OriginLab (Northampton, MA). The absorbance of the Neutral Red assay at 540 nm was measured using Synergy HT microplate reader and Gen5 are from BioTek Instruments (Winooski, VT).

2.3 Synthesis of Monomers and Chain Extenders.

2.3.1 Synthesis of Monomers. 1,4-phenyl[bis(4-pentylbenzoate)] (SyH) and (2-methyl-1,4-phenyl[bis(4-pentylbenzoate)]) (SyMe). SyH and SyMe are liquid crystalline monomers and were synthesized by modifying a previously published procedure. The method was modified by replacing 5-bromo-1-pentene with 5- chloro-1-pentyne to introduce alkyne functional groups to the monomers. SyMe was purified by running through a silica gel column (eluent: DCM), and SyH was purified by recrystallizing in a mixture of ethyl acetate and 2-propanol (70/30, volumetric ratio). The product of both reactions was a white solid with the structures shown in Figure 1. After purification, the yield of SyH was about 60.0% and the yield of SyMe was about 55%. 1H NMR in CDCl3 gave the following chemical shifts (δ) for SyH in ppm: 8.18(4H, m), 7.28(4H, m), 7.02(4H, m), 4.19(4H, t), 2.47(4H, m), 2.07(4H, m), 2.02(2H, t). 1H NMR in CDCl3 gave the following δ for SyMe in ppm: 8.18(4H, m), 7.06-7.23(3H, m), 6.96-7.06(4H, m), 4.19(4H, m), 2.46(4H, m), 2.27(3H, s), 1.98-2.13(6H, m).

1,4-bis(4-azidobutyl)benzoate (SyTe) is a non-liquid crystalline monomer and was synthesized by modifying a method described in literature71,72, where 4-pentyn-1-ol was used instead of 4-penten-1-ol to introduce alkyne functional groups to the monomers. Briefly, 4-pentyn-1-ol, terephthaloyl chloride, and pyridine were added into THF to react for 48h at 70°C, then the products were purified by extraction and washing. The product was white solid with yields typical of the literature. 1H NMR in CDCl3 gave the following δ in ppm: 8.12(4H, s), 4.84(4H, t), 2.42(4H, m), 2.10-1.94(6H, m).

2.3.2 Synthesis of Chain Extenders. Poly(propylene glycol) Bis-6-azidohexanoate (PP07-diazide chain extender) was synthesized by modifying a procedure from literature to accommodate a lower molecular weight PPO chain as the starting material73. Briefly, the hydroxyl-terminated PPO was modified using 6-bromohexanoic acid to be bromo-terminated. Sodium azide was subsequently used to replace bromine with azide. The product was used by extraction and washing. The product was clear oil and yield was about 58.3%. 1H NMR in CDCl3 gave the following δ in ppm: 3.75-3.10(24H, m), 2.51-2.24(3H, m), 1.71-1.56(8H, m), 1.48-1.33(4H, m), 1.27-1.07(21H, m). The other two chain extenders, PEO3-diazide and PEO20-diazide, were purchased and used as received (see Reagents).
component relative to one mole of PEO-tetraazide crosslinker in the reacting solution. As an example, N-5yMe-PEO₃,₄ was synthesized using six moles of SyMe and four moles of PEO₃-diaide per one mole of PEO-tetraazide crosslinker.

All networks were synthesized using the same concentration of reagents and catalysts in DMF, hence the synthesis of N-5yMe-PEO₃,₄ is described as a representative example. SyMe (63.54 mg, 0.1281 mmol) was weighed into a 25mL Schlenk flask and purged with nitrogen gas for 2 min. Deoxygenated DMF (0.35 mL) was added to the flask to dissolve the mesogen. After dissolution, the vessel was quickly opened to add the PEO₃-azide (0.0854 mmol, 20 μL). The vessel was then purged to remove oxygen, and the mixture was stirred until the PEO₃-azide dissolved. PEO-tetraazide (0.02135 mmol, 73 μL) was added to the flask the same way. Cu(I)Br (10 mg, 0.07 mmol) was then dissolved in 0.15 mL deoxygenated DMF, which was subsequently injected through a septum and into the flask. The reacting mixture was purged for 3 min before transferring to a mold consisting of two glass slides separated by a polytetrafluoroethylene spacer (mold area: 65.0 mm length x 18.0 mm width x 300 μm thickness). The solution was allowed to react at room temperature for 24 h. Samples were demolded and vacuum dried at 60°C overnight to result in a crosslinked film.

2.5 Removal of Copper Catalyst and Extraction of Soluble Polymer.

All networks were extracted three times for 6h each using DMF, and then extracted three times for 6h each using 0.1M EDTA/H₂O solution to remove copper catalyst. The networks were weighed before and after extraction, and network gel fraction was calculated by dividing the post-extraction mass by the pre-extraction mass.

