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Abstract

The common pressure sensitive adhesive (PSA) tape is a composite consisting of a stiff backing and a soft adhesive layer.  
A simple and common way to test how adhesive tapes respond to large shear deformations is the zero degree peel test.  
Because the backing is very stiff compared to the adhesive layer, the region where the adhesive layer is subjected to large 
shear can be hundreds of times its thickness.  We use a large deformation hyperelastic model to study the stress and 
deformation fields in the adhesive layer in this test.  We present a closed-form solution for the stress field in the adhesive 
layer and use this solution to determine how load is transferred from the backing layer to the adhesive.  Our analytical 
model is then compared with finite element results and except for a small region near the peel front, the predicted stress 
and deformation agree well with the finite element model. Interestingly, we find very different results than the classical 
linear theory established by Kaelble1 . In particular for large deformations, our analysis shows that the lateral stresses 
(parallel to the rigid substrate) are much larger than the shear stress in the adhesive layer.  The discrepancy in stress state 
and deformation state with the linear theory is particularly large near the peel front which we study with a finite element 
model. These new results will be very useful to interpret experiments and in particular to identify the high stress regions 
where failure is likely to initiate in zero-degree peel tests also called shear resistance tests in the PSA industry. 

1 Introduction

A common way of studying the adhesive properties of pressure sensitive adhesives (PSA) is the tack test, where a flat steel  
indenter is retracted after being pressed in contact with the surface of a thin adhesive layer2–6. The force versus indenter 
displacement curve in this test provides important insights on the failure mechanism under predominantly hydrostatic 
tension7,8.  However, in applications, PSA are often used as lap joints where shear deformation is dominant.  In industry, 
the standard test for shear strength is to conduct a load-controlled zero degree peel test9,10 to measure the time needed 
to detach a standardized area of the adhesive tape from a stiff substrate under a fixed moderate load (e.g. by a hanging 
weight, schematics shown in Fig. 1)11,12.  Alternatively PSA can be debonded in shear in displacement controlled mode as 
for example proposed by Sosson et al.13 .  In this method, a soft thin adhesive layer is sheared between a glass 
hemispherical indenter and a flat glass substrate.  Nevertheless, the standard load controlled test is widely accepted and 
commonly used because of its practical relevance.

There is a large literature on the mechanics of the peel adhesion test including peeling of heterogeneous films14 and the 
failure of lap shear joints15, here we focus on the zero degree peel test.  A well-known analysis of the peel test for all peel 
angles was given by Kaelble in 19601.  In his analysis, the backing layer is modeled as an elastic plate.  Since the deformation 
of the backing is assumed to be small, the bending and in-plane stresses are decoupled.  The tension in the backing layer 
is coupled to the shear stress of the adhesive layer by the shear lag model16,17.  Kaelble’s result for the zero degree peel 
test will be discussed in more detail below.  More recently, the zero degree peel test has been studied by several research 
groups, with different emphasis.  For example, Ponce et al.18 and Collino et al.19 studied the effect of interfacial friction on 
peeling.  The mechanics of their analysis is based on a simplified version of Kaelble’s peel model – they use a shear lag 
model to study the shear stress in the adhesive layer and ignore the bending of the backing layer which induces a normal 
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stress concentration at the peel front.  Cohen et al.20 studied failure of a thin adhesive pad under loading parallel to the 
substrate.  Mojdehi et al 17 used the same shear-lag approach to study the effect of compliance on the fracture mechanics 
of the zero degree peel.  Their analysis reconfirms the classical fracture mechanics result that load train compliance should 
not affect the bond strength, whereas if the area to compliance ratio is used as a fracture parameter, it directly influences 
the bond strength18,21–25.  

Two key assumptions in the standard analysis of the zero degree peel adhesion test require further study. The first of 
these assumes that the deformation of the adhesive layer is sufficiently small so that it can be modeled as a linear elastic 
solid. However, in practice, PSA are only lightly cross-linked to provide creep resistance and they are thus very soft26. A 
typical nominal stress versus stretch behavior is shown in Fig. 2. For small strains, the curve is linear; at larger strains, the 
material softens, as indicated by a decrease in tangent modulus; finally, at high strains, the adhesive hardens. Although 
extensive investigations of unloading of PSA have rarely been published, most of the deformation is reversible and elastic 
although it is strain rate dependent27,28.

Given that in a zero degree peel test, the nominal shear strain of the adhesive layer can become as high as 1000%, the 
assumption of linear elasticity cannot possibly hold. In this work, we will show that large deformation induces a lateral 
stress (parallel to the rigid substrate) that is much larger than the shear stress in the adhesive.

