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The motion of topological defects is an important feature of the dynamics of all liquid crystals, and
is especially conspicuous in active liquid crystals. Understanding defect motion is a challenging
theoretical problem, because the dynamics of orientational order is coupled with backflow of the
fluid, and because a liquid crystal has several distinct viscosity coefficients. Here, we suggest a
coarse-grained, variational approach, which describes the motion of defects as effective “parti-
cles.” For passive liquid crystals, the theory shows how the drag depends on defect orientation,
and shows the coupling between translational and rotational motion. For active liquid crystals, the
theory provides an alternative way to describe motion induced by the activity coefficient.

1 Introduction
One important feature of the dynamics of liquid crystals is the mo-
tion of topological defects. In conventional, passive liquid crys-
tals, defects form when a disordered phase is quenched into a
more ordered phase, e.g., when isotropic is quenched into ne-
matic, or smectic-A into smectic-C. After the quench, defects of
opposite topological charge move together and annihilate each
other.1–11 Their motion is driven by the interaction among de-
fects, as well as by boundary conditions and applied fields. In ac-
tive liquid crystals, defects are constantly in motion, forming and
annihilating each other, driven by the activity of the underlying
medium.12–14 In particular, defects of topological change +1/2
move with a characteristic velocity, while defects of topological
charge −1/2 move diffusively.

To model the motion of topological defects, researchers have
used two types of theoretical approaches. First, and most fun-
damentally, one can use hydrodynamic equations to describe the
simultaneous evolution of the liquid crystal order and the flow
velocity fields throughout the system. For passive liquid crystals,
the hydrodynamic equations can be derived from Ericksen-Leslie
theory expressed in terms of the director field,15–18 or from Beris-
Edwards theory expressed in terms of the nematic order tensor.19

These equations can be solved numerically to obtain the liquid
crystal order and flow velocity as functions of position and time,
and these solutions can include the motion of defects.20,21 For
active liquid crystals, one can likewise construct hydrodynamic
equations, which include an extra term representing the activ-
ity.22–26 When these equations are solved for the liquid crystal
order and flow velocity, they show the formation, motion, and
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annihilation of defects.

As an alternative theoretical approach, one can model defects
as if they were effective “particles,” which move in response to
the total forces acting on them. This approach is more coarse-
grained than hydrodynamics, because it describes the motion in
terms of just a few degrees of freedom for each defect, while hy-
drodynamics describes liquid crystal order and flow velocity at
every point in the system. The forces on defects have been inves-
tigated by several researchers over many years, in the context of
passive liquid crystals. The elastic force was derived in a classic
calculation,27 which shows that the interaction energy scales log-
arithmically with the separation r between defects, and hence the
force scales as 1/r, in two dimensions (2D). The drag force was
first derived through a simple theory, which assumes small de-
fect velocity and neglects fluid flow, and thereby predicts a drag
coefficient diverging logarithmically with system size.28 Further
studies considered the possibility of larger defect velocity, so that
the divergence with system size is cut off by a velocity-dependent
length scale, leading to anomalous scaling of the drag with veloc-
ity.29–32 Other models included fluid flow, and hence found more
complex results for the drag, which is different for positive and
negative topological defects.33–35

In the context of active liquid crystals, several papers have used
the effective particle approach to predict the statistical mechanics
of defect formation, motion, and annihilation.36–40 This approach
has been generalized to the motion of topologically required de-
fects on the surface of a sphere.13 Those studies have shown that
active defects should not be regarded as just point particles, but
rather as oriented particles. In particular, defects of topological
charge +1/2 are surrounded by a comet-shaped director field,
and the orientation of the comet determines the direction of self-
propelled motion, while defects of topological charge −1/2 are
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surrounded by a triangular director field. Moreover, experimental
and numerical studies of systems with many defects have found
statistical order in the defect orientations.14 Motivated by those
results, Vromans and Giomi developed a formalism to describe
defect orientations by vectors,41 and we generalized the formal-
ism using tensors.42 Most recently, Shankar et al. derived the gen-
eral orientational dynamics of defects in active liquid crystals, and
used those results to predict the nonequilibrium defect unbinding
transition.43

The first purpose of this paper, in Section 2, is to apply the con-
cept of defect orientation to the dynamics of passive liquid crys-
tals. In our previous paper about defect orientations, we deter-
mined the effect of orientation on the elastic interaction between
defects in passive liquid crystals. This interaction generates elas-
tic forces and torques on the defects. Now, we investigate the
effect of orientation on drag forces and torques. We determine
what translational and orientational drag coefficients are allowed
by the symmetry of defects, and assess how translational drag
coefficients depend the relative angle between defect orientation
and velocity.

In the course of doing this calculation, we develop a formalism
for defect motion in passive liquid crystals based on the Rayleigh
dissipation function. We suggest that this formalism is partic-
ularly useful for coarse-graining the dissipative dynamics, from
the hydrodynamic level to the effective particle level, because the
same dissipation function can be expressed on either length scale.
On the hydrodynamic level, it can be written in terms of the liq-
uid crystal order and the flow velocity fields, with Ericksen-Leslie
viscosity coefficients. Similarly, on the effective particle level, it
can be written in terms of symmetry-allowed combinations of the
defect velocity and orientation vectors, with effective drag coef-
ficients. By comparing these expressions, we can determine how
the effective drag coefficients are related to Ericksen-Leslie vis-
cosity coefficients.

One result of this calculation is that some Ericksen-Leslie vis-
cosities give drag that is independent of defect orientation, while
other viscosities give drag that depends on defect orientation. An-
other result is that the drag on a positive topological charge is less
than drag on a negative topological charge because of backflow
effects, and hence positive topological charges move more rapidly,
in agreement with experiments5,6,8 and previous calculations us-
ing other methods.20,21,33–35 We provide an example of how this
method can be used to predict the motion of a defect in a channel,
driven by boundary conditions.

In Section 3, we apply the formalism based on the Rayleigh
dissipation function back to active liquid crystals. This calcula-
tion shows that activity can be represented by one extra term in
the dissipation function, either on the hydrodynamic level or the
effective particle level. Although this term is not positive-definite,
and hence is not exactly a dissipation, it plays the role of the
Rayleigh dissipation function in the equations of motion. Because
of this term, +1/2 defects move with a velocity proportional to the
activity coefficient, in the direction given by the defect orientation
vector. We construct two examples of how this method can pre-
dict the motion of a defect, driven by activity. We recognize that
these results for active liquid crystals are not new; they have been

(a) k = +1/2 (b) k = -1/2

Fig. 1 Examples of defects in a 2D nematic liquid crystal, with red
arrows indicating the defect orientation.

found through other approaches by Shankar et al.43 and previous
articles. Even so, we think it is useful to present them here, using
the formalism of the Rayleigh dissipation function and defect ori-
entation vector, because we find this approach to be intuitive and
other investigators might also.

Finally, in Section 4, we discuss these results, and consider the
prospects for extending them to other defects and textures in pas-
sive and active liquid crystals.

2 Passive liquid crystals
2.1 Statement of problem

In this work, we consider a 2D nematic liquid crystal. At each
point in the material, there is some orientational order, which
may be described by the director field n̂(r, t) or the nematic order
tensor Qi j(r, t), as well as a fluid flow velocity v(r, t). A full de-
scription of the dynamics must involve coupled partial differential
equations for orientational order and fluid flow velocity. Solving
these equations is a complex problem, which usually can only be
done numerically. Our goal is to provide a coarse-grained descrip-
tion of the dynamics in terms of a reduced number of degrees of
freedom associated with topological defects.

Suppose the liquid crystal has a topological defect at position
R(t) = (X(t),Y (t)). This defect is characterized by a topological
charge k, which is a half-integer or integer indicating how many
times the director rotates as one passes through a loop around
the defect. As discussed in recent papers,41,42 the defect is also
characterized by an orientation, which describes where the direc-
tor points radially outward from (or inward toward) the defect.
This orientation is defined up to rotations through an angle of
π/|1− k|. Hence, as we argued previously,42 the defect orienta-
tion in a nematic phase can be represented by a tensor of rank
2|1−k|. For topological charge k =+1/2, the defect orientation is
a unit vector p(t) = (cosΨ(t),sinΨ(t)), as illustrated by the arrow
in Fig. 1(a). For topological charge k = −1/2, the defect orien-
tation is a third-rank, completely symmetric tensor Ti jk(t), with
Txxx = −Txyy = −Tyxy = −Tyyx = 1

2 cos3Ψ and Txxy = Txyx = Tyxx =

−Tyyy =
1
2 sin3Ψ, as represented by the triad of arrows in Fig. 1(b).

Hence, the coarse-grained description should provide equations
of motion for X(t), Y (t), and Ψ(t).