2.6 Characterization Methods.

To measure thermal transitions, monomers and films were encapsulated within aluminum pans for Differential Scanning Calorimetry (DSC). Samples were subjected to the following thermal program: cool to ~80°C, hold for 2 min, heat to the isotropic phase at 10°C/min, hold for 2 min, cool once again to ~80°C at 10°C/min, and hold for 2 min. The cycle was then repeated, and the second heating and cooling traces were studied to compare samples with uniform thermal history. POM samples were prepared by drop casting a solution of monomer (1% in DCM) onto clean glass coverslips and allowing it to dry in a fume hood. Samples were then heated to the isotropic, held for 5 min, and then cooled back to ~20°C at 10°C/min using the microscope’s heating/cooling stage. Images were acquired with the microsecond heating/cooling stage, the rate of each was 10°C/min to match the rate of DSC.

Storage modulus and loss modulus were measured as a function of temperature using a Dynamic Mechanical Analyzer (DMA). Films (typical size: 10 mm length x 2.0 mm width x 0.2 mm thickness) were mounted in the instrument, and the samples were oscillated at a prescribed amplitude (10 μm) and frequency (1 Hz) while heating from ~70°C to 150°C at 3°C/min. Two-way shape memory (actuation cycles) were also performed on a DMA by operating the instrument in controlled force mode. For these experiments, films were loaded into the tensile clamps and heated to the isotropic phase before a static load was applied. The film was then cooled under constant load to ~60°C and held for a brief isothermal (5 min) before heating back to the isotropic phase. Both heating and cooling rates were 3°C/min. The load was increased for subsequent cycles.

Wide-Angle X-ray Scattering (WAXS) and Small-Angle X-ray Scattering (SAXS) were both performed at room temperature on samples that were previously heated to the isotropic and cooled back to room temperature to erase thermal history. Exposure times were 30 minutes for dry samples and one hour for hydrated samples. For SAXS acquired at different temperatures, samples were heated to the temperature of interest at 5°C/min and held for 10 min to ensure temperature uniformity before acquiring the data.

A Neutral Red assay was used to quantify cytotoxicity⁴ of the extracted networks. Films of LC and non-LC networks (size: 10 mm length x 10 mm width x 0.2 mm thickness) were sterilized by soaking in 70% ethanol overnight and were then washed three times using sterile PBS. After washing and drying, each sample was soaked in 0.24 mL complete medium (89% DMEM, 10% FB5, and 1% anti-anti) for 72 hours in a sterile 48-well plate (Plate 1) to allow leachable materials to enter the medium. Human mesenchymal stem cells (hMSCs, P5) were seeded onto a second 48-well plate (Plate 2) at 15,000 cells/cm² for the experimental and control groups. Separate wells containing varying amounts of hMSCs were also seeded for a standard curve. The cells were incubated (37°C, 5% CO₂) in fresh complete medium overnight prior to the start of the assay. Medium, which had been soaking with the networks (experimental group) or the tissue culture plate (positive control for viability) for 72 hours, was then transferred from Plate 1 to Plate 2. Medium containing Triton X-100 was added to separate wells for a negative control for cell viability. The cells were returned to the incubator and after 24 hours, 0.12 mL of a Neutral Red stock solution (4 mg/ml in PBS) was added into 12 mL complete medium to make a Neutral Red working solution. Cells were stained with the working solution for three hours at 37°C and 5% CO₂. The working solution was then removed, and the wells were washed with PBS three times to remove residual stain. Cells were destained at room temperature by adding 0.19 mL/well destaining solution (5 mL deionized water, 5 mL ethanol, and 0.1 mL acetic acid) and applying gentle rocking for 10 minutes. The supernatant was transferred to a 96 well plate to measure the absorbance of Neutral Red at 540 nm, where higher values indicated the presence of more live cells. Means and standard deviations of replicates are reported. One-way analysis of a variance (ANOVA) with a Holm-Sidak Post-test was used to generate comparisons between groups. Significance was determined at a level of α = 0.05.

3. Results and discussion

3.1 Synthesis of Networks.

The synthesis of liquid crystalline networks (LCNs) is shown in Scheme 1. Non-liquid crystalline networks were prepared similarly, except the non-LC monomer, SyTe, was used in place...
of the LC monomers (5yH or 5yMe). All components were dissolved in deoxygenated DMF, and the homogeneous solution was injected into a two-part glass mold to provide uniform film thickness. The crosslinked film was demolded after reacting 24h at room temperature. All films were extracted, as described in the Experimental Section, prior to analysis to remove any soluble components. Gel fraction was measured in triplicate for the 5yH and 5yMe networks. Visual inspection shows that LC networks are polydomain. No alignment technique was applied to the films, and all LC films are translucent, and that the non-LC films are always exceeded 85.0%, indicating successful network formation. No alignment technique was applied to the films, though this was not quantified with scattering equipment.

3.2 Phase Behavior of Monomers.

Differential scanning calorimetry (DSC) and Polarized Optical Microscopy (POM) were used to detect transitions of the liquid crystalline monomers. Two monomers were investigated to provide opportunity for tailoring of LC phase stability in the dry and hydrated states. The thermal transitions of 5yMe and 5yH were studied using DSC, and their second heating traces and cooling traces (both 10°C/min) are shown in Supplementary Information (SI) (Figure S1). POM images, shown in SI Figure S2, were acquired upon cooling the samples from the isotropic to -20°C at 10°C/min for 5yMe and 5yH. Upon cooling from the isotropic, birefringence was observed with threaded nematic LC texture. Further cooling resulted in crystallization of the monomer, as indicated by a birefringent “feather-like” crystal. These transitions were consistent with the transitions observed in the DSC (Fig. S1). The temperatures and latent heat values for each transition are summarized in Table 1. Switching the substitution on the mesogen’s central group was injected into a two-part glass mold to provide uniform film thickness. The crosslinked film was demolded after reacting 24h at room temperature. All films were extracted, as described in the Experimental Section, prior to analysis to remove any soluble components. Gel fraction was measured in triplicate for the 5yH and 5yMe networks. Visual inspection shows that LC networks are polydomain. No alignment technique was applied to the films, and all LC films are translucent, and that the non-LC films are always exceeded 85.0%, indicating successful network formation. No alignment technique was applied to the films, though this was not quantified with scattering equipment.