The local failure mechanisms (cohesive or interfacial failure or mixture of both, cavitation or interfacial debonding) are 
sensitive to the state of stress at the peel front and this sensitivity brings up another key assumption: that is, the use of a 
structural mechanics model to analyze the stress and deformation state near the peel front. Since the peel front is the tip 
of an interface crack, the stress state there is highly concentrated and three dimensional. For example, if the adhesive 
were modeled as linearly elastic, then in a full 3D analysis the stresses will have an inverse square root singularity as the 
peel front is approached29.  Peel test for a zero thickness adhesive layer using fracture mechanics approach was studied 
in detail by Thouless and Yang30. In their analysis, the peel front is a mixed mode crack characterized by Mode I and Mode 
II stress intensity factors which can be related to the applied peel force for a given peel angle. However, their results are 
not directly applicable to PSA because (1) they assume small strain linear elasticity; (2) their adhesive layer thickness is 
zero, whereas in our case the adhesive layer thickness is comparable to the backing layer thickness.  A specific difficulty is 
that in the linear theory, the mode-I stress intensity factor becomes negative as the peel angle is reduced to zero.  It is 
difficult to imagine how the interface can fail under infinite compression.  In summary, a plate model (linear or nonlinear) 
cannot accurately capture the stress state at the peel front.  Finally, most structural models in the literature assume that 
the stress and deformation in the adhesive layer are independent of the thickness coordinate ( in Fig. 1).  While this 2x
assumption is reasonable at distances far away from the peel front, it breaks down as the peel front is approached.  Indeed, 
our analysis shows that the normal stress on the interface between the adhesive/substrate and the adhesive/backing 
interface can have opposite sign.

The goal of this study is to develop a model for the zero degree peel test without the usual assumption of small strains 
and linear elasticity.  Thus, the adhesive can sustain arbitrarily large deformations.  In addition, our material model also 
captures the type of nonlinear elastic behavior that is exhibited by PSA.  Our focus is on adhesive tapes with backing much 
stiffer than the adhesive. This feature implies that the region of the tape that is supporting shear can be much greater 
than the thickness of the adhesive layer.  In this work we assume that the bond length L is infinite, that is, it is long in 
comparison with the load transfer length. Fig. 1b shows that the tape can be divided into three regions: region 1 is close 
to the peel front, where there is a large stress concentration and where a nonlinear finite element (FE) analysis is 
necessary.  The length of region 1 is on the order of several adhesive layer thicknesses (this will be confirmed by FE 
analysis).  Region 2 occupies the rest of the bonded tape, except for a small region near the right edge, which we called 
region 3. In this work, region 3 does not exist since L is taken to be infinite. The stresses in region 2 can still be very large, 
and are not necessarily dominated by shear.  We determine the stresses and strains in this region in closed form using a 
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combination of asymptotic analysis and a nonlinear shear lag model.  Our result is then verified by a nonlinear finite 
element model (FEM).

2 Model and geometry

The adhesive tape is modeled as a composite consisting of a stiff backing bonded to the soft adhesive (cf. Fig. 1). The 
thickness of the backing and the adhesive layer are assumed to be uniform and denoted by hb and h respectively. A 
constant force F is applied to the tape at one end (e.g. by a hanging weight).  A segment of the tape, of length L, is adhered 
to a flat glass substrate, whereas the rest of the tape hangs over the edge. In practice, the bond length L can be thousands 
of times longer than the tape thickness . bh h

Fig. 1.  Schematics of a zero degree peel test.  (a) L is the bond length and is assumed to be infinite in extent. The adhesive and backing 
thickness are denoted by h and hb respectively. The applied force F is usually provided by a hanging weight.  (b) The overhanging 
adhesive surface up to the peel front (x1<0, x2=0) can be seen as an interface crack.  Region 1 is close to the peel front, and region 2 
occupies the rest of bond length except a small region near the right edge, which we called region 3. In this work, region 3 does not 
exist since L is taken to be infinite.  

The left bonded edge of the substrate coincides with the origin of a fixed coordinate system .   The portion of tape 1 2( , )x x

in contact with the substrate occupies . The peel arm is the tape that is not in contact with the substrate. Since  1 0,x L

the width of the tape b is much greater than its thickness, we assume plane strain deformation where the out of plane 
displacement  is zero and the in plane displacements  ( ) depend only on the in-plane coordinates .  3u u   1,2 1 2( , )x x

Since the applied force is uniformly distributed across its width, the appropriate force measured in a plane strain analysis 
is  which has unit of force per unit length.  Before load is applied, the tape is assumed to be stress free and a material F b/
point in the tape is identified by its coordinates . After load is applied, the material point occupies  with 1 2( , )x x 1 2( , )y y

respect to the same coordinate system, thus, .   y x u

To motivate our model, we note that typical shear modulus of a pressure-sensitive-adhesive is less than 0.1 MPa whereas 
the Young’s modulus of the backing layer is on the order of a few GPa31. This large difference results in a very long portion 
of the adhesive that is carrying load which we shall call the load transfer length  (  for a backing layer that is LTl  LTl

infinitely stiff).  Further, since the modulus of the substrate is even larger than the backing, it is modeled as rigid.  For a 
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good general purpose adhesive such as an office tape, the nominal shear strain of the adhesive layer can approach or 
exceed 1000 percent before slip or failure occurs32–35, so any realistic model of this layer has to consider large deformation.  