For the static physics, there is a well-established procedure to
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go from the microscopic theory based on the director field n̂(r, t)
to the coarse-grained theory based on the defect degrees of free-
dom. In this procedure, one minimizes the Frank free energy,
subject to the constraint that topological defects are at specified
positions, and determines how the minimum free energy F de-
pends on the defect positions. This dependence gives an effective
interaction of defects with boundary conditions or with other de-
fects. Thus, a classic calculation shows that the interaction energy
scales logarithmically with the separation between defects.27 In
our previous paper,42 we generalized this procedure to include
defect orientation, and found that there is an extra interaction
energy if the defects do not have the optimal relative orienta-
tion. Hence, the elastic force acting on the position of a defect
is felastic = −∂F/∂R, and the elastic force acting on the defect
orientation is felastic =−∂F/∂Ψ.

For the dynamic physics, we need a procedure to go from
the microscopic theory based on the Ericksen-Leslie equations
for n̂(r, t) and v(r, t) to a coarse-grained theory based on defect
degrees of freedom. Here, we suggest an approach using the
Rayleigh dissipation function, which is a theoretical construction
representing half the rate of dissipating mechanical energy into
heat.

In most theoretical work, the fundamental hydrodynamic the-
ory is expressed in terms of the stress tensor. However, an alter-
native formulation of the same theory is expressed in terms of the
Rayleigh dissipation function. To our knowledge, this version of
the theory was first suggested by Vertogen,44,45 and related ideas
have been advocated by Sonnet and Virga46,47 and by Doi.48 This
approach begins by listing all of the modes that dissipate energy.
Next, the Rayleigh dissipation function is constructed as the most
general scalar that is allowed by symmetry, at quadratic order in
these modes. Finally, the drag forces are found by differentiating
the dissipation function with respect to the generalized velocities.

On a microscopic basis, there are two modes that dissipate
energy: the strain rate tensor, Ai j =

1
2 (∂iv j + ∂ jvi), and the di-

rector rotation with respect to the background fluid vorticity,
Ni = ṅi− 1

2 (∂ jvi− ∂iv j)n j. In terms of these two modes, the most
general quadratic dissipation function can be constructed as49

D =
∫

d2r
[

1
2

α4Ai jAi j +
1
2
(α5 +α6)niAi jA jknk +

1
2

α1(niAi jn j)
2

+
1
2

γ1NiNi + γ2NiAi jn j

]
. (1)

Here, the α coefficients are the Leslie viscosities for fluid flow.
Note that α4 is the isotropic viscosity, while the other terms pro-
vide corrections depending on the direction of the strain rate with
respect to the director. For a 2D incompressible flow (unlike 3D),
we have the identity 2niAi jA jknk = Ai jAi j, and hence the second
term is equivalent to the first.50 By comparison, γ1 is the rota-
tional viscosity for director rotation with respect the the back-
ground fluid vorticity. Finally, γ2 is the torsion coefficient, which
expresses a dissipative coupling between strain rate and director
rotation.

On a macroscopic basis, we can repeat the same type of anal-
ysis based purely on symmetry considerations. For a +1/2 de-

fect, there are two modes that dissipate energy: the translational
velocity Ṙ and the rotational velocity ṗ. In terms of those two
modes, the most general quadratic dissipation function can be
constructed as

D =
1
2

D1|Ṙ|2 +
1
2

D2(p · Ṙ)2 +
1
2

D3|ṗ|2 +D4ṗ · Ṙ. (2)

Here, D1 shows the energy dissipated by defect translation, and
D2 shows how that energy dissipation depends on the defect ori-
entation with respect to the velocity. Similarly, D3 shows the
energy dissipated by defect rotation, and D4 shows a dissipative
coupling between defect translation and rotation. This quadratic
form is positive-definite if D2

4 < D1D3. The drag force acting on
the defect position is

fdrag =−∂D
∂ Ṙ

=−D1Ṙ−D2p(p · Ṙ)−D4ṗ, (3)

and the drag force acting on the defect orientation is

fdrag =− ∂D
∂ Ψ̇

=−D3Ψ̇−D4p× Ṙ. (4)

Those forces can be combined into a matrix equation as f drag
x

f drag
y

f drag
Ψ

=−

D1 +D2 cos2 Ψ D2 cosΨsinΨ −D4 sinΨ

D2 cosΨsinΨ D1 +D2 sin2
Ψ D4 cosΨ

−D4 sinΨ D4 cosΨ D3


 ẋ

ẏ
Ψ̇

 .
(5)

If a translational or rotational force is applied to the defect, the
steady-state response is given by f app

i + f drag
i = 0, and hence ẋ

ẏ
Ψ̇

=

D1 +D2 cos2 Ψ D2 cosΨsinΨ −D4 sinΨ

D2 cosΨsinΨ D1 +D2 cos2 Ψ D4 cosΨ

−D4 sinΨ D4 cosΨ D3


−1 f app

x

f app
y

f app
Ψ

 .
(6)

Hence, a +1/2 defect responds to an applied force with a mobil-
ity tensor given by the inverse matrix in Eq. (6). This mobility
tensor has the same structure as that of a boomerang-shaped col-
loidal particle.51 In particular, we note that a translational force
can induce rotational motion, and a rotational force can induce
translational motion.

Similar considerations apply to a −1/2 defect. There are two
modes that dissipate energy: The translational velocity Ṙ and the
time derivative of the orientation tensor Ṫi jk. In terms of these
modes, most general quadratic dissipation function becomes

D =
1
2

D′1|Ṙ|2 +
1
2

D′3Ṫi jkṪi jk =
1
2

D′1|Ṙ|2 +
9
2

D′3Ψ̇
2, (7)

where D′1 shows the dissipation due to defect translation and D′3
shows the dissipation due to defect rotation. At quadratic order,
symmetry does not allow any couplings between translation and
orientation. Hence, the matrix equation for drag forces is simply f drag

x

f drag
y

f drag
Ψ

=−

D′1 0 0
0 D′1 0
0 0 9D′3


 ẋ

ẏ
Ψ̇

 , (8)
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and the steady-state response to an applied force is ẋ
ẏ
Ψ̇

=

D′1 0 0
0 D′1 0
0 0 9D′3


−1 f app

x

f app
y

f app
Ψ

 . (9)

As a result, a −1/2 defect has the mobility tensor given by the
inverse matrix in Eq. (9). Because that tensor is diagonal, a trans-
lational force induces only translational motion, and a rotational
force induces only rotational motion, at lowest order in the forces.

The matrix equations (6) and (9) can be used directly, with
the macroscopic D and D′ coefficients considered as purely phe-
nomenological parameters. However, one might want to deter-
mine these macroscopic coefficients in terms of the more micro-
scopic α and γ coefficients. That is the purpose of our coarse-
graining calculation in the following sections.

2.2 Minimal model

As a first step, we consider a defect moving at a specified velocity
with a fixed orientation. We want to calculate its dissipation from
microscopic theory, and compare the result with the calculation
from macroscopic theory. Although we use a minimal model, the
calculation is still rather lengthy. Readers who are mainly inter-
ested in the result rather than the method may wish to skip ahead
to Eq. (31).

Our minimal model of a 2D nematic liquid crystal is analogous
to the model of a hexatic liquid crystal considered by Kats et al.33

We make the approximation of equal Frank constants, so that the
Frank free energy becomes

F =
∫

d2r
[

1
2

K(∂in j)(∂in j)

]
. (10)

Similarly, we consider just two viscosity coefficients, the isotropic
fluid flow viscosity α4 and the rotational viscosity γ1, so that the
dissipation function becomes

D =
∫

d2r
[

1
2

α4Ai jAi j +
1
2

γ1NiNi

]
. (11)

The minimal model requires both α4 > 0 and γ1 > 0, so that the
system will have drag against shear flow and drag against direc-
tor rotation. The other viscosity coefficients represent more subtle
anisotropies in the viscous drag, and they will be added later as
perturbations. Note that the limit of α4 → ∞ corresponds to ori-
entational order in a material that cannot flow.

