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Abstract

We employ the field theoretic polymer integral equation theory to construct a segment-

level theory for the thermodynamics and pair structure of dense liquids of 

interpenetrating ring polymers and a simple globule model. The latter is defined by a 

fractal mass distribution on all internal length scales with an exponent equal to the spatial 

dimension (dF=ds=3). In an isochoric ensemble the dimensionless compressibility and 

pressure is predicted to vary exponentially with macromolecular volume fraction. An 

inter-molecular correlation hole exists down to small length scales. This model appears to 

be useful for a recently studied experimental soft nanoparticle suspension, and also serves 

as a reference system for our analysis of ring liquids. Motivated by simulations, a two-

fractal exponent ring model is adopted for the intra-molecular structure factor. At smaller 

lengths it describes chain-like macromolecules, while on larger scales it corresponds to a 

space-filling object in the sense that dF=ds=3. The crossover between these two regimes is 

of order the entanglement length of the linear chain analog. Based on a constant 

compressibility ensemble, the effective volume fraction grows at intermediate values of 

degree of polymerization (N), and crosses over to a very slow logarithmic growth at large 

N. A weaker intermolecular correlation hole is predicted. The number of nearest neighbor 

rings increases dramatically at small N, akin to linear chain melts, but then tends to 

saturate at large N, in accord with simulations. The tools developed may be relevant for 

other partially interpenetrating soft objects such as core–shell nanogels or microgels. 
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I. INTRODUCTION

Macromolecular science and engineering is a vibrant field due to remarkable 

advances in synthesis, the rich array of physical phenomena polymers display, and their 

many useful properties and applications [1–6]. Particularly fascinating and unique are the 

consequences of topological interactions on dynamical and mechanical behavior, due 

microscopically to the combined constraints of polymer connectivity and dynamic 

uncrossability [2–5,7,8]. While there have been many studies of linear chains and 

controllably branched (e.g., stars, combs) polymer liquids [4,5], other macromolecular 

architectures with compact features have only recently begun to be studied. Of specific 

interest here are dense liquids composed of a simple globule model and unconcatenated 

(no knots) ring polymers [5,8–17].

Both cyclic ring polymers and compact globule-like polymeric objects are 

relevant in diverse areas of physics, chemistry, materials science, and also cellular 

biology. So-called "single chain nanoparticles" with a globule-like character have been 

created from synthetic polymers and studied in solution and nanocomposites [18–22]. 

More generally, the intramolecular collapse of polymer chains to form nanogel or 

microgel particles is a rich field in soft materials science including the area of drug 

delivery [23–25]. In biology, proteins, DNA, and RNA can take on globally compact or 

collapsed conformations with diverse internal microstructures [26–28]. Biopolymers, 

such as DNA, can exist in the end-free circular form [29,30]. Driven largely by 

simulation [11,31–43], there has been much recent interest in the polymer physics of the 

structure and dynamics of unconcatenated ring polymer liquids, including their possible 

relevance to the problem of chromatin organization and viral nucleic acid packaging 
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[8,26,29,30,42,43]. Even though the DNA in a chromatin is a linear chain, its 

exceptionally long length may effectively quench large scale equilibration processes 

(e.g., reptation) [8,42]. One possible consequence is the emergence, for large enough 

rings, of effectively static (on cellular time scales) topological effects leading to 

chromatin forming globally compact structures or "territories", albeit with strongly 

fluctuating interfaces that allow significant interpenetration [8].

As relevant background for our present work, we summarize some key recent 

experimental [16, 44–46], theoretical [47], and simulation [11,32–43] findings for 

unconcatenated ring polymer liquids. In both melts and semidilute solutions, for a 

sufficiently large degree of polymerization  the rings acquire a drastically different (𝑁)

conformational structure compared to their linear chain analogs [8,45–47]. Specifically, 

they are akin to collapsed globules on global length scales in the sense that the radius of 

gyration scales with degree of polymerization as  but also form partially-𝑅𝑔 ∼ 𝑁1/3

segregated "territories". A caveat is that not all published simulations have definitively 

established that the Rg versus N scaling exponent in dense melts and solutions is 1/3 [8]. 

