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A Broader View on Jamming: From Spring Networks
to Circle Packings†

Varda F. Hagh,∗a Eric I. Corwin,b‡ Kenneth Stephenson,c‡ and M. F. Thorpea,d

Jamming occurs when objects like grains are packed tightly together (e.g. grain silos). It is highly
cooperative and can lead to phenomena like earthquakes, traffic jams, etc. In this paper we
point out the paramount importance of the underlying contact network for jammed systems; the
network must have one contact in excess of isostaticity and a finite bulk modulus. Isostatic means
that the number of degrees of freedom is exactly balanced by the number of constraints. This
defines a large class of networks that can be constructed without the necessity of packing particles
together compressively (either in the lab or computationally). One such construction, which we
explore here, involves setting up the Delaunay triangulation of a Poisson disk sampling and then
removing edges to maximize the bulk modulus until the isostatic plus one edge is reached. This
construction works in any dimensions and here we give results in 2D where we also show how
such networks can be transformed into disk packs.

1 Introduction
Amorphous materials are ubiquitous in nature, spanning such
disparate systems as granular media1, foams2, colloidal suspen-
sions3, and glasses4. Two decades ago it was suggested that the
jamming transition unified all of these systems into a common
framework5. Through this lens, one can see that many amor-
phous materials share unusual mechanical and vibrational prop-
erties at the transition from flowing to rigid, marked by the van-
ishing ratio of the shear to bulk modulus6 and the development
of an excess of low frequency vibrational modes about the Bo-
son peak7–9. For most amorphous systems, the external control
parameter which controls this transition is the packing fraction
or density of particles. However, recent results demonstrate that
density alone does not directly control the properties of the tran-
sition1. Instead, changes in density induce a change in the un-
derlying connectivity network and it is this underlying network
that determines the rigidity and related responses of any given
system.

Disordered packings of athermal frictionless particles are a
standard model for studying the jamming transition in amor-
phous materials. Every jammed system has a corresponding elas-
tic network that renders the physical properties of the original
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system10,11. Such networks are created by replacing the center
of mass of each particle with a vertex and adding a spring edge
between two vertices if their equivalent particles are in contact.
The spring network is a simple yet powerful model to study the
mechanical and vibrational properties of materials with dominant
short range interactions which is the case for the jammed systems.
The spring network model provides a linearized picture of the
complex physical systems and allows a full description of the me-
chanical response and rigidity of the material structures in terms
of their geometry12,13. The mechanical response of a spring net-
work to any external deformation can be calculated by solving
the set of linear equations of motions for the vertices while taking
into account the forces applied on each vertex by the springs that
are connected to it14. The rigidity of a spring network, on the
other hand, can be studied by looking at the balance between its
degrees of freedom and constraints. In a d dimensional network
with N vertices, each vertex has d degrees of freedom. There-
fore, the total number of degrees of freedom is dN. Connecting
any pair of vertices with a spring imposes a constraint on their
rigid motions. A network is said to be minimally rigid or isostatic
when its total number of degrees of freedom (dN) and constraints
(Ne that is the number of edges) are balanced in a way that the
number of floppy modes, F , are exactly zero. The Maxwell count
for an isostatic periodic network (meaning that the network is re-
peated in all d directions to cover the entire space) is given by:

F = dN−Ne−d = 0 (1)

with the dimension d = 2 in this paper. The last term is to make
sure that the d macroscopic translations are properly accounted
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for. All the constraints are assumed to be independent. If a net-
work has any number of edges in excess of isostaticity, it is said
to be over-constrained15.

The network embedding of a jammed system created in peri-
odic boundary conditions has exactly one edge in excess of iso-
staticity, meaning that there is only one state of self stress in the
system. A self stress is a state in which the edges are under com-
pression or tension while the net force on each vertex is zero. This
extra edge condition is necessary for the mechanical stability and
a finite bulk modulus15,16. We will refer to this as isostatic plus
one. We note that this is often referred to confusingly as isostatic
in the literature and we strongly discourage this usage. These sys-
tems are delicately balanced and a single edge present at isostaic
plus one does make a global difference at the isostatic point; no
matter how large the system.