3.3 Thermomechanical Characterization of Networks.

This section describes the impact of mesogen and polyether chain extender composition on the phase behavior and transitions of crosslinked networks. Specifically, chain extenders were varied to produce networks that favor strong LC phase formation, even when hydrated, and that do not result in chain extender crystallization. Mesogens were varied because tuning their ability to organize enables the synthesis of networks that display liquid crystallinity using different chain extenders, including extenders with pendant groups (PPO) and larger molecular weights (PEO). DSC data is discussed first and is followed by DMA data. Networks are named by their composition using the convention noted previously, where the prefix N- denotes a crosslinked network and the subscript denotes the number of moles of that component relative to one mole of PEO-tetraazide crosslinker. As an example, N-5yH6-PEO7 was synthesized using six moles of 5yH and four moles of PPO7-diazide per one mole of PEO-tetraazide crosslinker.

Figure 2 shows representative second heating traces acquired using DSC of networks prepared from 5yMe (Fig. 2a) and 5yH (Fig. 2b). All networks analyzed (Fig. 2a, 2b, and SI Fig. S3 for 5yH-based networks) showed stepwise decrease in the latent heat associated with the LC to isotropic transition in the second heating trace, though one was observed in the first heating trace (see Supplementary Information, Fig S4). This suggests that LC ordering in the 5yMe networks is either too weak to detect using standard DSC or that the ordering may require additional time to develop in these compositions. Mechanical testing and WAXS both suggest that these materials do form LC phases, as shown later. Neither N-5yMe4-PEO20 (Fig 2a, trace iii) nor N-5yMe4-PPO7 (Supplementary Info, Fig SS) form LC phases that are detectable using DSC or dynamic mechanical analysis. The loss of LC structure in 5yMe-PEO20 and 5yMe-PPO7 networks may be due to the higher molecular weight of the monomer, as measured by DSC.

Table. 1	Temperatures of crystallization (cry), recrystallization (recr), melting (melt), isotropization (iso), and anisotropization (aniso) for 5yH and 5yMe monomers, as measured by DSC. Latent heats of each transition located in parentheses.				
	T_{cry}, °C	T_{rec}, °C	T_{melt}, °C	T_{iso}, °C	T_{aniso}, °C
	(ΔH, J/g) (heating)	(ΔH, J/g) (cooling)	(ΔH, J/g) (heating)	(ΔH, J/g) (heating)	(ΔH, J/g) (cooling)
5yH	65.0	76.1	123	227	226
	(10.4)	(63.4)	(95.3)	(3.99)	(3.49)
5yMe	21.9	50.0	133	172	171
	(1.48)	(60.4)	(86.8)	(3.65)	(3.54)

Literature trends that increasing the bulkiness of lateral substitutions on mesogens can reduce the propensity of the molecule to crystallize and the stability of its liquid crystalline mesophase. Additionally, both mesogens show similar phase behaviour to previously reported alkene-terminated mesogens.

Scheme 1. Scheme of LC network synthesis using mesogens, PEO-diazide spacers, and a PEO-tetraazide crosslinker by click coupling. (i) CuBr, DMF, 25°C. R=H for 5yH and R=CH$_3$ for 5yMe.
weight of the polyether spacers and/or the weaker interaction strength between \(5\text{yMe}\) mesogens compared to the \(5\text{yH}\) mesogens. The kinetics of LC phase development in those materials are currently under investigation.

In contrast to \(5\text{yMe}\) networks, the DSC results from \(5\text{yH}\) networks show endothermic transitions at higher temperatures than the glass transition (\(T_g\) is around -37 to -30°C for all \(5\text{yH}\) networks) in the second heating trace (Fig 2b, traces i-iv). These endotherms are located between 53°C and 122°C. Due to the fact that these temperatures are well above the crystallization temperature of PEO, and the fact that PPO does not crystallize, these transitions are attributed to LC ordering within the network. This conclusion is further supported by analysis of all the films showed a dramatic stepwise decrease from -30°C to 30°C. In all of the films, the step starts around -30 to -25°C and its initiation is independent of mesogen and chain extender composition, which suggests that this is due to a glass transition.

Comparing the non-LC network (\(5\text{yTe}2\text{P}-\text{PEO3}\)) to the LC networks in Fig. 3a, the first stepwise decrease in storage modulus for all of the LC networks is broader and displays a shoulder on the higher temperature side of the transition (around 15°C). This transition has also been observed in the DMA traces of other LC materials presented in this manuscript.