The contact region  can be divided into three distinct regions. Since the substrate is rigid, the peel front at   0,L  1 2 0x x

can be viewed as the tip of an interface crack (see Fig. 1b).  Near this edge, the stresses and deformation are dominated 
by the presence of the crack.   This region of high stress is called region 1 and occupies , where d is on the order   1 ,x d d

of the tape thickness.  Likewise, the right edge at  is a corner, but since the bond length is very long the load  1 2, 0x L x
transmitted to this corner is small, further, the strength of the singularity at the corner is lower than that at the crack tip 
(region 3 consists of material near this corner). In a typical test, , so most the tape that is in contact occupies  LTL l h
the region in between the two edges (region 2). However, since the adhesive layer is very thin in comparison to , the LTl

adhesive within  can be subjected to very large shear strain, on the order of 1000%. In most models of zero  1 , LTx d l

degree peel, the adhesive in this region is assumed to be under a state of pure shear stress, where other stress components 
are neglected since they are assumed to be small.  While this approximation is valid for small deformation, it breaks down 
when the deformation is large, as we will demonstrate below.  In the following, we shall assume  ( ) so  LTL l  / LTL l
we can ignore the right edge or region 3 in our analysis.

The nominal stress  versus stretch ratio  of a typical adhesive in a uniaxial test can be found in Chopin et al.32 and P 
Deplace et al.36, and is represented sufficiently well by a three term Yeoh’s hyper-elastic model in Fig. 2.  It should be 
noted that there is no universally accepted model for the constitutive behavior of adhesives, here we use the simplest 
model that can capture many of the key features observed in a tensile test36.  These are: for small stretch ratios, the stress 
versus stretch is approximately linear; the slope of the stress versus stretch curve decreases (softening) at immediate 
stretches; at large stretches the stress increases rapidly as the adhesive strain hardens.

Fig. 2  Nominal stress P (normalizes by the shear modulus µ) versus stretch ratio  for a Yeoh’s material with three terms ,  1 0.5C

 and . 2 0.0237C 3 0.00166C

The strain energy density function  of Yeoh’s material has the form:

, (1a) 


  
N

k
k

k

C I1
1

3

where N is the number of terms, are material constants with units of stress and  is the trace of the right Cauchy-kC I1

Green tensor, i.e.,

, (1b) I T
1 tr F F
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where F is the deformation gradient tensor and the superscript T denotes its transpose.  Here the material is assumed to 
be incompressible.  In particular,  is the small strain shear modulus.  Note that for , Yeoh’s model 1 2C 2 3 0 C C
reduces to the neo-Hookean model.  However, the normalized nominal stress of a neo-Hookean material in a uniaxial test 
does not exhibit softening and hardening behaviors (see ESI for details), and hence is not expected to capture real adhesive 
behavior such as those studied in Chopin et al.32 or Deplace et al.36

2.1 Load transfer Length LTl

The variation of shear stresses along the adhesive layer can be modeled using the well-known shear-lag model. Denote 
the shear stress on the interface between the backing and the adhesive by  and the horizontal displacement of the 
backing layer by , i.e., it is uniform in the thickness direction. In the shear-lag model,  is in general a nonlinear  1bu x 

function of the average shear strain .  Here we have used the usual assumption that the backing layer is under   /bu h

uniaxial tension and , that is, displacements are continuous across the backing/adhesive interface.     b x u xu x h1 1 2,

In the shear-lag model, 

 , (2)   





2

2
1

ˆb bE h h d
dx

where  is the plane strain modulus of the backing and  is the normalized shear stress. The quantity
bE        ˆ /

(3) /LT b bl E h h

is defined as the load transfer length.  Indeed, if we normalize distance by

, (4)  1 / LTx l

then (2) becomes

. (5)   



2

2
ˆd

d

Note  and since  is typically on the same order as , .   This means that the load / /LT b bl h E h h bh h / /LT bl h E

transfer length  is hundreds of times the adhesive thickness. Note, in order to use the shear-lag model, we have assumed LTl

that the normal traction on the backing/adhesive interface is zero, this will be justified below.

2.2 Analysis of Region 2

We first give an approximate analysis of the stress state in region 2. Our analysis is verified by a nonlinear finite element 
model. Our idea is based on the fact the modulus of the backing layer is at least 4 orders of magnitude higher than the 
adhesive, as a result, the variation of stress/deformation along the x1 direction must be very slow. Hence the local stress 
versus strain relation can be determined by assuming that the backing layer is rigid (this will be verified below).  Our 
analysis below is based on finite strain theory.