In this paper, we define a jammed network as being at isostatic
plus one excess contact17,18 and having a finite bulk modulus. By
finite we mean O(1) and not O(1/N) which will go to zero as the
number of vertices N tends to infinity. When one edge is removed
from such a network, the network becomes isostatic everywhere,
with no stressed edges. We refer to this as locally isostatic19. This
is a stricter requirement than just applying Eq. (1) once globally,
as it requires that all subgraphs are also isostatic. Clearly just
applying Eq. (1) globally could give rise to subgraphs containing
states of self stress that are balanced by other regions containing
floppy modes and hinges, as happens when the edges are ran-
domly removed from a highly over-constrained spring network20.

With this definition, we are now free to adopt any construction
method that will achieve this. There is the traditional method
which packs particles together by compression and a new method
described here. Other definitions of jammed systems are available
(see Theorem 1 in ref.21) but we have found the above to be the
most useful in practice. Note that with the two main properties in
this definition, making jammed networks without packing phys-
ical particles together is not a trivial process. Because as stated
above, building spring networks by adding edges randomly to a
distribution of vertices or removing edges randomly from a net-
work that is above isostaticity, does not necessarily result in a net-
work with exactly one state of self stress and a finite bulk modulus
of O(1) 20. It is important to note that for randomly diluted spring
networks at the transition point, the ratio of the shear modulus
to the bulk modulus is not zero but finite22. In order to achieve a
zero value for the ratio of the shear to bulk moduli, it is necessary
to go beyond random dilution of network models to introduce a
global self-organization into the network and methods to do this
appropriately are introduced in this paper.

The goal of this paper is to point out the fundamental impor-
tance of the two properties used in the new definition. This is
achieved by first showing that a special procedure is required
to build spring networks that hold these properties and then by
showing that networks with these properties display all the other
physical properties of jammed networks. Most work on jamming
has focused on the compressive packing of objects like disks and
spheres, while the jamming phenomenon is much more general.
Therefore it is important to be able to prepare jammed systems in
different ways that avoid compressive packing. This has some ma-

jor benefits, perhaps of most importance is it broadens our view-
point as to which materials belong in the class of jammed materi-
als and why they should have similar properties. It also explicitly
highlights the role of geometry and global self-organization which
is not always so clear in the compressed jammed packs.

2 A New Approach to Jamming
Traditional computational methods available to create jammed
packings, usually with disks or spheres, include some mixture
of molecular dynamics, event driven dynamics, and energy mini-
mization schemes18,23–27. The new method introduced here, pro-
duces a jammed network with precisely one state of self stress and
expands the set of what was previously accepted as jammed. The
new approach uses an algorithm that allows for precise control
over the number of contacts in excess of isostaticity28–30. We fo-
cus on the network as being fundamental to the jammed state and
show that in two dimensions, the network can always be replaced
by a disk pack, as well as vice-versa.

For a non-crystalline system to be jammed it is necessary but
not sufficient for it to be isostatic plus one. An additional degree
of cooperativity needs to be introduced by demanding that the
bulk modulus drops from finite to zero as a single edge is removed
in going from isostatic plus one to the isostatic state. A locally
isostatic network can be easily achieved by randomly removing
stressed edges from a highly over-constrained network, but the
resulting network will not necessarily have a finite bulk modulus
at isostatic plus one20. Therefore the finiteness of bulk modulus
does not follow from the system being locally isostatic when an
edge is removed. A convenient way to characterize the extreme
cooperativity of jammed networks is through two indexes s and
h, where s measures the fraction of stressed edges, when any one
additional edge is added to an isostatic network, and h measures
the fraction of hinged vertices when any one edge is removed.
This comes entirely from the static properties, using a standard
integer algorithm named pebble game22,31, and is a very conve-
nient way to establish the marginality of jammed networks with-
out getting into the details of low frequency dynamics32,33 which
is discussed in detail in section 5. If rattlers are removed, both
locally isostatic and jammed networks can have s = 1 and h = 1
20,34, so this cannot be used to distinguish between them. Hence
we need to include in the definition of jammed states that the
bulk modulus is finite at isostatic plus one.