We write the director field as n̂ = (cosθ ,sinθ), so that the Frank
free energy simplifies to

F =
∫

d2r
[

1
2

K|∇θ |2
]
. (12)

Also, we assume that the material is incompressible, which im-
plies that ∂ivi = 0. Because of this constraint, the velocity field
can be written in terms of a stream function ψ(r, t) as vi = εi j∂ jψ,
where εi j is the 2D Levi-Civita symbol. The stream function ψ

is a standard concept in fluid mechanics, and should not be con-
fused with the defect orientation angle Ψ. In terms of the stream

function, the strain rate tensor becomes

Ai j =
1
2
(∂iv j +∂ jvi) =

1
2
(ε jk∂i∂kψ + εik∂ j∂kψ). (13)

Likewise, the background fluid vorticity becomes ω = 1
2 εi j∂iv j =

− 1
2 ∇2ψ, and the director rotation with respect to the background

fluid becomes

Ni = ṅi−ωε jin j = ∂tni + vk∂kni−ωε jin j

= ε jin j

[
∂tθ + εkl(∂kθ)(∂lψ)+

1
2

∇
2
ψ

]
. (14)

Here, the first term ṅi becomes a convective derivative, which
leads to the nonlinear coupling (∂kθ)(∂lψ). The dissipation func-
tion then simplifies to

D =
∫

d2r

[
1
2

α4

[
(∂i∂ jψ)(∂i∂ jψ)− 1

2
(∇2

ψ)2
]

+
1
2

γ1

[
∂tθ + εkl(∂kθ)(∂lψ)+

1
2

∇
2
ψ

]2
]
. (15)

From the free energy and the dissipation function, we can de-
rive the equations of motion for θ and ψ. For the director orien-
tation θ , the elastic force is −δF/δθ(r, t), and the drag force is
−δD/δ [∂tθ(r, t)]. Hence, the equation for overdamped motion is
that the forces must sum to zero,

0 =− δF
δθ(r, t)

− δD
δ [∂tθ(r, t)]

= K∇
2
θ − γ1

[
∂tθ + εkl(∂kθ)(∂lψ)+

1
2

∇
2
ψ

]
. (16)

For the generalized velocity ψ, the elastic force is zero, and the
drag force is −δD/δψ(r, t). Hence, the equation for overdamped
motion is that the drag force equals zero,

0 =− δD
δψ(r, t)

=−1
2

α4∇
4
ψ (17)

+ γ1

[
εi j(∂iθ)∂ j−

1
2

∇
2
][

∂tθ + εkl(∂kθ)(∂lψ)+
1
2

∇
2
ψ

]
.

These equations are nonlinear because of the convective deriva-
tive. As a check, in the limit of high viscosity α4 → ∞, Eq. (17)
implies that ψ is constant, meaning that the material does not
flow. Equation (16) then becomes the standard diffusion equa-
tion γ1∂tθ = K∇2θ .

We seek a solution of these equations corresponding to steady
motion of a defect with a specified velocity u. In this steady state,
we have θ(r, t) = θ(r−ut) and ψ(r, t) =ψ(r−ut). Hence, the time
derivative becomes ∂tθ = −uk∂kθ , and the equations of motion
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take the time-independent form

0 =K∇
2
θ + γ1

[
uk∂kθ − εkl(∂kθ)(∂lψ)− 1

2
∇

2
ψ

]
, (18)

0 =− 1
2

α4∇
4
ψ (19)

− γ1

[
εi j(∂iθ)∂ j−

1
2

∇
2
][

uk∂kθ − εkl(∂kθ)(∂lψ)− 1
2

∇
2
ψ

]
.

To solve these equations, we choose a coordinate system such that
the defect velocity u is in the x-direction, with u = ux̂. We then
assume that u is small, so that we can use perturbation theory as
in Pismen and Rodriguez,29 writing

θ(r) = θ0(r)+uθ1(r)+O(u2),

ψ(r) = ψ0(r)+uψ1(r)+O(u2). (20)

At zeroth order in u, we assume that ψ0(r) is constant, meaning
that the material does not flow if the defect does not move. With
this assumption, the second differential equation is identically sat-
isfied, and the first differential equation becomes Laplace’s equa-
tion 0 = K∇2θ0. The solution of this equation, corresponding to a
defect at the origin, can be written as

θ0 = k tan−1
( y

x

)
+Θ0. (21)

Here, k is the topological charge of the defect, and Θ0 represents
an overall rotation of the director about the z-axis. Previous pa-
pers41,42 have shown that Θ0 is related to the defect orientation
Ψ by Ψ = Θ0/(1− k) (mod π/|1− k|). In particular, for a defect
of charge k = +1/2, we have Ψ = 2Θ0. For a defect of charge
k =−1/2, we have Ψ = 2

3 Θ0.

At first order in u, the differential equations become

0 =K∇
2
θ1 + γ1

[
∂xθ0− εkl(∂kθ0)(∂lψ1)−

1
2

∇
2
ψ1

]
, (22)

0 =− 1
2

α4∇
4
ψ1 (23)

− γ1

[
εi j(∂iθ0)∂ j−

1
2

∇
2
][

∂xθ0− εkl(∂kθ0)(∂lψ1)−
1
2

∇
2
ψ1

]
.

To simplify these equations, we insert Eq. (21) for θ0, and change
variables to polar coordinates (r,φ). We then write θ1(r,φ) =
θr(r)sinφ and ψ1(r,φ) = ψr(r)sinφ . After those transformations,

the differential equations take the form

0 =K
[

θ
′′
r (r)+

θ ′r(r)
r
− θr(r)

r2

]

+ γ1

[
−ψ ′′r (r)

2
− (1−2k)ψ ′r(r)

2r
+

ψr(r)
2r2 −

k
r

]
, (24)

0 =α4

[
−ψ ′′′′r (r)

2
− ψ ′′′r (r)

r
+

3ψ ′′r (r)
2r2 − 3ψ ′r(r)

2r3 +
3ψr(r)

2r4

]

+ γ1

[
−ψ ′′′′r (r)

4
− ψ ′′′r (r)

2r
+

(3−4k+4k2)ψ ′′r (r)
4r2

− (3−4k+4k2)ψ ′r(r)
4r3 +

(3−4k)ψr(r)
4r4 +

k2

r3

]
. (25)

The solution of Eq. (25) is

ψr(r) = r+
4

∑
i=1

Cirpi , (26)

where the exponents pi are the four roots of the characteristic
equation

0 =α4

[
− p4

2
+2p3− p2−2p+

3
2

]
(27)

+ γ1

[
− p4

4
+ p3−

(
1
2
+ k− k2

)
p2− (1−2k+2k2)p+

(
3
4
− k
)]

.

These roots are

p = 1±
[

2
2+g

[
2+g(1− k+ k2) (28)

±
[
4+2g(2−2k+ k2)+g2(1− k)2(1+ k2)

]1/2
]]1/2

,

where g = γ1/α4 is the ratio of viscosities. In general, two of the
roots (with + in the first position) are greater than 1, and two of
the roots (with − in the first position) are less than 1.

The coefficients Ci are fixed by the boundary conditions. At
the defect, as r→ 0, we require that the velocity field v must not
diverge, and hence that ψ cannot depend on r with an exponent
less than one. This boundary condition implies that two of the
coefficients are zero. Far from the defect, at a cutoff length rmax,
we require that ψr(rmax) = 0 and ψ ′r(rmax) = 0, so that the velocity
field v also goes to zero. Those boundary conditions determine
the other two coefficients. Hence, the solution for ψr(r) becomes

ψr(r) = r+
(p2−1)r1−p1

max rp1

p1− p2
+

(p1−1)r1−p2
max rp2

p2− p1
, (29)

where p1 and p2 are the two roots with + in the first posi-
tion. From that solution, the full stream function becomes ψ =

uψr(r)sinφ , and the flow velocity field becomes vi = εi j∂ jψ. One
interesting consequence of this result is that the velocity field at
the defect is v(r→ 0) = ux̂, which is equal to the velocity of the
defect. regardless of the topological charge k and viscosity ratio
g. Hence, the fluid flow velocity matches the defect velocity as
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(a) k = +1/2 (b) k = -1/2

Fig. 2 Visualization of the results of Eqs. (29) and (30) for a defect of
topological charge k =±1/2 moving to the right. Blue double-headed
arrows show the director field, and black single-headed arrows show the
flow velocity field. Parameters are Θ0 = π/2, K = 1, γ1 = α4 = 1, u = 1,
and rmax = 1.

a result of the calculation, not as a boundary condition. If the
fluid viscosity α4 becomes very high, then the fluid flow veloc-
ity decreases very sharply going away from the defect, but it still
matches the defect velocity right at the defect core.

To obtain the first-order correction to the director field, we in-
sert the solution for ψr(r) into Eq. (24) and solve for θr(r). For a
boundary conditions, we require that θr(0) does not diverge, and
θ ′r(rmax) = 0. The solution is

θr(r) =
γ1

2K

[(
1+

2k(p1 + p2− p1 p2− p2
1 p2

2)

(p2
1−1)(p2

2−1)

)
r

+
(p2

1−2kp1−1)(p2−1)r1−p1
max rp1

(p2
1−1)(p1− p2)

+
(p2

2−2kp2−1)(p1−1)r1−p2
max rp2

(p2
2−1)(p2− p1)

]
. (30)

The full perturbation series for the director field then becomes
θ = kφ +Θ0 +uθr(r)sinφ .

Figure 2 presents examples of the director field and flow ve-
locity field that come from these calculations, for defects of topo-
logical charge k = ±1/2 moving to the right. The director field
is slightly distorted compared with the standard arctangent form
for the static director field around a topological defect (in a liquid
crystal with equal Frank constants). Because of the factor of sinφ ,
the distortion goes to zero in front of and behind the moving de-
fect, and it is greatest in the direction perpendicular to the defect
velocity. This distortion is similar to a recent result for a moving
defect in a material that cannot flow.32 The flow velocity field is
greatest at the defect core, and decreases moving away from the
defect. It has a vortex on each side of the moving defect.