The symmetric true stress tensor  in the adhesive layer is related to the deformation gradient tensor F byτ

, (6)


d
p

dI1

2τ Ι B 

where is the left Cauchy-Green tensor, p is the Lagrange multiplier or pressure needed to enforce incompressibility TB = FF
and  is the identity tensor.   In plane strain,  is:I F
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(7)
 

  
  

1 1 1 2

2 1 2 2

1 , , 0
, 1 , 0 ,

0 0 1

u u
u uF =

where  ( ).   The in-plane components of  can be calculated using (7), they are:     , /u u x   , 1, 2 B

, (8a)      
2 2

11 1 1 1 21 , , 0B u u

, (8b)       12 21 1 1 2 1 2 2 1 21 , , 1 , ,B B u u u u

, (8c)     2 2
22 2 1 2 2, 1 ,B u u

Also,  is I1

 (9)             I u u u u2 2 2 2
1 1 1 2 1 2 2 1 21 , , 1 , , 1

Define the shear strain (which corresponds to the average shear strain  in previous section).  For large shear   1 2,u 
strain, , we assume  1

. (10) u u u2 1 1 1 2 2, , , , , 1

Equations (8) and (10) imply that 

, (11a)       
2 2 2

11 1 1 1 21 , ,B u u

. (11b)          12 1 1 2 1 2 2 1 2 2 21 , , 1 , , 1 ,B u u u u u

Since the material is incompressible, 

. (12)   T T det det det det 1B FF F F    2
11 22 12 1B B B

Equation (12) implies that 

. (13a)
  


2

12
22

11

1B
B

B

Substituting (11a) and (11b) into (13a) results in

. (13b)   2
22 2 21 ,B u

Substituting (13b) and (11a,b) into (12), the incompressibility condition (12) can be written as:

. (14) 1 1 2 2, , 0u u

consistent with our expectations that all normal strains are small as long as the adhesive is well-bonded to the glass 
substrate. Since the upper surface of the backing layer is exposed to air, we expect the normal stress  to vanish inside 22

region 2. By (6), this condition requires 

, (15a) p f I B1 22

where . Substituting (15a) into (6), we find   f I d dI1 12 /

. (15b)    f I B B11 1 11 22
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Substituting (13b) and (11a) into (15b), we find

. (15c)    f I 2
11 1

Finally, (6) and (11b) imply that

. (15d)       f I B f I12 1 12 1

Note 

, (15e) I 2
1 3

so  is a function of the shear strain . f I1 

Our analysis expresses all the true stress components as functions of the shear strain. Equations (15c,d) show that, for 
large shear strains, the dominant stress is  - not . Indeed, the ratio of  vanishes for large shear strain.  11 12     1

12 11/

Thus, the order of the in-plane true stress is: . Note that the equilibrium equations are satisfied if     11 12 22 0

the shear strain is independent of position, i.e., the backing layer is rigid.   

2.3 Relation between zero degree peel force and stress in adhesive layer

Having established that the local true stresses are related to the strains by the simple relationships (15c,d), we are in a 
position to study load diffusion using the shear lag model.  This will allow us to relate the shear strain  to the peel force.   
Equation (5) is nonlinear, but it can be solved exactly by making  the independent variable and  the dependent  
variable. An exact solution can be found for any incompressible hyper-elastic model where the strain energy density 
function depends only on . Here we report the result for the special case of a Yeoh’s material whereI1

:    
 

 
   

 

CC
f I 2 432

1
64

1

, (16a) 
  

  
 


  

  

 
    

   
 

    
 

LT

CC C
x
l CC C

2 4 232 2
0 0 0

01

2 4 232 2

221 1
1

ln ln
2 221 1

where  is the as yet unknown maximum shear strain at the origin.  Details of derivation can be found in the electronic  0

supplementary information (ESI). Equation (16a) dictates how the shear strain in the adhesive layer varies with position.   
Equation (16a) can be solved to yield the shear strain  as a function of normalized position  , i.e.,  1 / LTx l

, (16b)

     









    







         

     

2
2

24
2 32 2

0 2
0 0

2

221

e

CC CeA e
A A

where  (see ESI).  Note that the shear strain decays exponentially fast with     
  

      4 2 232 2
0 0 0 0

22 CC C
A

characteristic length equal to the load transfer length.  Since the stresses are related to the shear strains by (15c,d), they 
also decay exponentially fast away from the peel front.   

The maximum shear strain  can be related to the peel force  which is the integral of the shear stress along the  0 F b/
adhesive/backing interface.  The derivation of this relation is given in ESI, for a three term Yeoh’s solid, it is
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. (17)   
  

   
14 2 43

LT

b b

l

E h CC
F b h

h

*
2 432

0 0 0
22

/ 1

The force is negative since it points in the negative x1 direction.   Equation (17) can be solved exactly to determine  in  0

terms of F, the solution is37:

, (18a)    2
0 1 2

33
C

s s
C

where

 (18b-e)
   

 

1/3 1/3
2 3 2 3

1 2

3 22

2 2 2
2 2

3 3 3 3 3

,  ,

/
,     .