On more local length scales, the internal microstructure of rings in dense liquids is found 

to be more chain-like in an ensemble-averaged sense and hence described by a smaller 

effective fractal dimension than . The length scale characterizing this crossover 𝑑𝐹 = 3

from global to local behavior appears to be close to the intrinsic N-independent 

entanglement length of the linear chain analog [32–34,47]. This crossover is expected to 

have major structural and dynamic consequences. For example, simulations find the 

number of rings interpenetrating a tagged ring approaches a finite (model-dependent) 

limit of order 5–20 at high enough N [32–34], in contrast to ideal chains ( ) where 𝑑𝐹 = 2
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there is unbounded growth and the number of interpenetrating chains scales as  ∼ 𝑁1/2

[2,3,48]. Visually, simulations find individual rings have a very rough fluctuating 

"surface" and "protrusions" which allows copious interpenetration (or "threading") with 

other rings in a dense liquid [8,32-34]. The limited neutron scattering studies of ring 

structure appear to be consistent with these simulation findings [45,46].

The goal of this article is to construct minimalist coarse-grained polymer models, 

and use them in conjunction with liquid state polymeric integral equation theory at the 

segment level, to predict the equilibrium collective and intermolecular packing structure 

of dense fluids of globules and unconcatenated ring polymers. Our working hypothesis is 

that an ensemble-averaged description of single macromolecule structure at the pair 

correlation level is adequate to make useful predictions for the intermolecular pair 

correlations on the segmental level. This is the established philosophy of polymer liquid 

state theory [49,50] which has proven to be useful for interpenetrating chain liquids. To 

the best of our knowledge, our present work is the first theoretical attempt to predict the 

intermolecular and collective pair structure at the segmental level of dense liquids of 

globules or rings. However, we recognize that rings are unusual objects where so-called 

"threading" and perhaps other aspects may not be fully captured at the pair correlation 

level. But the predictions we make can be tested against future simulations and/or 

experiments, and some of this is carried out here for the globule and ring liquids with 

encouraging results demonstrated. 

We employ the simplest field-theoretic "thread limit" version of the polymer 

reference interaction site model (PRISM) integral equation approach, where hard core 

intermolecular segment–segment repulsions correspond to a point-like excluded volume 
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constraint [49,50]. As input to the theory, we adopt two simple models for the intra-

molecular structure factor (Figure 1): (i) a single fractal model of a globule (Fig. 1a), and 

(ii) a partially interpenetrating, two fractal ring model (Fig. 1b). 

We are not claiming that model (i) is an accurate description of any specific soft 

matter system. Rather, our two-fold motivation for studying it is as follows. First, it 

seems to us to be the simplest model of a collapsed globule-like object (  on all 𝑑𝐹 = 3

internal length scales) with no sharp (Porod-like) interface. Moreover, as we demonstrate 

in Section II.C., this model appears to be useful for understanding unusual 

thermodynamic properties of dense suspensions of phytoglycogen soft particles with thin 

or non-existent coronas. Second, the model serves as an instructive, albeit oversimplified 

[32-34], reference system for comparison with our results for ring liquids. Model (ii) is 

constructed based on simulation information [32–34] for the intra-ring pair correlations 

in the condensed state. In addition to the inter-molecular segment–segment pair 

correlation function and collective static structure factor—g(r) and S(k), respectively—

we make predictions for thermodynamic properties (dimensionless compressibility, 

pressure) and the statistically defined number of nearest neighbors in a liquid. 