We now insert the perturbation series results for θ and ψ back
into Eq. (15), to calculate the dissipation function D as a pertur-
bation series in defect velocity u. We integrate from the minimum
radius rcore out to the maximum radius rmax. The exact integral is
quite complicated, and we cannot reproduce it here. However, it
takes a simple and interesting form in the limit of g = γ1/α4� 1,

i.e. in the limit of high flow viscosity α4, so that the material can
only flow very slowly. When we expand in powers of g, the inte-
grated dissipation becomes

D =
πγ1k2u2

2
log

rmax

rcore
−

πγ
3/2
1 k2u2

23/2α
1/2
4

[
|k|
(

log
rmax

rcore

)2

+(2−3k)sign(k)
(

log
rmax

rcore

)
−
(

2− 3k
2

)
sign(k)

]
. (31)

In this expression, the first term is a classic result for the dissi-
pation of a moving defect in a material that cannot flow.28 The
second term is a correction to the dissipation in a material that
can flow slowly.

Two features of this expression are particularly important.
First, the correction is negative: As the viscosity α4 decreases
from infinity to finite values, the drag on a moving defect also
decreases. That result is reasonable, because backflow can par-
tially compensate for the motion of the defect and reduce dissi-
pation. Second, the classic term is even in topological charge k,
but the correction term is not. In a material that cannot flow,
with α4 → ∞, there is a symmetry between positive and nega-
tive topological charges, which generate equal amounts of dissi-
pation. In a material that can flow slowly, this symmetry is bro-
ken. The flow pattern reduces the dissipation of positive topo-
logical charges more than it reduces the dissipation of negative
topological charges. As a result, negative defects generate more
dissipation than positive defects, and hence negative defects will
move more slowly than positive defects under the same force.
This flow-induced asymmetry between positive and negative de-
fects has been seen through experiments,5,6,8 simulations,20,21

and other theoretical techniques.33–35 Here, we see the asym-
metry emerge as a specific term of the series expansion in the
viscosity ratio g.

In Eq. (31), the dissipation depends logarithmically on rmax.
The length scale rmax enters the calculation as a hard cutoff on
the dissipation integral, just as it also enters the calculation for
the energy of a topological defect. In a typical experiment with
multiple defects, the effective length scale rmax is given by the
characteristic distance between defects.

Some theoretical studies29–32 have criticized the dependence
on rmax. Their argument is essentially as follows: If a defect
moves with finite velocity u, then the ratio K/(γ1u) provides a
new length scale for the problem, and the dissipation drops off for
distances beyond that length scale. As a result, the dissipation in-
tegral really extends out to rmax or K/(γ1u), whichever is smaller.
Hence, the result for the dissipation should involve log(rmax/rcore)

or log[K/(γ1urcore)], whichever is smaller. If the system is truly
infinite, with rmax→ ∞, then K/(γ1u) < rmax for any nonzero ve-
locity u. Hence, these studies argue that the dissipation is really
proportional to log[K/(γ1urcore)]. Sometimes this dependence is
written in terms of the Ericksen number as log(3.6/Er). This dissi-
pation can be considered as “anomalous” because the dependence
on u is not proportional to u2 for small u.

Our response to that argument is that it only applies to a sys-
tem that is strictly infinite. For any finite system size, there is
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a crossover velocity uc = K/(γ1rmax) at which the cutoff length
scale changes. For u < uc, the dissipation is proportional to
log(rmax/rcore); for u > uc, it is proportional to log[K/(γ1urcore)].
In general, we want to calculate the dissipation for small u in a
finite system, and it scales in the standard way proportional to
u2, with a coefficient proportional to log(rmax/rcore). Indeed, this
regime is reasonable based on experimental parameters. In an
experiment on defect annihilation,8 the characteristic defect ve-
locity is u ∼ 0.3 µm/s, and the characteristic distance between
defects is rmax ∼ 100 µm. If we assume the Frank constant
K ∼ 10−11 N and rotational viscosity γ1 ∼ 10−1 Pa s, then the
crossover velocity is uc ∼ 1 µm/s, and we are roughly in the
regime of u < uc.

Now we can do the key coarse-graining step: We compare the
dissipation of Eq. (31) with the dissipation that would be ex-
pected through the macroscopic theory presented in Sec. 2.1. In
this way, we can determine the coefficients of the macroscopic
theory.

For a defect of topological charge k =+1/2, moving at velocity
u = ux̂ with fixed orientation p = (cosΨ,sinΨ), the macroscopic
theory of Eq. (2) implies that the dissipation function is

D =
1
2

D1|Ṙ|2 +
1
2

D2(p · Ṙ)2 =
1
2

D1u2 +
1
2

D2u2 cos2
Ψ. (32)

By comparing Eq. (32) with Eq. (31) for k = +1/2, we see that
the coefficient D1 is

D1 =
πγ1

4
log

rmax

rcore
−

πγ
3/2
1

27/2α
1/2
4

[(
log

rmax

rcore

)2
+

(
log

rmax

rcore

)
− 5

2

]
.

(33)
Furthermore, we see that Eq. (31) does not depend on the defect
orientation Ψ at all, and hence D2 = 0. This lack of dependence
on the defect orientation arises because of our minimal model
with only the two viscosity coefficients α4 and γ1. In the next
section, we will discuss corrections arising from other viscosity
coefficients.

For a defect of topological charge k = −1/2, again moving at
velocity u = ux̂ with fixed orientation Ti jk, the the macroscopic
theory of Eq. (7) implies the dissipation function

D =
1
2

D′1|Ṙ|2 =
1
2

D1u2. (34)

Comparing Eq. (34) with Eq. (31) for k = −1/2, we find that D′1
is

D′1 =
πγ1

4
log

rmax

rcore
−

πγ
3/2
1

27/2α
1/2
4

[(
log

rmax

rcore

)2
−7
(

log
rmax

rcore

)
+

11
2

]
.

(35)
Here, we see explicitly D′1 and D1 have the same value in the
limit of no flow α4 → ∞, but backflow effects reduce D′1 less
than they reduce D1. Thus, we obtain D′1 > D1 in a system with
backflow; i.e. a negative defect experiences more dissipation and
hence more drag.

In addition to the drag coefficients for motion with fixed ori-
entation, the macroscopic theory also includes drag coefficients
for defect rotation (D3 for a +1/2 defect, D′3 for a −1/2 defect)

and for simultaneous motion and rotation (D4 for a +1/2 defect).
Ideally, we would like to calculate those drag coefficients from the
same minimal model of liquid-crystal hydrodynamics. We do not
yet have a method for this calculation, because defect rotation is
a very long-range distortion that does not decrease with distance
from the defect, and hence the dissipation depends sensitively on
the boundary conditions. However, we can at least estimate these
coefficients from dimensional analysis. Because ṗ has one fewer
power of length than Ṙ in Eq. (2), and Ṫi jk has one fewer power
of length than Ṙ in Eq. (7), we obtain

D3 ∼ D′3 ∼ γ1r2
max, (36)

D4 ∼ γ1rmax. (37)

Hence, these coefficients diverge with system size rmax much
more severely than do D1 and D′1. This divergence will be dis-
cussed in Sec. 4.

2.3 Other viscosity coefficients

The previous section presented a minimal model with only two
viscosity coefficients. However, other viscosity coefficients are
also allowed by symmetry in liquid-crystal hydrodynamics. As
noted above, the (α5+α6) term is equivalent to the α4 term in 2D
(unlike 3D), so we do not need to consider that term separately.
We would like to see how the γ2 and α1 coefficients change the
macroscopic theory.

To estimate the effects of those coefficients, we regard the extra
terms in the full dissipation function, proportional to γ2 and α1, as
corrections to the minimal model. We suppose that γ2 and α4 are
much smaller than γ1 and α4, and calculate these two terms using
the director field θ(r) = kφ +Θ0+uθr(r)sinφ and the flow velocity
field vi = εi j∂ jψ, with ψ(r) = uψr(r)sinφ , which were found from
the minimal model in Sec. 2.2. We do not go back and recalculate
the director and flow velocity fields with the other viscosity co-
efficients. This procedure is analogous to perturbation theory in
quantum mechanics: At lowest order in perturbation theory, one
calculates the expectation value of the perturbed Hamiltonian us-
ing the unperturbed wavefunction. The perturbed wavefunction
only enters at higher order.

The term proportional to γ2 makes a contribution of∫
d2r
[
γ2NiAi jn j

]
= 0, (38)

except for the special cases of k = +1 or +2, which we do not
discuss here. Hence, γ2 does not affect the drag coefficients, at
this order of perturbation theory. (It may have effects at higher
order in perturbation theory.)

By comparison, the term proportional to α1 makes a contribu-
tion of∫

d2r
[

1
2

α1(niAi jn j)
2
]
=

πγ1α1k2u2

8α4

[(
log

rmax

rcore

)
− 1

2

]
, (39)

except in the special cases of k =+1/2, +1, or +3/2. In particular,
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for k =+1/2, we obtain∫
d2r
[

1
2

α1(niAi jn j)
2
]
=

πγ1α1u2

32α4

[(
log

rmax

rcore

)
− 1

2

]
(40)

+
πγ1α1u2

64α4

[(
log

rmax

rcore

)
−1
]

cos4Θ0.