The new method to generate polydisperse jammed packs at
zero temperature does not require exploring the entire energy
landscape to bring the system into zero internal energy and iso-
staticity. Instead, it builds the system within a single local energy
minimum. We try to keep cavities to a minimum so all packing
fractions are within the range 0.77 < φ < 0.82 after removing the
rattlers.

3 Computational Method
This new method is based on a pruning algorithm that is used to
manipulate and control the elastic properties of disordered har-
monic spring networks35. These disordered networks are usu-
ally created by minimizing the energy of N repulsive frictionless
particles in a periodic box and stopping at a coordination that is
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(a) (b) (c)

Fig. 1 a) Delaunay triangulation of a Poisson disk sampling with 512 points. b) The same network at the isostatic plus one, after pruning edges that
minimally reduce the bulk modulus and removing the rattlers. c) The network representation of a polydisperse jammed pack, formed by compressing
disks, with approximately same number of vertices as in part (b).
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Fig. 2 The ensemble averaged bulk K (red) and shear G (black) elastic
moduli of 100 samples with 512 vertices as the edges are removed from
mean coordination 〈z〉= 6 down to 〈z〉' 4. Both moduli are dimensionless
as all the spring constants are made equal and the moduli are normalized
so that K = 1 at 〈z〉 = 6. The yellow square, with a wide spread, shows
the average of bulk moduli for 100 samples generated by CirclePack.
The blue triangle, with a tighter spread, shows the average of bulk moduli
at isostatic plus one for 100 samples generated by conventional jamming
algorithms. The jammed systems have the same disk size distribution as
circle packings.

slightly above jamming transition point. Therefore they already
have encoded in them the properties of jamming and should not
be thought of as generic networks. By contrast, in this work we
generate the initial networks de novo and far from jamming, us-
ing computational geometry only. The disordered jamming-like
networks are then created by performing a simple set of steps. A

summary of the procedure is presented below:

• We start by generating N points in a box with periodic
boundary conditions that are distributed by Poisson disk
sampling36,37. The Poisson sampling is used for aesthetic
purposes only and is not necessary for the process. We have
confirmed that the same results are obtained when a uni-
form distribution of points is used.

• We then find the Delaunay triangulation of these points38.
To make the triangles look more regular, we move each
vertex to the centroid of the polygon formed by its near-
est neighbors, iteratively, until every vertex is at the cen-
troid of its neighbors. This step, is again for aesthetic pur-
poses and does not affect the final results reported in this
paper. An example of such generated samples is shown in
Figure 1-a. This geometrically generated network is highly
over-constrained and far from isostatic (with a mean coor-
dination of 〈z〉 = 2Ne/N = 6), therefore we need to remove
Nr redundant edges to push it down to the isostatic plus one
point as desired.

• There are
(Ne

Nr

)
ways to prune these Nr redundant edges from

the network. It is well known39,40 that the contribution
of a removed edge to the bulk modulus is largely indepen-
dent of its contribution to the shear modulus, although these
moduli cannot increase by removing an edge (41, pp. 110-
111). Since jammed packs maintain a finite bulk modulus
while the ratio of shear (G) and bulk (K) moduli vanishes
at jamming point, at each step we find and remove the edge
that maximizes the bulk modulus of the remaining network.
Maximizing the bulk modulus is not strictly necessary as sim-
ilar results can be obtained if we remove an edge randomly
from the top 20% of edges that have minimal contribution
to the changes in bulk modulus.