For the simple globule model, we emphasize that we do not follow the usual 

approach to modeling soft fluctuating particles which performs an a priori averaging over 

of internal polymeric (segmental) degrees of freedom. Such approaches typically first 

determine a two-particle effective interaction, a potential of mean force (PMF) W(r), 

between the centers-of-mass (CM) of a pair of isolated polymeric particles by ensemble 

averaging over or integrating out of all internal degrees of freedom [51,52]. This W(r) is 

then used in soft sphere simulations or theory based on the assumption of pair 
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decomposability. The latter approximation generally fails at high enough concentrations 

where soft particles overlap and many-body correlations emerge. Moreover, it cannot 

address the intermolecular correlations at the segmental or elementary "site" level. Since 

we do not integrate out segment scale density fluctuations, many body effects at the CM 

level are approximately retained through all orders, and inter-segmental packing 

correlations are predicted. Because we analyze the simple globule model at the segmental 

level, it can experience some interpenetration on a small scale. Any possible "faceting" of 

globules at ultra-high volume fractions is not addressed at the level of description we 

employ.  

There are multiple advantages of working at the segment level beyond what is 

stated above. It allows a fundamental connection to be made between structure and 

thermodynamics, and even dynamics [53,54], since the real interactions and forces 

between soft particles are on the local segmental scale. Moreover, such an approach 

smoothly goes back to linear chain liquids within the same liquid state theory framework. 

This common description of compact soft particles and polymer coils allows us to 

compare their behavior in a direct manner. The present work also sets the stage for 

developing force and segment level theories for the slow dynamics of fluctuating soft 

particles in dense liquids. A disadvantage is structure at the CM level is not directly 

obtained. However, it can be determined based on well known approximate connections 

between the site and CM levels of description [51,52]. More generally, we believe the 

methods developed in this article are relevant to other liquids composed of soft 

fluctuating particles of diverse internal microstructures. 
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The remainder of the paper is structured as follows. Section II constructs the 

single polymer models studied and for context briefly reviews the relevant aspects of 

thread PRISM theory for chain polymer liquids. Sections III and IV present results for 

thermodynamic properties and inter-molecular structure of dense liquids of model 

globules and rings, respectively. The paper concludes in Section V with a discussion. 

II. THEORY AND MODEL

We consider a liquid of  unconcatenated polymers each composed of  𝑛 𝑁

connected statistical segments (interaction sites) contained in a volume . The total  𝑉

segment density is , where  is the polymer molecule density. The 𝜌𝑠 = 𝑁𝜌 = 𝑛𝑁/𝑉

elementary sites or segments are considered to be statistically equivalent with regards to 

the intermolecular ensemble-averaged site–site pair correlation function, g(r). This 

simplification ignores small chain end effects. However, for collapsed globules and rings, 

chain ends effects are either not important or not present, although there are still 

topological effects [8–10]. 

A. Thread PRISM Theory

Thread PRISM theory [49] is the Edwards-like “field-theoretic”, largely analytic, 

limit of polymer integral equation theory, in which excluded volume interactions between 

sites or segments are reduced to a point-like non-overlap constraint (segment hard core 

diameter . Consistent with this coarse graining of chemical features on the local 𝑑→0 + )

scale, the chain consists of  connected segments of size  with a radius-of-gyration 𝑁 𝜎

, where  is the polymer mass fractal dimension in the condensed phase Rg
2  2N 1/dF 𝑑𝐹

[56-58]. For intermolecular pair correlations within the equivalent site framework, one 

starts with the generalized Ornstein–Zernike (Chandler–Andersen or PRISM) integral 
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equation theory for  of the homopolymer liquid, which in Fourier space is 𝑔(𝑟) = ℎ(𝑟) +1

[49,55]:

.ℎ(𝑘) = 𝜔(𝑘)𝐶(𝑘)[𝜔(𝑘) + 𝜌𝑠ℎ(𝑘)] = 𝜔(𝑘)𝐶(𝑘)𝑆(𝑘) (1)