The last term is particularly interesting, because it is proportional
to cos4Θ0. As discussed earlier, previous papers41,42 have shown
that Θ0 is related to the defect orientation Ψ by Ψ = 2Θ0, in the
case of +1/2 defect. Hence, the last term in the dissipation de-
pends on defect orientation as cos2Ψ, or equivalently as cos2 Ψ.
This is exactly the orientational dependence that would be ex-
pected from the macroscopic drag coefficient D2. Hence, this
orientation-dependent drag coefficient really is present, with a
magnitude that scales with the viscosity α1.

2.4 Example: Motion of a ±1/2 defect in a channel

As a simple example to illustrate the microscopic and macroscopic
theories, we consider the motion of a defect in a channel. Al-
though this example is an idealized construction, it is related
to dowser textures, which have been studied experimentally and
theoretically.52,53

In this example, we consider a 2D nematic liquid crystal in a
channel, which is infinite in the x-direction but finite in the y-
direction. On the top and bottom surfaces of the channel, at y =
±d/2, there is strong planar anchoring, so that the director field is
constrained to be horizontal. Between those surfaces, the director
field may be uniform in the horizontal direction, or it may rotate
through an angle of π. Indeed, there may be domains of x where
the director is uniform or distorted through π. In that case, the
interface between a uniform domain and a distorted domain is a
defect of topological charge k =±1/2, as shown in Fig. 3(a).

If the defect does not move, then the director field must satisfy
the equation for static equilibrium 0 = K∇2θ . An explicit solution
that obeys the boundary conditions is

θ(x,y) =±
[

1
2

tan−1
(

tan(πy/d)
tanh(πx/d)

)
+

πy
2d

+
π

2

]
, (41)

for k = ±1/2. In general, however, the defect will move in order
to reduce the Frank elastic free energy. In the uniform domain to
the left of the defect, the elastic free energy density is 0, but in
the distorted domain to the right, it is 1

2 K(π/d)2. Hence, the
defect will move to the right so that the uniform domain will
grow, the distorted domain will shrink, and the elastic free energy
will decrease. We can then ask: What is the velocity of the defect?

In the macroscopic theory, this problem is quite straightfor-
ward, and is analogous to the terminal velocity of a particle falling
under gravity. In steady state, the total force acting on the defect
must be zero, so that

0 = felastic + fdrag =−∂F
∂R
− ∂D

∂u
. (42)

The elastic force is

felastic =−
∂F
∂R

=
π2K
2d

x̂, (43)

because the elastic free energy decreases by 1
2 K(π/d)2dδx when-

ever the defect moves to the right by δx. For the +1/2 defect,
the orientation vector is p =−x̂, and hence Eq. (2) gives the drag
force

fdrag =−∂D
∂u

=−(D1 +D2)ux̂. (44)

Hence, the balance of forces requires that

u+1/2 =
π2K

2d(D1 +D2)
. (45)

In the minimal model we have D2 = 0, and we can estimate D1 by
Eq. (33), with d/2 playing the role of rmax. Hence, the prediction
for velocity becomes

u+1/2 =
2πK

γ1d log d
2rcore

× (46)

×

1+
γ

1/2
1

23/2α
1/2
4

(
log d

2rcore

)2
+
(

log d
2rcore

)
− 5

2

log d
2rcore

+ · · ·

 .
Similarly, for the −1/2 defect, Eq. (7) gives the drag force

fdrag =−∂D
∂u

=−D′1ux̂, (47)

and hence the balance of forces requires that

u−1/2 =
π2K
2dD′1

. (48)

In the minimal model, we can estimate D′1 by Eq. (35), with d/2
in place of rmax, and hence the prediction for velocity becomes

u−1/2 =
2πK

γ1d log d
2rcore

× (49)

×

1+
γ

1/2
1

23/2α
1/2
4

(
log d

2rcore

)2
−7
(

log d
2rcore

)
+ 11

2

log d
2rcore

+ · · ·

 .
For a material that cannot flow, with α4→ ∞, the predictions for
u+1/2 and u−1/2 are equal. As the flow viscosity α4 decreases,
both of these velocities increase, but u+1/2 increases more than
u−1/2. Hence, +1/2 defects should move more quickly than −1/2
defects because of backflow effects.

To test this macroscopic argument, we perform hydrodynamic
simulations of defect motion in a channel. For these simulations,
we must use a formalism based on the 2D nematic order tensor
Qi j = S(2nin j−δi j), so that the scalar order parameter S can go to
zero in the defect core. The minimal model for the free energy is

F =−1
4

aQi jQi j +
1
16

b(Qi jQi j)
2 +

1
16

L(∂kQi j)(∂kQi j), (50)

which favors S = (a/b)1/2 away from defects. To represent the
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(a) Director n(r,t)

(b) Velocity v(r,t)

Fig. 3 Numerical solution of hydrodynamic equations for motion of a
+1/2 defect toward the right, in a channel with planar boundary
conditions. (a) Director field shown by black lines, with scalar order
parameter indicated by colored contours. (b) Velocity field shown by
black arrows, with |v|2 indicated by colored contours. In both cases, the
red arrow represents the defect orientation vector p. Parameters are
a = b = 200, L = 4, α4 = 5, Γ1 = 8, ρ = 1, and d = 2. The relatively large
values of a and b are chosen to give a relatively small defect core radius
rcore = (L/a)1/2 = 0.2 along with a bulk order parameter S = (a/b)1/2 = 1.

rotation of nematic order with respect to the background fluid,
instead of the vector N, we use the tensor

Bi j = Q̇i j−ω(εl jQil + εliQl j), (51)

where again ω = 1
2 εi j∂iv j and εi j is the 2D Levi-Civita symbol. The

minimal model for the dissipation function then becomes

D =
∫

d2r
[

1
2

α4Ai jAi j +
1

16
Γ1Bi jBi j

]
. (52)

The coefficients L and Γ1 in this tensor representation are related
to the coefficients K and γ1 in the director representation by K =

LS2 and γ1 = Γ1S2.
We derive partial differential equations for the nematic order

tensor Qi j(r, t) and the flow velocity field vi(r, t) from

0 =− δF
δQi j(r, t)

− δD
δ [∂tQi j(r, t)]

, (53)

ρ
∂vi

∂ t
=− δD

δvi(r, t)
. (54)

For computational convenience, we work with constant pressure
rather than constant density in this calculation, so that there is
no pressure term in the equations, and we use a mass density
ρ. We integrate the equations numerically, with planar boundary
conditions at y = ±d/2 and open boundary conditions in x. For
the initial condition, we use Eq. (41) for the director orientation
around a defect of topological charge ±1/2. We also assume the
initial scalar order parameter drops around the defect core as S =

(a/b)1/2r/(r2 + r2
core)

1/2, with a core radius rcore = (L/a)1/2, and

● ●
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-1/2

u

Fig. 4 Numerical results for the velocities of defects with topological
charge k =±1/2 in the channel geometry, as functions of the flow
viscosity α4. Solid lines show quadratic fits. Parameters are a = b = 200,
L = 4, Γ1 = 8, ρ = 1, and d = 2, and hence rcore = (L/a)1/2 = 0.2 and bulk
S = (a/b)1/2 = 1. Analogous parameters in the director representation
are K = LS2 and γ1 = Γ1S2.

the initial flow velocity is zero.
In the numerical solution, the system quickly reaches a steady

state, in which the defect moves to the right with constant ve-
locity, and the fluid flow pattern moves along with the defect.
Figure 3 shows an example of the liquid crystal order and fluid
flow pattern for a defect of topological charge +1/2. From these
numerical results, we can find the defect velocity u for each topo-
logical charge as a function of the coefficients a, b, L, α4, and Γ1,
as well as the channel width d.

In Fig. 4, we plot the numerical results for the velocities of
±1/2 defects as functions of fluid flow viscosity, transformed into
α
−1/2
4 . The results are well fit by the quadratic functions

u+1/2 = 0.81+0.69α
−1/2
4 +6.3α

−1
4 ,

u−1/2 = 0.84+0.28α
−1/2
4 +1.4α

−1
4 . (55)

We can see that these results are generally consistent with the pre-
dictions of the macroscopic theory. In the limit of high viscosity
α4→ ∞, the ±1/2 defects move at approximately the same veloc-
ity. From Eqs. (46) and (49), we expect that limiting velocity to
be u = 2πK/[γ1d logd/(2rcore)] = 0.98 (with parameters given in
the figure caption), which is close to the numerical value. The
numerical velocities may be slightly lower because the hydrody-
namic calculation includes extra drag for the motion of the defect
core, which is a noticeable fraction of the total area. As the viscos-
ity α4 decreases, so that the material is able to flow, the velocities
for±1/2 defects both increase, but the velocity for +1/2 increases
more than the velocity for −1/2. This trend is also consistent with
the expectation from Eqs. (46) and (49), although a quantitative
comparison is difficult because those equations are derived as-
suming rmax =

1
2 d� rcore, and the hydrodynamic calculation has

only a factor of 5 between those values.
Based on this example, we suggest that the macroscopic the-

ory provides a way to develop intuition for the forces that control
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defect motion in passive liquid crystals. Furthermore, it gives pre-
dictions with far less computational effort than the hydrodynamic
approach. Hence, we would like to extend it to describe active
liquid crystals, in which defect motion is even more important.