4 3 3 6 3LT

s r r q s r r q

F bC C C
r q

C C l C C C
 



     

     
         

      

Equations (18a-e) show that a nonlinear relation exists between the maximum shear strain and the peel force.  Finally, 
the shear stress  and the lateral normal stress  in the adhesive layer can be obtained in closed form by substituting 12 11

(16a,b) and (18a-e) into (15c,d).    In the limit of small strains, the solution above reduces to the result of Kaelble1 by 
formally setting .  For this case, the maximum shear strain  is directly proportional to the force.  Fig. 3 plots  2 3 0C C  0

the maximum shear strain  versus normalized peel force  determined by equation (17).  The linear  0    LTF F b l/ /

theory of Kaelble is also shown in the same figure (dashed line) for comparison. For large deformation, the linear theory 
considerably underestimates the force at the same strain  due to strain hardening. It is interesting to note that the  0

linear theory overestimates the force for shear strains between -2 and -4, this is due to the effect of strain softening.  We 
emphasize that the qualitative behavior of the nonlinear solution holds regardless of the choice of parameters chosen for 
the Yeoh model.  In the ESI, we plot two other sets of parameters to justify this statement.   

Fig. 4 plots the maximum normalized shear  and normal stress  against the normalized peel   max max
12 12 /   max max

11 11 /
force (solid lines).  The linear theory of Kaelble is plotted on the same figure (dashed lines) for comparison.  For the shear 
stress, the linear theory predicts a slope of one.  However, the nonlinear theory shows that the maximum shear stresses 
increases faster with increasing peel force. Indeed, equation (17) shows that in the limit where the shear strain is 

sufficiently large so that , that is, when strain hardening dominates,   
  

  2 4 43 32
0 0 0

2 22
1

C CC

.   In particular, note that the linear theory assumes  whereas the lateral normal stress is  


  LT
C

F b l 33
0

2
/  11 0

much larger than the shear stress at large deformation.  This conclusion is always valid and is independent of the hyper-
elastic model.  Indeed, equations (15c,d) indicate that  for large shear strain.  11 12
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Fig. 3  Normalized peel force  versus maximum shear strain at peel front. Nonlinear theory and linear theory (Kaelble) predictions, F  0

for various , are plotted as solid and dashed lines respectively.F

Fig. 4  Normalized peel force  versus maximum normalized shear  (solid blue line) and lateral normal stress  (dash-dotted F  max
12  max

11

red line). The linear theory of Kaelble is plotted as dashed and dotted lines.  Note that the linear theory assumes  . 11 0

3 Finite element (FE) analysis

The finite element model and mesh strategy are shown schematically in Fig 5, and implemented in a commercial FEM 
software, ABAQUS®. The adhesive is modeled by a three term Yeoh’s material with ,  and  1 / 0.5C   2 / 0.0237C

where  is the small strain shear modulus (Fig. 2).  The backing is modeled as a linear elastic solid  3 / 0.00166C   12C

with Young’s modulus, , and Poisson’s ratio, .  In the simulation, the overlap length L = 1000h is  30000bE   0.3
approximately 5 times the load transfer length lLT, and the overhanging length is 20h. The initial thickness of the backing 

 is taken to be 2h (which is representative of typical tapes31). In this FE model, we normalize all distances by the initial bh

thickness of the adhesive h and all stress quantities by the small strain shear modulus of the adhesive, .

The displacements on the adhesive/substrate interface are fixed to be zero. The constant force F/b is mimicked by a 
horizontal traction  acting on the left end of the backing, and the integral of this traction over the backing’s end in the t
current configuration is maintained to be equal to F/b. To balance the accuracy and efficiency of the computation, we 
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choose a very fine mesh near the origin in the adhesive, while far away the element size increases and is about 0.2h near 
the end.  Hybrid plane strain elements CPE4H and CPE3H are used to simulate the incompressibility of the adhesive. Our 
convergence test shows that further refinement of mesh does not affect the FE results (except the first few elements near 
the origin where there is a singularity).

Fig. 5  Schematic of finite element model and mesh strategy. The red and blue filled rectangles represent the backing and adhesive 
layer respectively, and the rigid substrate is modeled by the fixed displacement boundary condition.

3.1 Comparison between theory and FEM

For a given force F, (16) and (18) allow us to obtain the shear strain distribution along the adhesive/backing 
interface.  To compare with the FEM result, we set

, (19) 
 1 1 2( , 1)FEu x x

h

where  and  is the horizontal displacement at the adhesive/backing interface extracted  1 1 2 2/ , /x x h x x h FE
1 1 2( , 1)u x x

from FEM results.  Fig. 6 plots the shear strain  as a function of the normalized position .  The solid lines are the  x1

analytic solution given by equations (16) and (18), and the FEM results are shown as symbols for different normalized peel 
force . The comparison demonstrates that our analytic solution matches the FEM results extremely well. Also, Fig. 6 F
shows the exponential decay in the shear strain distribution.