Here,  is the non-random part of the segment–segment pair distribution function, and ℎ(𝑟)

 is segment-segment direct correlation function (effective intermolecular repulsion) 𝐶(𝑘)

in Fourier space. The intramolecular and collective structure factors are given by  𝜔(𝑘)

and , respectively, where and the second equality in Eq. (1) defines a 𝑆(𝑘)  (k  0)  N

functional relationship between  and  Given knowledge of the 𝑆(𝑘),  𝜔(𝑘), ℎ(𝑘).

ensemble-averaged single polymer structure factor, , and , PRISM theory  (k) 𝐶(𝑘)

predicts the intermolecular and collective pair structure encoded in the site-site level  𝑔(𝑟)

and  and thermodynamic properties.𝑆(𝑘)

Closure of the PRISM equation requires (i) a relationship between , the 𝐶(𝑟)

segment-level pair potential  and , and (ii) a model for  For (i) we employ 𝑈(𝑟), 𝑔(𝑟) 𝜔(𝑘).

the standard site–site Percus–Yevick (PY) closure [49,55] which for hard core repulsions 

in the thread limit corresponds to:

𝐶(𝑟) = 𝐶0 𝛿(𝑟), (2)

where . Combining Eqs. (1) and (2) gives the collective structure factor:𝐶(𝑘 = 0) =  𝐶0

𝑆(𝑘) =
𝑆0

1 + 𝑆0(𝜔 ―1(𝑘) ― 𝑁 ―1)
     where    𝑆0 = (𝑁 ―1 ―  𝜌𝑠𝐶0) ―1.

(3)

Here,  characterizes the dimensionless amplitude of long wavelength 𝑆0 = 𝑆(𝑘 = 0)

density fluctuations:
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𝑆0

𝑁 = 𝜌𝑘𝐵𝑇 𝜅𝑇 = (∂𝛽𝑃
∂𝜌 ) ―1

, (4)

where is the thermal energy and  is the isothermal compressibility. The 𝑘𝐵𝑇 = 𝛽 ―1 𝜅𝑇

second equality is an exact relation between  and the fluid pressure,  𝑆0 𝑃.

The exact inter-site non-overlap condition is then enforced, . To 𝑔(𝑟 = 0) = 0

implement this, we employ the Fourier transform:

ℎ(𝑟) = ∫ 𝑑𝑘
2𝜋3 𝑒𝑖𝑘 ⋅ 𝑟 ℎ(𝑘). (5)

Combining Eqs. (1)–(5), and non-dimensionalizing the wave vector by the polymer 

radius of gyration, , we obtain:𝑞 = 𝑘𝑅𝑔

ℎ(𝑟) =
2

3𝜋𝜙 (𝑆0

𝑁 ― 1) ∫
∞

0
𝑑𝑞 𝑞2 

𝜔(𝑞)/𝑁
1 + (𝑆0/𝑁) (𝑁𝜔 ―1(𝑞) ― 1)

sin 𝑞𝑟
𝑞𝑟   , (6)

where a “macromolecular” volume fraction and dimensionless inter-site separation are 

defined as  and , respectively. The explicit core exclusion 𝜙 =  4𝜋𝑅3
𝑔𝜌/3 𝑟 = 𝑟/𝑅𝑔

condition then becomes:

―ℎ(𝑟 = 0) =  1 =
2

3𝜋𝜙 (1 ―
𝑆0

𝑁) ∫
∞

0
𝑑𝑞 𝑞2 

𝜔(𝑞)/𝑁
1 + (𝑆0/𝑁)(𝑁𝜔 ―1(𝑞) ― 1) . (7)

For a given , Eq. (7) provides a nonlinear algebraic relationship between  (or 𝜔(𝑘) 𝜙,  𝑆0

C0) and , which mathematically closes thread PRISM theory.𝑁

Given , the number of neighboring segments on other polymers within a 𝑔(𝑟)

radius  of a segment on a tagged polymer, defined as is:𝑟 ∗ 𝑛𝑠, 

𝑛𝑠(𝑟 ∗ ) = 4𝜋𝜌𝑠∫
𝑟 ∗

0
𝑑𝑟 𝑟2 𝑔(𝑟) . (8)