• We repeat the process, until we arrive at isostatic plus one
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where 〈z〉 ' 4. The resulting network has a finite bulk mod-
ulus and is shown in Figure 1-b. Figure 2 shows how the
bulk and shear elastic moduli of the network change as the
edges are pruned. The behavior of the shear modulus is rem-
iniscent of random rigidity percolation models20 as well as
jamming.

4 Results
At this point we have a spring network that is identical to the
network representation of a jammed pack (an example is shown
in Figure 1-c) in all the following aspects (none of which holds
for a percolating rigid network at the marginal point):

1. The network has one excess contact past mathematical iso-
staticity (isostatic plus one),

2. The bulk modulus of the network is finite and O(1),

3. The ratio of shear and bulk elastic moduli (G/K) scales
as ∆z = 〈z〉 − zJ where zJ is the mean coordination at the
marginal point,

4. It is marginal, as both its s and h indexes are equal to 134

and there is an excess of low excitation vibrational modes in
their density of states similar to that of a jammed system as
is shown in section 5

5. It is stable as revealed by the study of its dynamical matrix.
All of the eigenvalues are positive (except for the two trivial
translational eigenvectors whose eigenvalues are zero).

6. 100% of the forces due to the single state of self stress in
the network are positive definite and their distribution looks
similar to the force distribution of jammed systems (see sec-
tion 6). This is very different from randomly pruned net-
works at the critical point where the fraction of compressive
forces is about 50%.

The next step realizes this periodic network as a circle pack-
ing on a geometric torus (alternately called a disk pack42). Our
approach, in essence, replaces the interactions between particles,
which are represented by springs, by the interactions between
circles, which are based on well understood geometric principles.
The methods come from a topic called circle packing, which was
introduced by William Thurston43,44; the standard reference is
45, see in particular Chapter 9, and the computations are carried
out in the software CirclePack46.

A “circle packing” is a configuration of circles (or disks) which
realizes a prescribed pattern of tangencies. In our models, infor-
mation about circles that are tangent to one another is encoded
in the given periodic network, which is treated as a graph on a
topological torus. Each particle, a vertex in the network, will be
represented by a circle, and if two particles are connected by an
edge in the network, then their circles are required to be tan-
gent in the associated circle packing. Computations, however,
require a graph which is a triangulation. Generically, our net-
works will not be triangulations since we have to prune one third
of the edges from an original triangulation to get to the isostatic

(a)

(b)

Fig. 3 a) Packing generated by the pruning algorithm and CirclePack
b) Rattler free packing generated by standard algorithms.

plus one point. So, in any face bounded by four or more edges,
we temporarily introduce a single auxiliary vertex connected to
each of the network vertices defining that face. This augmented
network is a triangulation of a topological torus, and circle pack-
ing theory (see47 and45[Prop 9.1]) guarantees the existence of
a geometric torus and an associated circle packing on that torus.
This is where CirclePack comes in: it first computes the radii
of all the circles, then using these and the pattern of tangencies of
the triangulation, it lays the circles out as a periodic circle pack-
ing in the plane. The periodicity determines the geometric torus
on which the packing lives. Discarding the disks for the auxiliary
vertices leaves a circle packing with locations and radii for the
vertices of the original network, as in Figure 3-a.

There are two things to note about our computations. First,
theory guarantees that each computed circle packing is unique
up to scaling and rigid motions, that is, up to uniform scaling of
all radii and rotating or translating the configuration. However,
uniqueness depends on the method we have chosen for augment-
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ing the original network – namely, adding a single vertex in each
non-triangular cell. Other options to get triangulations will re-
sult in alternative circle packings that satisfy the constraints of
the original network. With continued refinement of our methods,
one might find physically meaningful options for augmentation
or one might add parameters available in more advanced circle
packing theory (see45 [Appendix E]). Second, we point out that
there are infinitely many distinct geometric tori. Mathematically
these are distinguished by what is known as conformal structure
(see, e.g.48); in practice, they are distinguished by the periodicity
of their layout in the plane. CirclePack computations yield a
unique geometric torus for each of our circle packings (depending
on triangulation as noted above). In the absence of anisotropy,
i.e., with materials having no preferred directions, the geome-
tries of the computed torus do not appear to us to be physically
pertinent.
CirclePack changes the geometrical configuration of ver-