Fig. 6  Shear strain  plotted versus . Analytic solutions and FEM results are plotted as lines and symbols respectively. (a) Linear- 1x
linear plot; (b) log-linear plot.
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In our analytic model, the stresses in the adhesive layer are assumed to be approximately independent of . Equations 2x

(16), (18) and (15d) allow us to express the interfacial true shear stress between the adhesive layer and the substrate as a 
function of normalized position ; these results are plotted in Fig. 7 for different values of the normalized force . The 1x F
finite element results (true stress, symbols) are also plotted. In order to compare results with different peel force in one 
plot, we divide  and  by  and  respectively, where  and  are the maximum values of these 12 11  max

12  max
11  max

12  max
11

normalized stresses evaluated at the origin using our analytic solution (see Fig. 4). Here it is important to remember that 
and depend on the peel force nonlinearly (see Fig. 4), hence the actual stresses increase rapidly with the peel  max

12  max
11

force. Again, the finite element result agrees very well with the analytical model as long as  is in region 2. The insets in 1x

Fig. 7a,b,c show that our analytical model breaks down in a region about 3 times the thickness of the adhesive tape.  
Indeed, our result shows that the analytic model is surprising good at larger deformations, for example, for ,   2.92F
both the shear and normal stress agree reasonably well with the finite element result at distances of .   Finally, our 1 3x h

finite element result in Fig. 7c confirms that the normal stress  is indeed close to zero in region 2.  22

Fig. 7  True stress along the adhesive/substrate interface with different applied loads. Analytic solutions and FEM results are plotted 

as lines and symbols for different applied force, i.e.,  = -0.58, -2.92, -5.84 and -11.68 respectively. The true stresses near the origin F
are plotted in the insets.  (a) . (b) .  (c) .  max

12 12/   max
11 11/ 22

Fig. S1 of ESI plots the FEM stresses on the adhesive/backing interface.  As expected, these stresses are practically the 
same in region 2 and agree well with our analytic model.

Page 11 of 18 Soft Matter



3.2 Region 1: Crack tip field 

In this section we focus on region 1, where the stresses and strains are dominated by the presence of the interface crack.  
We study the stress field near the crack tip by FEM.  In particular, we plot the stresses along the adhesive/backing and 
adhesive/substrate interfaces.  Fig. 8a shows that the normal stress  oscillates near the peel front due to localized 22

bending of the backing.  Here we note that the results along both interfaces are plotted against the deformed 
configuration. Note that on the adhesive/substrate interface, there is no difference between deformed and undeformed 
coordinates, i.e., , since the substrate is rigid.  However, there are significant differences between these two  x y
configurations along the adhesive backing interface, as material points are unconstrained – this is why the horizontal axis 
in Fig. 8b is labeled as . To highlight this difference, the profiles of the adhesive and backing are plotted in the 1 1 /y y h
bottom of Fig. 8b, and we pick four material points  and indicate on Fig. 8b its deformed coordinates.    1 2( 1,0,1,2, 1)x x
Also, Fig. 8b shows that when the deformation is large, the adhesive in front of the crack deforms severely.  Due to this 
complexity of local geometry and effect of nonlinear elasticity, the stress fields in the adhesive layer near the 
adhesive/backing interface are very complicated; this region is shaded in Fig. 8b.  It is interesting to note that  along 22

the adhesive/substrate interface changes rapidly from a pattern of ‘tension-compression-tension’ to ‘compression-
tension’ as the applied force increases. In other words, for small peel force, the material points on the adhesive/substrate 
interface that are closest to the crack tip are under tension. As force increases, these material points are under 
compression.  Recall that if the adhesive layer were to have zero thickness, linear elastic fracture mechanics would predict 
that an infinite compressive interfacial normal stress at the crack tip.  However, our simulations suggested that, for an 
adhesive layer with finite thickness, the interfacial normal stress can actually be tensile, at least for small applied forces.  
Also,  retains the pattern of ‘tension-compression-tension’ on the adhesive/backing interface, irrespectively of the peel 22

force.  In both cases, the amplitude of stress increases with the peel force. 
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Fig. 8   along the adhesive/substrate and adhesive/backing interfaces with different applied forces. FEM results are plotted as solid, 22

dashed, dash-dotted and dotted lines for  = -0.58, -2.92, -5.84 and -11.68 respectively. (a)  along the adhesive/substrate interface.  F 22

We also plot the linear theory predicted by Kaelble1 as symbols for comparison.  (b)  along the adhesive/backing interface in the 22

top image.  Four material points (red circles in the bottom image) are plotted to indicate the deformation.