The number of neighboring polymer molecules surrounding a tagged polymer follows as 
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. Non-dimensionalizing the integral in Eq. (8) via  then yields  as 𝑛𝑝 = 𝑛𝑠/𝑁 𝑅 =  𝑟 ∗ /𝑅𝑔 𝑛𝑝

a function of the averaging radius:

𝑛𝑝(𝑅) = 3ϕ∫
𝑅

0
𝑑𝑥 𝑥2 𝑔(𝑥) . (9)

Generically, for all connected macromolecules g(r) cannot attain its random value of 

unity until sites are separated beyond Rg. This fact implies for  that:𝑟 ∗ ∼ 𝑅𝑔

𝑛𝑝(𝑅 ∼ 1) ≈
𝜌𝑠𝑅3

𝑔

𝑁 = 𝜌𝑅3
𝑔 . (10)

For a large space-filling object, this quantity is of order unity (N-independent) in a dense 

liquid. For a fractal macromolecule (  less than the space dimension, ), it grows 𝑑𝐹 𝑑𝑆

without bound with N. To proceed further, a specific form of  is needed. We first 𝜔(𝑘)

recall relevant prior results of thread PRISM theory for ideal random coil liquids.

B. Linear Chains

Thread PRISM theory models flexible chains as Gaussian threads with an 

intramolecular structure factor that properly captures the power law scaling behavior of an 

ideal random walk on intermediate length scales (or wave vectors):

𝜔(𝑘) =
1

𝑁 ―1 + (𝑘𝜎)2/12
=

𝑁
1 + (𝑘𝑅𝑔)2/2

 . (11)

Solving the PRISM equation yields the inter-chain segment–segment pair correlation 

function:

𝑔(𝑟) = 1 +
3

𝜋𝜌𝑠𝜎2
𝑒 ―𝑟/𝜉𝑝 ― 𝑒 ― 2 𝑟/𝑅𝑔

𝑟  , (12)

where the density correlation or physical mesh length  is:𝜉𝑝
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𝜉 ―1
𝑝 =

𝜋
3 𝜌𝑠𝜎2 +

2
𝑅𝑔

≈ 𝜌𝑠𝜎2 = 𝑝 ―1 . (13)

Here the approximate equality holds in the limit , where  denotes the dilute-to-𝜌 ≫  𝜌 ∗ 𝜌 ∗

semi-dilute crossover. For densities well above , the mesh length essentially equals the 𝜌 ∗

so-called invariant (to coarse graining) "packing length", p [48,49]. The first term on the 

right-hand side of Eq. (12) is the mean field (random structure) result, while the second 

term describes local screening of segmental density fluctuations, and the third (negative) 

term is the universal long range deGennes correlation hole contribution [3,49]. 

Substituting Eq. (12) in Eq. (9) predicts for ideal coil liquids at concentrations well above 

 the known scaling 𝜌 ∗ 𝑛𝑝(𝑟 ∗ ∼ 𝑅𝑔) ∝ 𝑁.

           Under Θ solvent (ideal conformation) or dense melt conditions,  is independent 

of polymer concentration, and , where is the segment volume 𝜉𝑝 ∝ 𝜙 ―1
𝑠 𝜙𝑠 = 𝜌𝑠𝜋𝜎3/6 

fraction. In athermal good solvents , and thus  is predicted. These  𝜎 ∝ 𝜙 ―1/8
𝑠 𝜉𝑝 ∝ 𝜙 ―3/4

𝑠

results agree with the blob scaling laws of deGennes (using the mean field Flory 

exponents) [2,3], as do the thread PRISM theory predictions [49] for the osmotic pressure 

in Θ and good semi-dilute solutions. The collective static structure factor is a Lorentzian, 

, where the dimensionless compressibility is given by:𝑆(𝑘) = 𝑆0(1 + 𝑘2𝜉2
𝑝) ―1

𝑆0 = 12(𝜉𝑝

𝜎 )
2

 . (14)