tices. However, the connectivity of the system does not change
and the bulk modulus remains finite after this transformation
with a standard deviation of s= 0.09 for the samples studied here,
as can be seen in Figure 2.

The generated circle packing holds all but one of the properties
of the pruned networks discussed above. It is at isostatic plus one,
has a finite bulk modulus of O(1) and a vanishingly small shear
modulus of O(1/N). It is also marginal with s = h = 1, and stable
which means it would not change for a small enough compress-
decompress protocol. The difference is that not all the forces due
to the single state of self stress in the system (although a majority
of 72% to 99% of them in the samples studied here) are neces-
sarily positive definite (item 6 above). This comes as a result of
our non-unique mapping from the network to the disk packing. A
visualization of this type of change in the state of self stress of a
network can be found in section 6.

Every circle packing has a distribution of radii that can be as-
signed to particles in a standard molecular dynamics simulation
to generate a polydisperse 2D disk packing that can be compared
to the packing generated by the newly introduced algorithm.
In this approach, we first scale the radii of particles to achieve
a starting packing fraction well above the jamming transition;
typically packing fraction φJ ' 0.85 for disks. Particles interact
through a standard contact harmonic potential. The system is
minimized to its inherent structure at this initial density using a
quad-precision GPU implementation of the FIRE algorithm30,49.
Configurations at a desired excess number of contacts can be
achieved by exploiting the scaling of total energy U ∝ (φ − φJ)

2,
where φJ is the isostatic jamming density. The system is succes-
sively brought to lower energies and thus lower numbers of ex-
cess contacts by rescaling the radii and re-minimizing. The rescal-
ings are chosen to achieve approximately 10 steps per decade of
φ−φJ . This process continues until the number of excess contacts
is reduced to the desired value. At each density the number of ex-
cess contacts is calculated on the rigid core of the system by first
removing rattler particles lacking at least d+1 non-cohemispheric
contacts. The blue triangle in Figure 2 shows the average bulk
modulus of 100 samples generated by this method. The standard
deviation is in order of s = 0.01, which is smaller than the stan-

dard deviation obtained from results of CirclePack.
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Fig. 4 (color online) The evolution of probability density function for
acoustic modes in disordered spring networks as the bonds are pruned
from 〈z〉 = 6 down to 〈z〉 ≈ 4 (isostatic plus one) while keeping the bulk
modulus finite. The dashed lines display Eq. (6) for the average elastic
moduli associated with each value of 〈z〉 shown on the colored curves.
The results are ensemble averaged over 100 samples, each with 512 ver-
tices.

There are measurables that are not universal - like the density,
pair distribution function, etc. These vary widely for conventional
jammed packs as well as in the jammed systems here, depending
largely upon the number of rattlers, the size of convex cavities
that are present, and the protocol that is being used to generate
the jammed packs. For instance, the average packing fraction of
100 test samples generated by CirclePack is φ ' 0.77 which is
lower than that of samples generated by our standard algorithm
where φ ' 0.82 after removing the rattlers. We emphasize again
that the circle packing construction used here is not unique and
does not create packings with all positive definite forces. This
then explains the lower density as it is well known that attractive
interactions (or indeed frictional interactions) allow one to create
critically jammed packings at significantly lower densities50. The
precise ways the disks of various radii are located is also not a
crucial issue and can vary from well mixed to some clustering.
Figure 3 shows the comparison of two samples with 512 particles.
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Fig. 5 (color online) a) The probability density function for vibrational
modes in 2D pruned networks (blue), their equivalent circle packs (red)
and jammed systems (black) in linear scale. b) The plot of part (a) in
logarithmic scale.