The thermomechanical properties of LC networks were characterized using a dynamic mechanical analyzer (DMA) operated in tensile mode. Figure 3a shows the results from DMA testing of \(5\text{yH}\)-based networks prepared with different monomers (\(5\text{yH}, 5\text{yMe}, \) and \(5\text{yTe}\)) at constant crosslink density, and Figure 3b shows DMA results from \(5\text{yH}\)-based networks prepared with different spacers (\(5\text{yH}, 5\text{yP}, \) and \(5\text{yO}\)) where the molar ratio of reactants remained constant. The DMA results from \(5\text{yH}\) and \(5\text{yP}\)-based networks prepared at different crosslink densities using \(5\text{yMe}\) are shown in Supplementary Information (Figure S6). The storage modulus of all the films showed a dramatic stepwise decrease from -30°C to 30°C. In all of the films, the step starts around -30 to -25°C and its initiation is independent of mesogen and chain extender composition, which suggests that this is due to a glass transition.

Comparing the non-LC network (\(5\text{yTe}2\text{P}-\text{PEO3}\)) to the LC networks in Fig. 3a, the first stepwise decrease in storage modulus for all of the LC networks is broader and displays a shoulder on the higher temperature side of the transition (around 15°C). This transition has also been observed in the DMA traces of other LC materials presented in this manuscript. Selected linear polymers were synthesized and studied using DSC, where it was found that linear LC polymers had a glass transition around room temperature, but the non-LC polymer’s glass transition was -20°C (see SI Fig. S7). These linear polymers were prepared to gain an expectation of trends only, as literature shows that transition temperatures measured by DSC and DMA may not exactly match. The DMA data shown in Figure 3 are for crosslinked networks, therefore the LCN’s broad decrease in storage modulus can arise from different lengths of polymer...
chains between crosslinking points. Other possibilities may also explain the transition, such as small scale phase separation. Both of these could increase network heterogeneity, which can result in a distribution of glass transition temperatures and the observation of a broadened transition.

All films that contain mesogen show a second stepwise decrease in storage modulus at a higher temperature than the first transition (Fig. 3a and 3b). The step is consistent with the endotherm observed in the second heating DSC trace and is associated with crystallization of chain extender or crosslinker. Networks prepared with the non-LC monomer, SyTe (N-SyTe\textsubscript{p}-PEO\textsubscript{3} shown in Fig. 3a; N-SyTe\textsubscript{p}-PPO\textsubscript{7}, shown in SI Fig. 5B), lack this transition. This transition is thus attributed to the change in LC ordering and is the isotropization transition (T\textsubscript{IC}), where mesogens are organized into a LC phase below the T\textsubscript{IC} but are isotropic above this transition. The stepwise decrease in storage modulus upon passing through the isotropization transition has been demonstrated for many other LC network compositions (see Refs. 22 and 48 as examples).

LC networks with different mesogens are compared in Figure 3a. Unlike DSC data, the isotropization transition can be observed using DMA for N-SyMe\textsubscript{p}-PEO\textsubscript{3}, which suggests that DMA measurements are more sensitive for detecting network isotropization, a finding that is consistent with siloxane-based LC elastomers prepared using a mesogen with similar structure to SyMe30. N-SyH\textsubscript{p}-PEO\textsubscript{3} displays a higher T\textsubscript{IC} than N-SyMe\textsubscript{p}-PEO\textsubscript{3} because SyH forms more stable LC phases than SyMe. As long as the network is liquid crystalline, this trend was observed when controlling for chain extender and crosslink density. The stepwise transition temperature initiated around -30 to -25°C is not affected by the change in mesogen and also appears in non-liquid crystalline SyTe-networks, both of which supports that this transition is due to a glass transition (T\textsubscript{g}).

The DMA results of LC networks prepared using SyH and different chain extenders are shown in Figure 3b. Two strong stepwise decreases in the storage modulus signal can be observed for all SyH networks. The decrease in storage modulus at higher temperature indicates isotropization of SyH networks, and the broad decrease at lower temperature is attributed to the glass transition. Comparing the three different chain extenders, N-SyH\textsubscript{p}-PEO\textsubscript{20} shows the lowest isotropization temperature in SyH networks, suggesting again that the PEO\textsubscript{20} spacer results in the formation of the weakest LC phase compared to the networks formed with the PEO\textsubscript{3} and PPO\textsubscript{7} spacers, a finding that is consistent with DSC results. Finally, LC networks with different crosslink density were prepared (shown in Supplementary Information Figure 5E). For SyMe networks, it is noted that a strong stepwise decrease in storage modulus at 90°C was observed for N-SyMe\textsubscript{p}-PEO\textsubscript{3}, but this transition is weaker in N-SyMe\textsubscript{p}-PEO\textsubscript{10}. This difficulty in detecting a strong signal of isotropization in DMA for N-SyMe\textsubscript{p}-PEO\textsubscript{3}, the lowest crosslink density material studied here, suggests that the increase in chain mobility supersedes the increase in concentration of mesogens relative to crosslinker content in SyMe-based networks. Despite difficulty detecting isotropization using the DMA, N-SyMe\textsubscript{p}-PEO\textsubscript{3} is thought to form liquid crystalline phases because mesogen ordering was observed in X-ray scattering data and the material does display thermomechanical actuation behavior. In contrast, over the range of crosslink densities studied, all SyH networks displayed strong LC phases (Supplementary Information Fig. 5E). Decreasing crosslink densities studied, all SyH networks displayed strong LC phases (Supplementary Information Fig. 5E). Decreasing crosslink densities, all SyH networks displayed strong LC phases (Supplementary Information Fig. 5E).