C. Simple Globule Model 

Our minimalist one fractal exponent model of globules is defined via the 

following intra-molecular structure factor [56–58]:
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𝜔(𝑘) =
𝑁

1 + 𝐴(𝑘𝑅𝑔)𝑑𝐹
 , (15)

where the constant  depends only on fractal and spatial dimensions. For the 3D globules 𝐴

of interest here, , and the radius of gyration is:𝑑𝐹 = 𝑑𝑆 = 3

𝑅𝑑𝐹
𝑔 = 𝐶 𝑁 𝜎𝑑𝐹 . (16)

where  is a constant. This model not only obeys the global scaling law , but 𝐶 𝑅𝑔 ∼ 𝑁1/3

also adopts a self-similar scaling of the internal pair density correlations with 𝑑𝐹 = 𝑑𝑆

. While the constant A can be chosen to model various specific globular objects, here = 3

for both concreteness, and to allow us to directly compare the globule and ring liquids 

results, we choose  using the intra-molecular structure factor from a recent ring polymer 𝐴

liquid simulation [33] by fitting Eq. (15) to the data in the lower wavevector regime. 

Figure 2 shows the simulation results [33] (different data point types represent different 

ring sizes) and the black curve shows the fit using Eq. (15). In the low wave vector 

regime , the results for all ring sizes collapse and . The simple (𝑘𝑅𝑔 ≲ 5) 𝐴 = 0.286

globule model is thus defined by employing this low wave vector form on all length 

scales per Eq. (15). At larger wave vectors, the simulation data of Fig. 2 deviates from 

this form because locally rings become chain-like. At even higher wavevectors non-

universal local features are present (see Section II.D).

Based on Eq. (15), Eq. (7) can be analytically evaluated for , yielding: 𝑑𝐹 = 3

1 =
2

9𝜋 𝐴 𝜙ln (𝑁
𝑆0) ⇒ 

𝑆0

𝑁 = 𝑒 ―9𝜋𝐴𝜙/2. (17)

Note the interesting, and seemingly novel, exponential dependence of the dimensionless 

compressibility on macromolecular volume fraction. The pressure follows from Eq. (4), 

which when combined with Eq. (17), and performing the necessary integral, yields:

Page 13 of 41 Soft Matter



14

𝛽𝑃 = ∫
𝜌

0
𝑑𝜌′

𝑁
𝑆0(𝜌′)

(18)

            = 𝜌(𝑒9𝜋𝐴𝜙/2 ― 1
9𝜋𝐴𝜙/2 ) =

1

6𝑅3
𝑔𝐴𝜋2(𝑒9𝜋𝐴𝜙/2 ― 1) (19)

Thus, at high effective volume fractions the pressure also grows exponentially. 

We note a very recent and interesting experimental study of dense suspensions of 

phytoglycogen soft particles (~30 nm diameter) which are highly branched objects with 

an internal dendritic structure [59]. Over the high effective volume fraction range of 

~0.75–1.8, the osmotic pressure was observed to grow strongly from ~ 5 kPa to 1 MPa, 

and to a very good approximation increases in an exponential manner as ~ e5. At an 

effective volume fraction of unity, it is ~ 15 kPa. To the best of our knowledge, there is 

no theoretical understanding of these observations. We now compare Eq. (19) with these 

experimental findings. 

 Using a constant diameter of 30 nm, Eq. (19) predicts a pressure of ~5 kPa for a 

volume fraction of unity, and over the experimental range an exponential growth of 

pressure of roughly ~e4. No doubt our simple globule model is oversimplified compared 

to the precise (unknown) internal statistical structure of phytoglycan nanoparticles, but 

these very sensible predictions of Eq. (19) encourage a deeper study of this system using 

our theoretical approach. This will be possible, for example, if neutron scattering 

measurements are performed to determined the ensemble-averaged single particle 

structure factor. Now, at volume fractions beyond 2, the experimental osmotic pressure 

appears to grow very weakly and tends to saturate at ~2 MPa [59]. Such behavior is not 

captured by Eq. (19), which may indicate a "soft jamming" crossover and/or volume-
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fraction-dependent nanoparticle compression at ultra-high loadings, physical effects not 

included in our present simple model. 