5 Comparison of the Vibrational Modes
One of the most important features of disordered systems such as
glasses and jamming is the excess of low frequency phonon modes
in their density of vibrational states compared to Debye’s predic-
tion for crystalline solids (Boson peak)7–9. Here we look into the
density of states (DOS) in the pruned network constructions and
their equivalent circle packs and compare the results to physically
jammed systems. First, we study the evolution of DOS in the dis-
ordered networks as they are pruned from 〈z〉= 6 to 〈z〉 ≈ 4. For a
2D spring network of area A, the number of allowed wave modes
between wave numbers 0 and q is51:

n(q) =
A

(2π)2 πq2 (2)

We assume the vibrational frequencies are low enough for the

dispersion relation to be almost linear for both longitudinal (L)
and transverse (T ) acoustic modes:

q =
ω

vα

(3)

where α = T,L. This means the number of vibrational modes
n(ω) is quadratic in frequency which leads to the following form
for density of states:

D(ω) =
dn(ω)

dω
=

A
2πv2

α

ω (4)

On the other hand, the longitudinal and transverse sound ve-
locities are related to the bulk (K) and shear (G) moduli of a 2D
spring network in the following form:

vL =

√
G+K

ρ

vT =

√
G
ρ

(5)

where ρ = N/A is the mass density. Here the mass density is equal
to the number density of the system since all vertices have unit
mass. By inserting Eq. (5) into Eq. (4) and using the normaliza-
tion gD (ω) = D(ω)/N so that

∫
gD (ω)dω = 1, we can write the

probability distribution function of the vibrational modes in terms
of the elastic moduli of the system52:

gD (ω) =
ω

2π
(

1
G
+

1
G+K

) (6)

The linearity of gD (ω) versus ω is the Debye-like low frequency
behavior that is expected to be seen in any material with non-zero
values of sound velocities. This is observed for networks far from
marginality in the lower left corner of Figure 4. When the edges
with smallest contribution to the bulk modulus are removed from
a fully triangulated disordered spring network, the shear modulus
approaches zero almost linearly, while the bulk modulus remains
finite. Therefore the first term on the RHS of Eq. (6) diverges and
the density of states becomes flat near the transition point which
is a characteristic of the vibrational modes in disordered systems
at their marginal transition point1,52,53.

Figure 5 shows the plots of gD (ω) for three types of systems
studied here: the pruned networks at isostatic plus one, their
equivalent circle packings, and the jammed systems generated by
using the size distribution of circle packs both in linear and log-
arithmic scale. The marginality of all these systems is evident by
their flat density of states at low frequencies.

6 Comparison of the Force Networks
In this section, we first display a visualization of the changes
in the state of self stress of a network before and after running
CirclePack. Then, we show the distributions of the forces in
our studied systems. The transformation of the state of self stress
in a network is shown in Figure 6, where the edges that carry a
positive definite force are colored in black and edges that carry a
negative force are shown in red (the width of each edge is pro-
portional to the magnitude of the force along that edge). As can
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be seen from this figure, all the forces in a pruned network are
positive definite. Therefore, there are no red edges in the image
of panel 6-a. It is only after running the CirclePack that tensile
forces appear. In Figure 6-b, only 6% of the forces are negative.
Note that these two networks have the exact same connectivity
and the reason they appear different is because the CirclePack
algorithm changes the positions of the vertices.

(a)

(b)

Fig. 6 (color online) a) A network created by the pruning algorithm be-
fore running the CirclePack. The edges with positive definite forces
are colored black. There are no edges with negative forces in this net-
work. b) The same network after running the CirclePack, which leads
to changes in the positions of the vertices. The black edges represent
contacts with positive definite forces and the red edges show contacts
that carry negative forces. The widths of the lines are proportional to the
magnitudes of the forces.