3 Active liquid crystals

3.1 Coarse-graining the hydrodynamic theory

In recent years, there has been extensive theoretical and exper-
imental research on active nematic liquid crystals. These active
materials are not in thermal equilibrium, and hence their dynamic
behavior is not just driven by minimizing a free energy. Rather,
they continually consume energy, often from a food source or
from ATP, and convert this energy into motion.

In the theory of active nematic liquid crystals, the effect of ac-
tivity is usually modeled by an active contribution to the stress
tensor,22–24,36–40,43 which can be written in terms of the nematic
order tensor as

σ
active
i j =−ZQi j, (56)

or in terms of the director as

σ
active
i j =−ζ

(
2nin j−δi j

)
. (57)

Here, the parameter ζ = ZS is an activity coefficient, with ζ > 0
representing a material that tends to extend along the director,
and ζ < 0 indicating a material that tends to contract along the
director. This term in the stress tensor contributes to the equation
of motion as

ρ
∂v j

∂ t
= (passive terms)+∂iσ

active
i j

= (passive terms)−2ζ ∂i
(
nin j

)
. (58)

We suggest that the same effect of activity can also be modeled
by an active contribution to the dissipation function, which can
be written in terms of the nematic order tensor as

Dactive =
∫

d2r
[
−ZQi jAi j

]
, (59)

or in terms of the director as

Dactive =
∫

d2r
[
−2ζ nin jAi j

]
, (60)

with the strain rate tensor Ai j =
1
2 (∂iv j +∂ jvi) as before. This term

in the dissipation function contributes to the equation of motion
as

ρ
∂v j

∂ t
= (passive terms)− δDactive

δv j

= (passive terms)−2ζ ∂i
(
nin j

)
, (61)

which is identical to Eq. (58). Hence, the active term in the dis-
sipation function can be used as a starting point for the theory,
equivalent to the active term in the stress tensor.

We recognize that Dactive cannot exactly be regarded as “energy
dissipation,” because it is not positive-definite. An alternative de-
scription for it might be “rate of energy input”54 (with a negative

sign). Nevertheless, it enters into the dissipation function in a
formal way, to give the correct equation of motion, so we will use
it regardless of the terminology.

We would now like to set up a macroscopic theory for the mo-
tion of defects in active nematic liquid crystals. As in Sec. 2.1, we
need to construct the dissipation function in terms of the macro-
scopic variables that describe a defect. For a defect of topological
charge k = +1/2, these variables are the defect position R and
orientation vector p. At quadratic order in Ṙ and ṗ, the dissipa-
tion function has the passive terms in Eq. (2). In an active liquid
crystal, the dissipation function may include one additional active
term that is permitted by symmetry,

Dactive = D5p · Ṙ. (62)

This term is not allowed in the dissipation function for a passive
liquid crystal because it is odd under time reversal, and hence not
positive-definite. However, it can exist for an active liquid crys-
tal, with the same understanding that is represents rate of energy
input (with a negative sign), rather than actual dissipation.

For a defect of topological charge k = −1/2, the macroscopic
variables are the defect position R and orientation tensor Ti jk. In
this case, there is no way to contract the indices to form a nonzero
scalar Dactive at linear or quadratic order in velocity Ṙ (recalling
that Ti jk is a completely symmetric tensor with Ti j j = 0). There
could be a cubic term Ti jkṘiṘ jṘk, but it does not affect the motion
at low speeds. Hence, the dynamic behavior of = −1/2 defects
should be governed by the passive dissipation function of Eq. (7).

In the coarse-graining calculation, we would like to determine
how the macroscopic coefficient D5 is related to the more mi-
croscopic activity coefficient ζ . We follow the same procedure
as in Sec. 2: We assume that a defect of topological charge
k =+1/2 moves with fixed velocity u = (u,0) at fixed orientation
p = (cosΨ,sinΨ). We calculate the dissipation using both micro-
scopic and macroscopic approaches, and compare the results.

For the microscopic calculation, we treat the activity coefficient
ζ in the same way that we treated the viscosity coefficients (α5 +

α6), γ2, and α1 in Sec. 2.3: We regard the active term of Eq. (60)
as a perturbation to the minimal model for passive liquid crystals
from Sec. 2.2. Hence, we calculate this term using the director
field θ(r) = kφ +Θ0 + uθr(r)sinφ and the flow velocity field vi =

εi j∂ jψ, with ψ(r) = uψr(r)sinφ . This calculation gives Dactive = 0
except in the special cases of k =+1/2 or +3/2. In particular, for
k =+1/2, we obtain

Dactive =
πζ γ

1/2
1 urmax cos2Θ0

3(2α4)1/2
. (63)

By comparison, in the macroscopic theory, Eq. (62) implies that
Dactive = D5ucosΨ. Setting these expressions equal, and recalling
that Ψ = 2Θ0, we obtain

D5 =
πζ γ

1/2
1 rmax

3(2α4)1/2
. (64)

Several features of this result should be pointed out. First, it
is clearly proportional to the activity coefficient ζ . It is also pro-
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portional to the ratio (γ1/α4)
1/2, so that it vanishes in the limit

of high fluid flow viscosity α4 → ∞. That limit is reasonable be-
cause the effects of activity require fluid flow. The result scales
linearly with the cutoff length scale rmax, which is a more severe
divergence than the logarithmic scaling seen in other terms.

3.2 Example: Free motion of a +1/2 defect

As a example, we consider the free motion of a +1/2 defect in an
active nematic liquid crystal. In the macroscopic theory, the defect
position R and orientation p = (cosΨ,sinΨ) evolve in response
to the total forces acting on these macroscopic variables. If the
defect is free, the Frank free energy is constant, and hence there
is no elastic force. Hence, the only forces are the drag forces
derived from the dissipation function. Combining passive and
active terms, the full macroscopic dissipation function is

D =
1
2

D1|Ṙ|2 +
1
2

D2(p · Ṙ)2 +
1
2

D3|ṗ|2 +D4ṗ · Ṙ+D5p · Ṙ. (65)

Hence, the drag force acting on the position is

fdrag =−∂D
∂ Ṙ

=−D1Ṙ−D2p(p · Ṙ)−D4ṗ−D5p, (66)

and the drag force acting on the orientation is

fdrag =− ∂D
∂ Ψ̇

=−D3Ψ̇−D4p× Ṙ. (67)

In the steady state, the total force acting on position is zero,
and the total force acting on orientation is also zero. This steady
state occurs when

Ψ̇ = 0 → ṗ = 0,

Ṙ =− D5

D1 +D2
p. (68)

In the minimal model, with α4� γ1, this ratio of dissipation coef-
ficients reduces to

Ṙ =− 4ζ

3(2γ1α4)1/2
rmax

log(rmax/rcore)
p. (69)

Hence, in the steady state, the defect moves at a constant veloc-
ity with a constant orientation. The direction of motion is given
by the defect orientation +p if the material is contractile (ζ < 0),
or −p if the material is extensile (ζ > 0). The speed is given by
the balance between the active force that favors motion and the
passive drag force that resists motion. As a result, the speed is
linearly proportional to the activity coefficient ζ and inversely
proportional to the combination of viscosities (γ1α4)

1/2. Also,
it is linearly proportional to the cutoff length scale rmax, with a
logarithmic correction. This length scale is generally the system
size or the characteristic distance between defects, whichever is
smaller. The linear dependence on cutoff length has been noted
in previous work on active liquid crystals.38

To confirm this macroscopic argument, we perform a modi-
fied version of the hydrodynamic simulation for a +1/2 defect in
Sec. 2.4. For this modified simulation, we consider a channel with
boundary conditions that require the director along the bottom

(a) Director n(r,t)

(b) Velocity v(r,t)

Fig. 5 Numerical solution of hydrodynamic equations for motion of a
+1/2 defect toward the right, driven by extensile activity. (a) Director
field shown by black lines, with scalar order parameter indicated by
colored contours. (b) Velocity field shown by black arrows, with |v|2
indicated by colored contours. In both cases, the red arrow represents
the defect orientation vector p. Parameters are a = b = 200, L = 4,
α4 = 1, Γ1 = 8, ρ = 1, d = 2, and Z = 0.25.

and top surfaces to be at θ =±π/4, as shown in Fig. 5(a). Because
of that boundary condition, the director must rotate through an
angle of π/2 from bottom to top on both sides of the defect.
Hence, in a system with equal Frank constants, there is equal
elastic free energy on both sides of the defect. As a result, there
is no elastic force in the x direction, the defect can move freely
in this direction, and the only motion is driven by activity. Of
course, there is still an elastic force that keeps the defect halfway
between the walls in the y direction, and an elastic force that
keeps the defect orientation at Ψ = π.