Table 2 summarizes the transition temperatures from DSC and DMA. In DMA, both the glass transition and the isotropization transition were determined from the position of

<table>
<thead>
<tr>
<th>Material</th>
<th>T\textsubscript{IC} °C</th>
<th>T\textsubscript{g} °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-SyMe\textsubscript{p}-PEO\textsubscript{3}</td>
<td>90.2</td>
<td>Not Obs.</td>
</tr>
<tr>
<td>N-SyMe\textsubscript{p}-PEO\textsubscript{10}</td>
<td>98.2</td>
<td>Not Obs.</td>
</tr>
<tr>
<td>N-SyH\textsubscript{p}-PEO\textsubscript{3}</td>
<td>130</td>
<td>123</td>
</tr>
<tr>
<td>N-SyH\textsubscript{p}-PPO\textsubscript{7}</td>
<td>91.0</td>
<td>85.9</td>
</tr>
<tr>
<td>N-SyH\textsubscript{p}-PPO\textsubscript{10}</td>
<td>93.1</td>
<td>89.3</td>
</tr>
</tbody>
</table>

Fig. 3 (a) Tensile storage modulus and tan delta as a function of temperature for LCNs synthesized with different mesogens. (b) Tensile storage modulus and tan delta as a function of temperature for SyH-based networks synthesized with different spacers.
the peak in the tan delta trace. In DSC, both transitions were determined from the heating trace, where the glass transition temperature corresponds to the midpoint of the stepwise change in heat flow and the isotropization temperature corresponds to the minimum of the endothermic peak.

3.4 Actuation of Networks

Consistent with other liquid crystalline networks, the polyether LCNs were found to display thermomechanical actuation (two-way shape memory) around their order-disorder transition (Figure 4). Both chemically crosslinked semicrystalline and liquid crystalline networks have been shown to increase in length upon cooling through the crystallization (T_c) temperature and the isotropic-to-LC (T_{IC}) transition temperature, respectively. This behavior is reversible, thus contraction of the film occurs upon heating. In semicrystalline materials, this behavior\(^{81,82}\) has been attributed\(^{82}\) to crystallization along the strain axis. In nematic and smectic LC materials this has been attributed to distortion of the polymer chains away from a spherical-like conformation in the isotropic to an elliptical-like conformation due to the ordering of the LC phase\(^{83}\). In this work, actuation could arise due to liquid crystallinity or crystallization of PEO, but the onset temperatures for these should be very different because T_{IC} occurs at higher temperatures upon cooling than the crystallization of PEO. Similarly, the contraction upon becoming isotropic at T_{IC} should occur at higher temperatures than the melting transition (T_m) of PEO. PPO is not expected to crystallize and therefore any shape change in those materials is expected to arise from changes in mesogen ordering.

Strain versus temperature plots for the actuation experiments are shown in Figure 4 for N-SyMe$_6$PEO$_3$$_4$ (Fig. 4a), N-SyH$_6$PEO$_3$_4 (Fig. 4b), N-SyH$_6$PPO$_7$$_4$ (Fig. 4c), and N-SyH$_{12}$PEO$_3$_10 (Fig. 4d). All networks display actuation behavior, as evidenced by an elongation in the network upon cooling the film from the isotropic to an LC phase under constant load. As stress increases, the strain evolved during the actuation cycle increases for all networks (Fig 4a-d), a finding that is consistent with the literature. For all SyH networks (Fig 4b-d) and N-SyMe$_{12}$PEO$_3$_10 (shown in Supplementary Information Fig. S9), the temperature at which the shape change occurs (temperature at half actuation on heating trace), here termed the actuation temperature, is similar to the T_{IC} identified using DSC and the dynamic DMA experiments. A duplicate figure of Figure 4 with half-actuation temperature marked on the curves is provided in Supplementary Information (Figure S10). The half-actuation temperature and breadth between heating and cooling trace at half actuation are shown in Table 3 for films cycled under 75 kPa stress. It should be noticed that breadth of SyH-PEO3 is the smallest of the SyH networks, suggesting that it has the quickest induction of LC structure on cooling from the isotropic due to its strong liquid crystalline phase. Compared to previous reports of other LCNs, these transitions are relatively broad and this is attributed to high crosslink density, which can hinder mesogen ordering, and the polydomain structure of the networks that

![Fig. 4](image-url) Actuation (two-way shape memory cycles) of LCNs measured by DMA in controlled force mode. (a) N-SyMe$_6$PEO$_3$$_4$ (b) N-SyH$_6$PEO$_3$$_4$ (c) N-SyH$_6$PPO$_7$$_4$ (d) N-SyH$_{12}$PPO$_7$$_{10}$
will display smaller actuation strains compared to monodomain networks. In contrast, the actuation temperature of these studies. Next, WAXS was used to investigate the structure of the liquid crystalline networks. All LCN patterns show rings, even for the LC reflections. This is typical of polydomain LC materials, where LC order may be high within a domain but there is no overall ordering of domains so the reflections appear as rings.