Since the simple globule model is qualitatively space filling on all length scales, 

there is no intrinsic N-dependence of the thermodynamic properties if the colloid-like 

macromolecular volume fraction  is adopted. Finally, Eq. (17) is generic  𝜙 = (4𝜋/3)𝜌𝑅3
𝑔

for globules in any space dimension ( ; we find , 𝑑𝐹 = 𝑑𝑆 = 𝑑) 1 = 𝐶𝑑 𝜙 ―1
𝑑 log (𝑁/𝑆0) 

where  depends on  and  is the generalized d-dimensional volume fraction. 𝐶𝑑 𝑑𝑆 𝜙𝑑~ 𝜌 𝑅𝑑
𝑔

D. Interpenetrating Ring Model

To capture the computer simulated single ring structure factor [33] in the 

condensed state (Fig. 2), we adopt an analytic and minimalist two-fractal description with 

an intrinsic, -independent, crossover length scale :𝑁 𝜆

𝜔(𝑘) = { 𝑁
1 + 𝐴(𝑘𝑅𝑔)3 𝑘 <  𝜆 ―1

𝑁
𝑘2(𝜆2 + 𝐴𝑅3

𝑔/𝜆) 𝑘 ≥ 𝜆 ―1
  . (20)

Since there are now two length scales, N enters explicitly. For length scales larger than , 𝜆

the conformational structure is identical to our simple globule model. Recall this was one 

of the motivations for studying the latter model. However, on more local (but still large 

mesoscopic) length scales the ring behaves in an ensemble-averaged sense as an ideal 

random walk where . The prefactor for  is chosen to satisfy 𝜔(𝑘)~𝑘 ―2 𝜔(𝑘 ≥  𝜆 ―1)

continuity of  at the crossover wavevector  and faithfully reproduce the 𝜔 𝑘 = 𝜆 ―1

simulation results [33]. 

To determine  and  in Eq. (20), the simulation results for  are fit in the 𝐴 𝜆 𝜔(𝑘)

following manner. The constant  is determined from the simple globule model small 𝐴

Page 15 of 41 Soft Matter



16

wavevector fit of  as discussed in the previous section, yielding . Based 𝜔(𝑘) 𝐴 = 0.286

on this fit, the crossover length for each simulation data set can be approximately 

deduced as when the data falls off the  scaling behavior in Figure 2. As physically ∼ 𝑘 ―3

expected, we find that this crossover roughly scales as where . 𝜆/𝑅𝑔 = 𝜆0 /𝑁1/3 𝜆0 = 2.5

This implies the crossover length is intrinsic, , and mesoscopic in the sense that 𝜆~𝑁0 𝜎

 for large N. Recent simulations [11,32–43] and theoretical studies [8,47] ≪ 𝜆 < 𝑅𝑔

suggest the crossover length is set by intra-ring entanglements and is roughly the 

corresponding chain liquid entanglement length , where  is the number 𝜆~𝑑𝑇 = 𝑁𝑒 𝑁𝑒

of statistical segments between entanglements. The latter is typically cited as ~28 in the 

standard bead-spring Kremer–Grest model of dense melts, but is larger based on 

primitive path analysis [60] or in semi-dilute solutions [33]. We emphasize that for the 

sake of our work, understanding the specific physical cause of the crossover is not 

necessary. Rather, the important point is the two-fractal nature of the macromolecular 

structure with two length scales. In any case, the latter has a dramatic influence on the 

equilibrium properties of ring polymers and provides the mechanism for ring 

interpenetration in the condensed phase. 