We follow the same method as in Sec. 2.4, using the partial dif-
ferential equations (53–54), but with the additional active term
of Eq. (59) with coefficient Z in the dissipation function. The sys-
tem quickly reaches a steady state, in which the defect moves to
the left or right with constant velocity, and the fluid flow pattern
moves along with the defect. Figure 5 shows an example of the
liquid crystal order and fluid flow pattern for an extensile material
(Z > 0). From these simulations, we can find the defect velocity u
that is driven by activity.

In Fig. 6, we plot the numerical results for u as a function of
activity coefficient Z. The results are well fit by the straight line
u = 1.9Z. By comparison, from Eq. (69), we expect the relation
u = 0.2Z (using rmax =

1
2 d and parameters given in the figure cap-

tion)). These relations show the same linear trend, although the
quantitative discrepancy in the coefficient indicates a breakdown
in some approximation. One possible issue may be that the ana-
lytic calculation was done in a circular geometry of radius rmax,
while the simulation was done in a rectangular geometry. For
quantities like the passive drag force, which diverge logarithmi-
cally with system size, it is generally reasonable to approximate a
rectangle by a circle with radius equal to the smaller rectangular
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Fig. 6 Numerical results for the velocity of a +1/2 defect as a function
of the activity coefficient Z. The solid lines shows a linear fit. Parameters
are a = b = 200, L = 4, Γ1 = 8, α4 = 1, ρ = 1, and d = 2, and hence
rcore = (L/a)1/2 = 0.2 and bulk S = (a/b)1/2 = 1. Analogous parameters
in the director representation are K = LS2, γ1 = Γ1S2, and ζ = ZS.

(a) Director field at t = 0

(b) Director field at t = 0.7

(c) Director field at t = 1.9

Fig. 7 Numerical solution of hydrodynamic equations for a +1/2 defect
pushing against the top wall, driven by extensile activity. (a) The defect
begins at the center of the channel, with its orientation vector p pointing
downward. (b) The defect moves vertically upward until it reaches an
equilibrium position at a distance δy below the top surface. (c) If the
activity coefficient Z is greater than a critical value, the orientation p
rotates slightly and the defect moves to the left or right at constant
velocity. In all three visualizations, the director field is shown by black
lines, with scalar order parameter indicated by colored contours. The
velocity field is not shown. Parameters are a = b = 200, L = 4, α4 = 1,
Γ1 = 8, ρ = 1, d = 2, and Z = 30.

dimension. This may not be a reasonable approximation for the
active driving force, which diverges more severely with system
size.

3.3 Example: +1/2 defect pushing against wall

For a further example of defect motion, we modify the bound-
ary conditions on the channel so that it requires planar align-
ment on the top surface and homeotropic alignment on the bot-
tom surface. As a result, the system can form a defect of topo-
logical charge +1/2 with orientation vector p = −ŷ, as shown in
Fig. 7(a). When the system evolves with extensile activity Z > 0,
the defect moves vertically toward the top surface, and it pushes
against that wall, as in Fig. 7(b). After that, the behavior de-
pends on the magnitude of the activity. If the activity is less than
a critical value, the defect remains stable while pushing against
the wall. By contrast, if the activity is greater than the critical
value, the defect remains approximately stationary for some time,
and then eventually breaks the symmetry between the ±x̂ direc-
tions. At that time, it rotates its orientation slightly, and moves
to the left or the right at constant velocity, as in Fig. 7(c). This
symmetry-breaking behavior is similar to the formation of a “yin-
yang” structure by two +1/2 defects pushing outward against a
circular wall.55

In the simulation, we use fixed boundary conditions on the left
and right edges, and hence the defect bounces off these edges
and moves back and forth between left and right. Presumably, if
the simulation were infinite in the x-direction, then the horizontal
motion would continue at fixed velocity without limit.

This motion can be understood from the macroscopic view of
a defect as an oriented particle. In the macroscopic view, the
free energy arises from the interaction of the defect with the top
aligning surface, which can equivalently be regarded as the inter-
action of the defect with an image defect above the top surface.
Following the argument in our previous paper,42 this free energy
becomes

F ≈−K log
(

δy
rcore

)
+

1
2

K(δΨ)2, (70)

where K is the Frank constant, δy = ymax− y is the distance from
the top surface, and δΨ = Ψ+π/2 is the defect orientation rela-
tive to the favored orientation of −π/2. The dissipation function
is still the same combination of passive and active terms as in
Eq. (65).

In the first stage of motion, the defect moves upward until it
reaches an equilibrium point at a fixed δy. At that point, the elas-
tic force pushing downward is −∂F/∂y = −K/δy, and the active
force pushing upward is −∂u/∂ ẏ = D5. Hence, the equilibrium
occurs at the position

δy =
K
D5

=
3K

πζ rmax

(
2α4

γ1

)1/2
=

3L
πZrmax

(
2α4

Γ1

)1/2
. (71)

We can assume that the cutoff distance is rmax ≈ δy, because that
is the distance from the defect to the nearest boundary. Hence,
we obtain

δy≈
(

3L
πZ

)1/2(2α4

Γ1

)1/4
. (72)
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Fig. 8 Numerical results for a +1/2 defect pushing against the top wall,
driven by extensile activity. (a) Distance δy below the top surface, as a
function of activity coefficient Z, showing the scaling with Z−1/2.
(b) Velocity ux, also as a function of Z, showing the symmetry-breaking
square-root bifurcation from the stationary state at low activity to the
moving state at high activity. Parameters are a = b = 200, L = 4, Γ1 = 8,
α4 = 1, ρ = 1, and d = 2, and hence rcore = (L/a)1/2 = 0.2 and bulk
S = (a/b)1/2 = 1. Analogous parameters in the director representation
are K = LS2, γ1 = Γ1S2, and ζ = ZS.

For the parameters in the simulation, this prediction gives δy =

1.4Z−1/2. In comparison, Fig. 8(a) shows the numerical results
for δy as a function of Z, which are well fit by δy = 1.0Z−1/2. This
agreement is reasonably good, considering the roughness of our
estimate for the cutoff distance.

In the second stage of motion, the defect orientation Ψ rotates
slightly, and the defect moves to the right or left with constant ẋ,
y, and Ψ. The elastic force on Ψ is −∂F/∂Ψ = −KδΨ, and the
drag force on Ψ is −∂D/∂ Ψ̇ = −D4ẋcosδΨ. Likewise, the elas-
tic force on x is zero, and the (passive plus active) drag force on
x is −∂D/∂ ẋ = −D1ẋ−D5 sinδΨ (neglecting the D2 anisotropy).
Balancing these two pairs of forces gives two simultaneous equa-
tions in δΨ and ẋ. The trivial solution to these equations is
δΨ = ẋ = 0. When the active coefficient D5 exceeds the critical
value Dcrit

5 = D1K/D4, there is a bifurcation to the nontrivial so-
lution

δΨ =∓

[
3
2

D5−Dcrit
5

Dcrit
5

]1/2

∝∓
[
Z−Zcrit

]1/2
,

ẋ =± 1
D1

[
3
2

Dcrit
5 (D5−Dcrit

5 )

]1/2
∝±

[
Z−Zcrit

]1/2
. (73)

Hence, we expect a classic square-root bifurcation as a function of
activity, beyond a finite critical activity. For comparison, Fig. 8(b)
shows the numerical results for velocity ẋ as a function of Z.
We can see the bifurcation at Zcrit, with the velocity scaling as
a square root for activity just above that point. Hence, the macro-
scopic view of defect dynamics effectively describes this instabil-
ity.

4 Discussion
In this paper, we have combined the concept of defects as parti-
cles moving under forces with the concept of defect orientation.
In this combined view, defects are effective particles with both
position and orientation. Forces may act to change the position,
orientation, or both. Hence, to predict the motion of defects, we
must balance the elastic and drag forces acting on both position
and orientation. For passive liquid crystals, the concept of defect
orientation is moderately important, because it is an additional
macroscopic degree of freedom, which can modify the elastic and
drag forces. For active liquid crystals, the concept of defect ori-
entation is even more important, because it defines the direction
of the active force. In particular, +1/2 defects move as particles
with a vector orientation, in a characteristic direction, while −1/2
defects move as particles with three-fold symmetry.

In addition to these specific results about defect orientation, we
have explored the general formalism of the Rayleigh dissipation
function as an approach to model the dynamics of liquid crystals.
We see that this formalism can describe active dynamics, with
activity appearing as a negative contribution to the dissipation.
Of course, this negative contribution is not exactly dissipation; it
might better be called the rate of energy input. Even so, it en-
ters the dissipation function in a formal way to give the same
equations of motion that have already been derived from an ac-
tive stress tensor. Hence, it allows active forces to be modeled
through the same approach as passive drag forces. We also see
that the dissipation function formalism provides a way to coarse-
grain the dynamics. By equating the dissipation functions cal-
culated through different methods, one can go from the hydro-
dynamic theory of the director and velocity fields to the more
macroscopic description of defects as effective oriented particles.