3.5 Microstructural Characterization of Networks

Table 3 Comparison of transition temperatures for 75 kPa actuation cycle. The temperatures where the sample reached half of its maximum actuation strain on the heating and cooling cycles are shown. The breadth of the transition is the difference between those temperatures.

<table>
<thead>
<tr>
<th>Material</th>
<th>Temperature at Half Actuation (°C) (heating)</th>
<th>Temperature at Half Actuation (°C) (cooling)</th>
<th>Breadth of Transition (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-SyMe₆-PEO₃₄</td>
<td>53.4</td>
<td>29.0</td>
<td>24.4</td>
</tr>
<tr>
<td>N-SyH₆-PEO₃₄</td>
<td>140</td>
<td>121</td>
<td>18.9</td>
</tr>
<tr>
<td>N-SyH₆-PPO₇₄</td>
<td>86.5</td>
<td>41.9</td>
<td>44.6</td>
</tr>
<tr>
<td>N-SyH₁₂-PPO₇₁₀</td>
<td>98.5</td>
<td>59.5</td>
<td>39.0</td>
</tr>
</tbody>
</table>

The unique thermomechanical properties of LCNs are attributed to liquid crystalline microstructure, which was characterized by X-ray scattering. A series of non-liquid crystalline networks were first synthesized by reacting the non-LC monomer, 5yTe, with PEO₃ or PPO₇ chain extenders and crosslinking with PEO-tetrazide to establish the structure of isotropic networks. 2D WAXS patterns of N-SyTe₆-POE₃₄ and N-SyTe₆-PPO₇₄ are shown in Fig. 5a and Fig. 5b, respectively. Both patterns show only broad halos, indicating an amorphous and isotropic structure where PEO₃ and PPO₇ do not crystallize. Plots of intensity as a function of 20 are also shown in Fig. 5g-i, and these spectra were deconvoluted as described in the Experimental Section. Upon deconvolution, three peaks of N-SyTe₆-PEO₃₄ can be identified centered at 2θ of 17.3°, 20.8°, and 24.7°, which correspond to d-spacings of 5.12 Å, 4.26 Å, and 3.60 Å, respectively. For N-SyTe₆-PPO₇₄, three peaks can be identified centered at 2θ of 17.1°, 20.6° and 25.0°, which corresponds to d-spacings of 5.18 Å, 4.31 Å and 3.55 Å, respectively. These broad halos are attributed to amorphous spacings within the networks.

Fig. 5 2D wide angle X-ray scattering of: (a) N-SyTe₆-PEO₃₄, (b) N-SyTe₆-PPO₇₄, (c) N-SyMe₆-PEO₃₄, (d) N-SyH₆-PEO₃₄, (e) N-SyH₆-PPO₇₄, (f) N-SyH₁₂-PPO₇₁₀, and (g-i) Intensity vs 2θ traces obtained from the 2D patterns.
arise from a smectic layer structure. As the broad halos for 5yMe-PEO3 networks are similar to the WAXS pattern of the 5yTe-PEO3 networks, these halos are attributed to amorphous PEO. The WAXS pattern of N-5yMe3-PEO3 also shows the same result (data not shown), indicating that the reflections are not changing over this range in crosslink density. For networks containing the 5yH mesogen, the WAXS pattern of N-5yH2-PEO3a (Fig. 5d) shows four sharp rings centered at 2θ of 13.59° (d̄ = 4.52 Å), 9.86° (d̄ = 9.86 Å), 19.6° (d̄ = 4.53 Å), and 27.2° (d̄ = 3.27 Å). Both 5yH-PP07 films, N-5yHc-PP07a (Fig. 5e) and N-5yH2-PP07a (Fig. 5f), show four sharp rings centered at 9.71° (d̄ = 9.10 Å), 12.52° (d̄ = 7.07 Å), 19.56° (d̄ = 4.52 Å), and 27.15° (d̄ = 3.28 Å). Because N-5yHc-PP07a, N-5yH2-PP07a, and N-5yH2-PEO3a each have reflections with d-spacings around 4.52 Å and 3.28 Å, these reflections are thought to originate from spacing between 5yH mesogens. The other sharp rings with d-spacings around 1 nm are suspected to originate from a reflection associated with the smectic LC phase, but this a subject of current investigation. Finally, the broad halos observed in the 5yH-PEO3 (Fig 5d) and 5yH-PP07 (Fig. 5d, 5e, and 5f) patterns are attributed to the amorphous PEO and PPO chains within the network.