It is interesting to compare our finite element result with Kaelble’s prediction, which assumes small strains and use a plate 
theory instead of solving the full elasticity equations.  His result for the normal stress in the adhesive layer (see equation 
7 in his paper1), in the notation of this paper, is:

, (20a)         x
bF h h e x x b12

22 1 12 cos sin /

where 

. (20b) 

 
  

 b bE h h

1/4

3

9

This comparison is shown in Fig.8a where Kaelble’s result are plotted as dashed lines.  Clearly, the linear theory fails to 
predict the stress. In addition, since the normal stress predicted by the linear theory is independent of x2 and does not 
distinguish between undeformed and deformed configuration, it cannot possibly capture the behavior in Fig. 8b. Note 
that the characteristic length of decay of the normal stress  in Kaelble’s theory is much smaller than the shear load (1 / )

transfer length , since it depends on the ratio  with an exponent 1/4 instead of 1/2.LTl  
bE/

Fig. 9a,b and 10a,b plot the normalized stress component  and  along the adhesive/substrate and adhesive/backing 12 11

interfaces in region I respectively.  The stresses due to  = -11.68 are too large to fit in the same figure and we provide F
this information in ESI.  Note that at higher peel forces these stresses behave differently on these interfaces.   The 
normalized hydrostatic pressure  along these interfaces are plotted in Fig. 11. 11 22 33 / 3p     

Fig. 9   along the adhesive/substrate and adhesive/backing with different applied forces. FEM results are plotted as solid, dashed 12

and dash-dotted lines for  = -0.58, -2.92 and -5.84 respectively. (a)  along the adhesive/substrate interface. (b) along the F 12 12

adhesive/backing interface.
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Fig. 10   along the adhesive/substrate and adhesive/backing with different applied forces. FEM results are plotted as solid, dashed 11

and dash-dotted lines for   = -0.58, -2.92 and -5.84 respectively. (a)  along the adhesive/substrate interface. (b)  along the F 11 11

adhesive/backing interface.

Fig. 11  Hydrostatic pressure  along the adhesive/substrate and adhesive/backing with different applied forces. FEM results are p

plotted as solid, dashed and dash-dotted lines for  = -0.58, -2.92 and -5.84 respectively. (a)  along the adhesive/substrate interface. F p
(b) along the adhesive/backing interface.p

4 Energy release rate

As shown by Kendall38,39, for a peel arm that is linearly elastic and bonded to a rigid substrate (with an infinitely thin 
adhesive), the energy release rate is exactly zero were it not for stretching of the peel arm. For our case the geometry is 
different: the thickness of the adhesive layer is comparable to that of the peel arm and part of the adhesive is bonded to 
the peel arm instead of the substrate.  Nevertheless, Kendall’s conclusion is still true for our geometry. Indeed, in our 
geometry, crack growth by  can be achieved by moving an element of length  and height h from  to the load a a  1x

point.   The amount of work done by the peel force as the crack advanced by  is , where  a    
   p

b b

F b
F b a a

E h

2/
/  p

is the strain in the peel arm. Because the backing layer is linearly elastic and the adhesive in the peel arm carries no force, 
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half of this work is used to increase the strain energy of this element as it moves from to the load point.  Therefore,  1x

the energy that is available for crack growth is ; so the energy release rate is exactly:
 

 
b b

F b
a

E h

2/
2

. (21)
 


b b

F b
G

E h

2/
2

Equation (21) is valid for large deformation of the adhesive layer, as long as .  The critical peel force to initiate  LTL l

interface debonding  can be determined using energy balance: the energy release rate G reaches the interfacial fracture cF

energy , i.e., 

. (22)
  

     c
c b b

b b

F b
G F b E h

E h

2/
/ 2

2

Note that the peel force needed to grow the interface crack can be very large, since the modulus of the backing layer is 
on the order of GPa.  Here, one must distinguish between energy release rate G which is the amount of energy available 
for fracture and the interfacial fracture energy    The former for this case is independent of the nonlinear elastic behavior 
of the adhesive and is controlled by the elasticity of the backing layer.  The latter is a material property which depends on 
how the material fails near the crack tip.  The local failure process is sensitive to the mechanical behavior of the adhesive, 
since the stress and strain state near the crack tip are very different for linear and nonlinear materials subjected to the 
same applied force.  In other words, the interfacial fracture energy is controlled by the material behavior.   Therefore, the 
critical peel force will be dependent on whether the material is linear or nonlinear.  Note that we have assumed that the 
bond length L is much longer than the load transfer length , so that the energy release rate is independent of the bond LTl
length. This is certainly not the case for short bond length (i.e., ). For this case, the energy release rate is no longer LTl L
given by (21); specifically, (21) underestimates the energy release rate. Indeed, when the crack grows (i.e., bond length 
decreases), the shear stress has to increase since the force  is kept constant. This means that the energy release rate F b/
increases with crack extension (for smaller L), so unless  increases with crack extension which is typically not the case, 
crack growth is unstable.   