The greatest strength of the macroscopic description of defects
as particles is to provide an intuitive understanding of defect mo-
tion. By considering all the forces acting on defect position and
orientation, we can see how defects will move in either passive or
active liquid crystals. The usefulness of this approach is demon-
strated in the example of Sec. 3.3. In the macroscopic view of the
defect as an oriented particle pushing against a wall, we can eas-
ily see that it should be stationary for low activity, but it should tilt
and move horizontally for high activity. By contrast, in the hydro-
dynamic theory of the director and velocity fields, it is challenging
to solve the partial differential equations for time evolution, and
the result is not obvious.

By contrast, the greatest weakness of the macroscopic descrip-
tion is that the macroscopic drag coefficients D1 through D5 di-
verge logarithmically, or even more severely, as the cutoff length
scale rmax → ∞. These divergences occur because defects create
long-range distortions in the nematic director field, which only
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decay slowly with distance from the defect core. Because of these
divergences, the drag coefficients can change with the defect en-
vironment, especially as a defect gets close to a boundary or to
other defects. That change is seen explicitly in the first stage of
motion in Sec. 3.3, in the scaling behavior of δy with activity.
This dependence on environment makes it more difficult to use
the macroscopic approach for quantitative predictions of motion.

We note that 3D liquid crystals exhibit other types of moving
structures, which are more localized than the 2D disclination de-
fects studied here. These structures include skyrmions, topolog-
ical configurations of a 3D director field, which “squirm” under
an applied electric field.56 They also include bullet-like solitons,
which form under an electric field and move rapidly across a
sample.57 In future work, the macroscopic approach to dynam-
ics might be applied to these structures. Because the director
distortions are localized, we expect that all of the integrals for
drag coefficients should converge. As a result, these structures
might be even more effectively described as particles, with drag
properties that are less dependent on their environment.

We would like to thank A. Baskaran for helpful discussions.
This work was supported by National Science Foundation Grant
No. DMR-1409658.

References

1 I. Chuang, R. Durrer, N. Turok and B. Yurke, Science, 1991,
251, 1336–1342.

2 M. J. Bowick, L. Chandar, E. A. Schiff and A. M. Srivastava,
Science, 1994, 263, 943–945.

3 A. Pargellis, N. Turok and B. Yurke, Phys. Rev. Lett., 1991, 67,
1570–1573.

4 A. N. Pargellis, P. Finn, J. W. Goodby, P. Panizza, B. Yurke and
P. E. Cladis, Phys. Rev. A, 1992, 46, 7765–7776.

5 P. Oswald and J. Ignes-Mullol, Phys. Rev. Lett., 2005, 95,
027801.

6 C. Blanc, D. Svenšek, S. Žumer and M. Nobili, Phys. Rev. Lett.,
2005, 95, 097802.

7 R. Stannarius, C. Bohley and A. Eremin, Phys. Rev. Lett., 2006,
97, 097802.

8 I. Dierking, M. Ravnik, E. Lark, J. Healey, G. P. Alexander and
J. M. Yeomans, Phys. Rev. E, 2012, 85, 021703.

9 R. R. Guimaraes, R. S. Mendes, P. R. G. Fernandes and
H. Mukai, J. Phys. Condens. Matter, 2013, 25, 404203.

10 Y.-K. Kim, S. V. Shiyanovskii and O. D. Lavrentovich, J. Phys.
Condens. Matter, 2013, 25, 404202.

11 R. Stannarius and K. Harth, Phys. Rev. Lett., 2016, 117,
157801.

12 T. Sanchez, D. T. N. Chen, S. J. DeCamp, M. Heymann and
Z. Dogic, Nature, 2012, 491, 431–434.

13 F. C. Keber, E. Loiseau, T. Sanchez, S. J. DeCamp, L. Giomi,
M. J. Bowick, M. C. Marchetti, Z. Dogic and A. R. Bausch,
Science, 2014, 345, 1135–1139.

14 S. J. DeCamp, G. S. Redner, A. Baskaran, M. F. Hagan and
Z. Dogic, Nat. Mater., 2015, 14, 1110–1115.

15 J. L. Ericksen, Arch. Ration. Mech. Anal., 1960, 4, 231–237.

16 J. L. Ericksen, Trans. Soc. Rheol., 1961, 5, 23–34.
17 F. M. Leslie, Q. J. Mech. Appl. Math, 1966, 19, 357–370.
18 F. M. Leslie, Arch. Ration. Mech. Anal., 1968, 28, 265–283.
19 A. Beris and B. Edwards, Thermodynamics of Flowing Systems,

Oxford, 1994.
20 G. Tóth, C. Denniston and J. M. Yeomans, Phys. Rev. Lett.,

2002, 88, 105504.
21 D. Svenšek and S. Žumer, Phys. Rev. Lett., 2003, 90, 155501.
22 R. A. Simha and S. Ramaswamy, Phys. Rev. Lett., 2002, 89,

058101.
23 M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool,

J. Prost, M. Rao and R. A. Simha, Rev. Mod. Phys., 2013, 85,
1143–1189.

24 J. Prost, F. Jülicher and J.-F. Joanny, Nature Physics, 2015, 11,
111–117.

25 S. Ramaswamy, J. Stat. Mech. Theory Exp., 2017, 2017,
054002.

26 A. Doostmohammadi, J. Ignés-Mullol, J. M. Yeomans and
F. Sagués, Nat. Commun., 2018, 9, 3246.

27 C. M. Dafermos, Q. J. Mech. Appl. Math, 1970, 23, 49–64.
28 H. Imura and K. Okano, Phys. Lett. A, 1973, 42, 403–404.
29 L. M. Pismen and J. D. Rodriguez, Phys. Rev. A, 1990, 42,

2471–2474.
30 G. Ryskin and M. Kremenetsky, Phys. Rev. Lett., 1991, 67,

1574–1577.
31 C. Denniston, Phys. Rev. B, 1996, 54, 6272–6275.
32 L. Radzihovsky, Phys. Rev. Lett., 2015, 115, 247801.
33 E. I. Kats, V. V. Lebedev and S. V. Malinin, J. Exp. Theor. Phys.,

2002, 95, 714–727.
34 A. M. Sonnet, Continuum Mech. Thermodyn., 2005, 17, 287–

295.
35 A. M. Sonnet and E. G. Virga, Liquid Crystals, 2009, 36, 1185–

1192.
36 L. Giomi, M. J. Bowick, X. Ma and M. C. Marchetti, Phys. Rev.

Lett., 2013, 110, 228101.
37 L. M. Pismen, Phys. Rev. E, 2013, 88, 050502.
38 L. Giomi, M. J. Bowick, P. Mishra, R. Sknepnek and M. C.

Marchetti, Philos. Trans. Royal Soc. A, 2014, 372, 20130365.
39 R. Zhang, N. Kumar, J. L. Ross, M. L. Gardel and J. J. de Pablo,

Proc. Natl. Acad. Sci. U.S.A., 2018, 115, E124–E133.
40 D. Cortese, J. Eggers and T. B. Liverpool, Phys. Rev. E, 2018,

97, 022704.
41 A. J. Vromans and L. Giomi, Soft Matter, 2016, 12, 6490–

6495.
42 X. Tang and J. V. Selinger, Soft Matter, 2017, 13, 5481–5490.
43 S. Shankar, S. Ramaswamy, M. C. Marchetti and M. J. Bowick,

Phys. Rev. Lett., 2018, 121, 108002.
44 G. Vertogen, Z. Naturforsch. A, 1983, 38, 1273–1275.
45 G. Vertogen and W. H. de Jeu, Thermotropic Liquid Crystals,

Fundamentals, Springer, 1988.
46 A. M. Sonnet and E. G. Virga, Phys. Rev. E, 2001, 64, 031705.
47 A. M. Sonnet and E. G. Virga, Dissipative Ordered Fluids: The-

ories for Liquid Crystals, Springer, 2012.

14 | 1–15Journal Name, [year], [vol.],

Page 14 of 17Soft Matter



48 M. Doi, J. Phys. Condens. Matter, 2011, 23, 284118.
49 I. W. Stewart, The Static and Dynamic Continuum Theory of

Liquid Crystals, Taylor & Francis, 2004.
50 G. Ryskin, J. Non-Newton. Fluid Mech., 1991, 39, 207–210.
51 A. Chakrabarty, A. Konya, F. Wang, J. V. Selinger, K. Sun and

Q.-H. Wei, Phys. Rev. Lett., 2013, 111, 160603.
52 P. Pieranski, M. H. Godinho and S. Čopar, Phys. Rev. E, 2016,
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In passive and active liquid crystals, topological defects can be described as oriented particles 
responding to elastic and drag forces.
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