To investigate longer range ordering in these materials, room temperature small angle X-ray scattering (SAXS) was used. The patterns are shown and described in Supplementary Information (Figure S11). All SAXS patterns of LCNs show one broad halo, located between q=0.054-0.083 Å⁻¹ (d̄=11.57-7.57nm). These patterns indicating networks display long-range ordering, but that there is no overall alignment to this structure. This was again expected for the polydomain networks. SAXS measurements were also conducted at different temperatures (from -10°C to 100°C) to assess how ordering in the LC networks (LCNs) change as a function of temperature. All the tests were run while heating the films at 5°C/min and holding for 10 minute isothermals at the temperature of interest before acquiring the SAXS measurement. In Fig. 6a for N-5yMe3-PEO3a, the position and height of SAXS reflection did not change for temperatures under 20°C. Above 20°C, the peak’s position moved to lower q and its sharpness increased, as measured by peak width at half-maximum intensity, until the temperature reached 70°C, after which the peak disappeared. For N-5yHc-PEO3a (Fig. 6b), the peak did not change until heated through 25°C, but loss of the peak was not observed due to the instrument’s temperature limit. For N-5yH2-PP07a (Fig. 6c), the peak become more intense and shifted to lower q once heated above 0°C, and loss of the peak was observed between 90°C and 100°C. For these three LCN compositions, the positions where the SAXS peaks started to sharpen and shift (20°C for N-5yMe3-PEO3a, 25°C for N-5yHc-PEO3a, and 0°C for N-5yH2-PP07a) are consistent the higher temperature end of the first stepwise drop in storage modulus that was observed using DMA. Literature has shown that SAXS reflections of aqueous starch solutions shift to lower q and become sharper upon passing through the glass transition, thus this event, combined with DSC and DMA data, supports that this may be
tied an increase in chain mobility. For N-5yMe₆-PEO₃₄ and N-5yH₁₂-PPO₇₄ (Fig 6a and 6c), disappearance of the SAXS reflection occurred at a temperature that was consistent with the isotropization transition observed using DSC and DMA and supports that this is due to loss of LC ordering.

To better understand the type of LC microstructure present in 5yH PEO₃₄-based and PPO₇₄-based films, WAXS experiments were conducted on strained samples. For WAXS data collection, a mechanical stretching stage could not be used with the instrument employed because it would block the scattered X-rays. As an alternative approach, one-way shape memory (1WSM) was used to deform and fix 5yH network films in a strained state that was stable for room temperature WAXS experiments. Figure 7a shows a complete one-way shape memory cycle of N-5yH₁₂-PPO₇₁₀ where the sample could be stretched and fixed at 100% strain and then triggered to completely recover upon heating to the isotropic. A partial 1WSM cycle is shown in Fig. 7b and is representative of the sample preparation method for the strained WAXS experiments. In the partial 1WSM cycle shown, N-5yH₁₂-PPO₇₁₀ was stretched and fixed at 110% before heating back to room temperature and unloading the fixed, elongated specimen from the instrument. Compositions that were stable in the strained state (5yH-based networks) were immediately studied with WAXS. Unfortunately, due to the lower transition temperatures of the 5yMe-based networks, comparable analysis could not be completed without a cooling stage for the X-ray instrument due to the recovery of those compositions at room temperature.

WAXS of two strained networks, both 5yH-based but one prepared using PEO₃₄ and the other using PPO₇₄, are shown in Fig. 8 (strain axis vertical). N-5yH₆-PEO₃₄ (Fig. 8a,c) was fixed at 60% strain, and N-5yH₁₂-PPO₇₁₀ film was fixed at 140% strain (Fig. 8b,e). Initially, a N-5yH₆-PPO₇₁₀ film was fixed at 65% strain and analyzed for comparison to N-5yH₆-PPO₇₁₀ fixed at 60% strain. The reflections of N-5yH₆-PPO₇₁₀ fixed at 65% strain (see SI Fig. S12, S13) were found to orient in the same direction as N-5yH₆-PEO₃₄ fixed at 60% strain, but the splitting of the WAXS pattern was not easily discerned and therefore samples fixed at larger strains were desired for study. Unfortunately, N-5yH₁₂-PPO₇₁₀ fixed at double the strain was challenging to accomplish in practice due to its softness. Applying lower stresses to N-5yH₁₂-PPO₇₁₀, a 5yH-PPO network with lower crosslink density, was found to permit preparation of the more elongated specimens. Specifically, N-5yH₁₂-PPO₇₁₀ film was fixed at 140% strain and found to orient in the same direction as N-5yH₆-PPO₇₁₀ fixed at 65% strain as well as to display clearer splitting of reflections. The X-ray data suggests that both 5yH-PPO and 5yH-PEO networks form smectic phases. Specifically, the WAXS pattern of stretched N-5yH₆-PEO₃₄ (60% strain) shown in Fig. 8a indicates that the reflection splits into four points at 2θ of 6.50° (d₁=13.59 Å) and 8.96° (d₂=9.86 Å) and 27.2° (d₃=3.28 Å). The WAXS pattern of N-5yH₁₂-PPO₇₁₀ (Fig. 8b) shows four point pattern for the reflections located at 2θ of 9.71° (d₁=9.01 Å) and 12.5° (d₂=7.06 Å). The azimuthal scans are shown in SI for N-5yH₆-PEO₃₄ (Fig. S14) and N-5yH₁₂-PPO₇₁₀ (Fig. S15). This four point splitting pattern suggests that the mesogens order into a smectic-C structure. Other polyether-based LCNs reported in literature form nematic and smectic LC phases. For the SAXS patterns, N-5yH₆-PEO₃₄ (Fig. 8d) shows the reflection at q=0.061Å⁻¹ (d=10.3nm) splits into four points. The reflection at q=0.065 Å⁻¹ (d=9.7nm) of N-5yH₁₂-PPO₇₁₀ (Fig. 8e) also splits into four parts along the meridian. The splitting is less evident in the N-5yH₁₂-PPO₇₁₀, but this is attributed to the lower crosslink density which may require stretching to larger strains to orient this material (not possible here due to the travel limit of the instrument). Combining the WAXS and SAXS results, both N-5yH₆-PEO₃₄ and N-5yH₁₂-PPO₇₁₀ are thought to form a smectic-C structure. As described above, this analysis could not be completed on networks based on 5yMe with PEO₃₄ and 5yMe with PPO₇₁₀ because of material recovery near room temperature.