5 Summary and Discussion

We present a large deformation analysis of the stress state in the adhesive layer of an adhesive tape subjected to 
a zero degree peel force. The adhesive layer is modeled as an incompressible hyper-elastic solid with a strain energy 
density function that depends only on the scalar invariant  or the trace of the right Cauchy-Green tensor. Although our I1

solution method does not depend on the form of the strain energy function, the solution is presented for a three term 
Yeoh’s model since this is the simplest material model that can capture the nonlinear elasticity of typical PSA. Exact closed-
form solutions are obtained for the in-plane stresses  in the adhesive layer in region 2. Surprisingly, even though 11 12 ,
the material is nonlinear and deformation is large, these stresses decay exponentially from the peel front with a 
characteristic distance equal to the load transfer length – which is an aspect of the linear theory.  These exact solutions 
are in excellent agreement with our FEM. A surprising result is that for large shear deformation, the lateral true stress  11
within the load transfer length is much larger than the shear stress, whereas in the linear theory this stress is assumed to 
be zero. As a result, the hydrostatic pressure in the adhesive layer is not small and cavities can nucleate and grow at 
distances far from the peel front. We compare our result with the linear theory which assumes small deformation and a 
linear elastic adhesive layer. Our results show that the linear theory fails to predict the peel force to sustain a given amount 
of deformation. For large deformation, the peel force is governed by the strain hardening behavior of the adhesive.  Since 
our method in section 2.3 can be used to produce an exact closed-form solution for any incompressible hyperelastic solids 
where the strain energy density function depends only on the trace of the right Cauchy-Green tensor, our result provides 
a path to study the zero degree peel test without the constraints and limitations imposed by linear elastic theory.
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We also used a nonlinear FEM to study the 3D state of stress near the peel front.  In this region (region 1) our analytic 
solution breaks down. In particular, the true normal stress  can be very large and alternates between compression and 22
tension. Although this result (an oscillatory state of normal stress) is predicted by the linear model of Kaelble1, his result 
underestimates the stress near the peel front. This is due to the fact that Kaelble uses a plate model which cannot capture 
the 3D state of stress at the crack tip.  In addition, his model assumes that the adhesive is linear elastic whereas a nonlinear 
elasticity model can account for stress increase due to strain hardening. More importantly, the plate model predicts that 
the normal and shear stresses are independent of , whereas the stresses on the backing/adhesive interface and 2x
adhesive/substrate interface are different as shown by our result in Fig. 9 and Fig. 10.  It is also interesting to note that at 
high peel forces, the material directly ahead of the peel front (along the adhesive/substrate interface) is under 
compression while for small peel force it is under tension.  This, together with the fact that the stress states are different 
on each interface, may have important consequences on determining at which interface the adhesive fails.  

The result presented here is limited to the case of infinite bond length L, that is, when the bond length is much longer than 
the load transfer length . In practice, the bond length can often be comparable or smaller than the load transfer length. LTl

For these cases, crack growth can be unstable since the energy release rate is expected to increase with crack length (or 
decreasing bond length), as noted by Mojdehi et al17. Our approach can be extended to study this case and these results 
will be presented in a future work. A more serious limitation of our analysis is that we have not accounted for 
viscoelasticity of the adhesive. Indeed, at the instant when the force is applied, the adhesive will have a larger shear 
modulus (due to its entangled structure) than at longer times, when it relaxes to its plateau modulus (due to its chemical 
crosslinking). Viscous creep will then cause the load transfer length to increase with time. Thus, our analysis is strictly 
correct for short or long times. Specifically, for times much shorter than the characteristic relaxation time  of the 
adhesive, the moduli in our model should be replaced with the short time moduli and for times much longer than  the 
moduli in our model should be replaced with the plateau moduli. It is possible to include linear viscoelasticity in our model 
using a very crude approximation. Kaelble40 proposed that his elastic peel model can be extended to include linear 
viscoelasticity if the elastic shear modulus of the adhesive is replaced by its relaxation modulus.   We apply this idea to our 
nonlinear model, that is, we replace  in (17) by the shear relaxation modulus  while  and  are  ( )t  2 /C t  3 /C t

assumed to be material constants independent of time and is assumed to be independent of strain.  In particular, the ( )t
load transfer length will now be time dependent, i.e., 

. (23)  /LT b bl E h h t

Certainly the approximation given by (23) is valid for short and long times.  In the ESI, we use a simple viscoelastic model 
with one relaxation time to check this idea and find that the shear strain distribution at intermediate times is predicted 
quite well by this approximation.  Of course, the relaxation behavior of real adhesives is much more complex and will not 
be captured well by a linear viscoelastic model with a single relaxation time.   The role of viscoelastic behavior on the peel 
test will be the subject of a future work.  

However for highly deformed adhesives in shear our non-linear elastic solution provides realistic stress distributions and 
kinematics in the adhesive for a given applied load. This result can then be used to predict much more accurately the locus 
of failure in the adhesive, which is a long standing problem in this geometry. As we show, a linear solution will predict the 
stresses incorrectly and will give predictions that are inconsistent with experiments. Furthermore many changes in the 
chemistry of the adhesive and in particular crosslinking, will affect only non-linear properties and not linear properties. A 
linear model will fail to capture the effect of those differences and has no chance at all to predict failure correctly.
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