Figure 7 shows the probability distribution of forces in the sin-
gle state of self stress at isostatic plus one for the pruned net-
works, circle packings, and jammed systems. The logarithmic
plot in panel 7-b shows this probability distribution for pruned
networks and jamming only. While they look quite similar on this
scale, a plot of the cumulative distribution of forces (Figure 8)
reveals an intriguing distinction. The physically jammed packing
has a low force scaling exponent for all forces that is consistent

with the mean field full-replica symmetry breaking results30, as
is expected for a jamming transition that happens deep within the
marginal glass phase. However, the pruned network has an expo-
nent in the CDF consistent with 1, which matches well with the
single-replica symmetry breaking result for stable glasses54.
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Fig. 7 (color online) a) The probability distribution function of forces for
pruned networks, circle packings, and jammed systems at isostatic plus
one. b) The force probability distribution functions in a logarithmic scale
for pruned networks and jammed systems only. Both exhibit a nearly
constant distribution of forces for small forces.
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Fig. 8 (color online) The cumulative distribution function of forces for
pruned networks and jamming at isostatic plus one. Best fit power laws
are over plotted in red for the pruned networks and teal for the jammed
systems.

7 Discussion
In this paper, we have shown that the essence of the jamming
transition is the underlying network involved at the isostatic plus
one point. But another ingredient is required - that the bulk mod-
ulus goes from a finite value to zero as one constraint is removed
to take the network from isostatic plus one to isostatic. This not
only clarifies the nature of the jamming transition, but shows that
conventionally jammed networks (formed by compacting parti-
cles together) are part of a larger group of networks controlled
by topology with the added cooperative geometric ingredient that
the bulk modulus remains finite. Such cooperativity is essential
to make the network jammed, and much more restrictive than
merely being isostatic. We have also demonstrated that all of the
interesting macroscopic properties of jammed matter derive from
the marginality of the system and its bulk mechanical properties.
As such, both our generated networks and their equivalent circle
packings behave as properly jammed systems for all bulk interro-
gations. However, the microscopic properties of jamming are only
satisfied by the pruned networks and not the circle packs. This is
because the force distributions in pruned networks and jamming
follow similar scaling laws, whereas the circle packings fail to do
so since forces are not positive everywhere. We note finally that in
all the networks discussed in this paper, the shear modulus goes
from O(1/N) at isostatic plus one, to zero at isostatic. The ideas in
this paper generalize easily to any dimensions, but the final step
of going from a network to a hypersphere pack is only possible in
2D.

8 Conflicts of interest
There are no conflicts to declare.

9 Acknowledgements
We acknowledge discussions with Wouter Ellenbroek and Louis
Theran on the properties of isostatic disordered networks. The

work at Arizona State University is supported by the National Sci-
ence Foundation under grant DMS 1564468. EIC is supported
by the NSF under Career Grant No. DMR-1255370 and a grant
from the Simons Foundation No. 454939. This work used the Ex-
treme Science and Engineering Discovery Environment (XSEDE),
which is supported by National Science Foundation grant number
ACI-1548562. Specifically, it used the Bridges system, which is
supported by NSF award number ACI-1445606, at the Pittsburgh
Supercomputing Center (PSC). This work also used the University
of Oregon high performance computer, Talapas. We gratefully ac-
knowledge the support of NVIDIA Corporation with the donation
of a Titan X Pascal GPU used in part for this research.

References

1 M. Van Hecke, Journal of Physics: Condensed Matter, 2009,
22, 033101.

2 F. Bolton and D. Weaire, Physical review letters, 1990, 65,
3449.

3 J. G. Puckett, F. Lechenault and K. E. Daniels, Physical Review
E, 2011, 83, 041301.

4 C. Brito and M. Wyart, EPL (Europhysics Letters), 2006, 76,
149.

5 A. J. Liu and S. R. Nagel, Nature, 1998, 396, 21.
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