This work used copper-catalyzed alkylene-azide cycloaddition to prepare LC networks. While this approach afforded some synthetic benefits compared other synthetic routes to LCNs, most notably slower kinetics and increased tolerance to moisture compared to LCNs synthesized by hydrosilylation, it is recognized that copper is a known antimicrobial and that copper leaching is hazardous to the environment and biological organisms. Additionally, use of these materials in a hydrated form requires them to maintain their LC phases even when hydrated. Previous work has shown that mesogens similar to 5yMe polymerized with PEO chain extenders form LC phases, but that the LC phase is difficult to detect using conventional DSC and DMA. Torbati and Mather observed that the LC phase of a PEO-based LCN became more evident using X-ray scattering when the networks were hydrated, which was attributed to water promoting phase separation and mesogen association. In this work, the LC phases were strong even in the dry phase, but it was realized that materials could swell and that this could destroy LC organization. Importantly, this was not found, as data showed that LC structures in SAXS were
Fig. 9 1D SAXS pattern of hydrated and dry LCNs at 25°C: (a) N-5yH₆-PPO7₆, (b) N-5yH₆-PEO3₄, and (c) N-5yH₆-PEO20₆. All LCNs showed long-range ordered structure.

4. Conclusions

We have reported the synthesis of PEO and PPO-based main-chain liquid crystalline networks using copper-catalyzed “Click” chemistry. Microstructure and thermomechanical properties were characterized by DSC, DMA, and X-ray scattering. The polyether spacers selected for study were lower in molecular weight (PEO) and/or different in composition (PPO) than other polyether spacers previously reported for LCNs, as this was anticipated to reduce the likelihood that the spacer would crystallize and disrupt LC phase formation. For all compositions investigated, spacer crystallization was not observed, and no difference in toxicity towards human mesenchymal stem cells was observed relative to tissue culture plastic.

Networks synthesized using the 5yH mesogen formed LC phases for all polyether spacers studied, but 5yMe-based networks only formed LC phases when the shortest PEO spacer was used. The strength of the LC phase in the 5yH-based
networks is evidenced by the ability to detect isotropization using both differential scanning calorimetry and dynamic mechanical analysis, a feature not present in the SyMe-based networks reported here and by others. For SyH-PEO and SyH-PPO networks, X-ray scattering of strained samples fixed using one way-shape memory revealed that the networks form smectic phases. However, it is not clear if the SyMe-based networks that form LC phases are also smectic due to instrument limitations. All SyH LC networks undergo reversible thermomechanical actuation (two-way shape memory) associated with the order-disorder transition of the networks. In contrast, SyMe-based networks underwent thermomechanical actuation around temperatures that are closer to the crystallization temperature of PEO. This suggests that order-disorder changes under strain in some compositions of SyMe networks may also be accompanied with PEO crystallization, but it is noted that this would need to be investigated using X-ray scattering coupled with heating and cooling under strain. Importantly, the strong LC phases present in the materials reported result in stable LC phases both in the dry and hydrated states. Combining the strong LC phases with low cytotoxicity in these networks is expected to enable their use as hydrated and responsive substrates for environmental and biological applications.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The authors wish to thank the University of Connecticut for supporting this work through the Research Excellence Program and Burke Laboratory start-up funds. Small and Wide Angle X-ray data was collected on a Bruker NANOSTAR that was acquired through a Major Research Instrumentation award from National Science Foundation (DMR 1228817). The authors also wish to thank Dr. Kuo-Chih Shih (Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan, R. O. C.) for insightful discussions and assistance interpreting small angle X-ray scattering data. Finally, the authors wish to thank Prof. David Kaplan, Biomedical Engineering, Tufts University for the generous gift of a vial of human mesenchymal stem cells.

References

(20) Sanchez-Ferrer, A.; Finkelmann, H. Thermal and...

(33) Ware, T. H.; McConney, M. E.; Wie, J. J.; Tondiglia, V. P.; White, T. J. Voxelated Liquid Crystal Elastomers. *Science (80-.).* **2015**, *347* (6225), 982–984.

Saed, M. O.; Torbati, A. H.; Starr, C. A.; Visvanathan, R.; Clark, N. A.; Yakacki, C. M. Thiol-Acrylate Main-Chain

(86) Burke, K. A.; Mather, P. T. Evolution of Microstructure during Shape Memory Cycling of a Main-Chain Liquid Crystalline Elastomer. *Polymer (Guildf).* 2013, 54, 2808–2820.
Tuning composition of main-chain liquid crystalline “Click” networks reveals long range order, even when hydrated, and shape morphing behaviors.