The dashed curves in Figure 2 show the fits of Eq. (20) to the simulation data, and 

one sees very good agreement in the mesoscopic regime. Note that, as expected, at very 

large k there are deviations due to local chemical structure effects, which are coarse 

grained over in the thread model. This regime does not affect our key conclusions.

Inserting Eq. (20) into the intermolecular excluded volume condition of Eq. (7), 

and analytically evaluating the integral, yields:
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1 =
2

9𝜋 𝐴 𝜙log [1 + 𝐴𝑁 𝜆3
0

1 + 𝑆0𝐴 𝜆3
0
] +

2
3𝜋 𝜙 

(𝑁 𝑆0 ― 1)1 2

(𝜆2 + 𝐴 𝜆)
3
2

  

                                                  × [𝜋
2 ― arctan ( (1 + 𝐴 𝜆3)

𝑁/𝑆0 ― 1
 )].

(21)

Eq. (21) relates  (or ), , , and  for a liquid of interpenetrating rings and closes  𝑆0  𝐶0 𝜙 𝜆0 𝑁

the thread PRISM theory. In the remaining sections we present the results of numerically 

solving the thread PRISM equations (Eqs. (3), (6), and (9)) for the two models of interest. 

All our results for ring polymer liquids are expected to be applicable only for 

concentrations high enough that Eq. (20) is valid.

III. STRUCTURAL RESULTS FOR THE SIMPLE GLOBULE MODEL LIQUID  

For the globule model we study, the appropriate measure of dimensionless density 

is the macromolecular volume fraction, . For a given volume fraction and chain length 𝜙

, Eq. (17) determines S0. The exponential relation between dimensionless 𝑁

compressibility and volume fraction is very different from its linear chain analog 

, where for large  one has . From Eqs. (3), (6), (𝑑𝐹 = 2, 𝑑𝑆 = 3) 𝑁 𝑆0 = 12(𝜉𝑝/𝜎)2~𝑝2/𝜎2

(15) and (17), since  and , the resulting inter-molecular structure for 𝑆0 ∼ 𝑁 𝜔(𝑘) ∼ 𝑁

globules is independent of  . 𝑁

Figures 3 and 4 show results for the inter-molecular pair structure at various 

volume fractions. The so-defined macromolecular volume fraction can exceed as is 𝜙 = 1 

commonly the case for soft colloid microgels. Moreover, as mentioned in the 

Introduction, the globule is modeled at the segmental level and intermolecular repulsion 

on that scale does not completely prohibit limited interpenetration on the macromolecular 

scale. Figure 3 (main) presents the site–site pair distribution function as a function of 
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separation for volume fractions varying from  to 5. The pair distribution function 𝜙 = 0.1

has a deep correlation hole. This feature is not directly due to a CM level repulsive PMF 

per standard models [3,61], but rather follows from our explicit accounting of chain 

connectivity and uncrossability at the segmental level. As inter-site separation increases, 

 grows nearly monotonically until it approaches unity at large separations. We note 𝑔(𝑟)  

for the highest volume fraction there is a very small overshoot region where . It 𝑔(𝑟) > 1

does not arise from a nonzero excluded volume of segments nor a k-dependent C(k) as it 

does in atomic, molecular, or hard colloid fluids since sites in the polymeric thread model 

have a hard-core diameter . Rather, it is the combined consequence of connectivity 𝑑→0

and point-like uncrossability. The inset of Fig. 3 quantifies the excess or nonrandom 

component of the intermolecular site–site correlations including the surface area factor, 

. The strongly damped oscillations about zero indicate weak liquid-like (𝑟/𝑅𝑔)2ℎ(𝑟)

packing correlations on a macromolecular length scale. 

It is interesting to compare the g(r) of the simple globule model with its linear 

chain analog at the same macromolecular volume fraction. From Eq. (12), the latter 

follows in the variables relevant to the globule as:

𝑔(𝑟) = 1 +
2

3𝜙
𝑒 ―𝛼𝑟 ― 𝑒 ― 2 𝑟

𝑟  

𝛼 ≡
𝑅𝑔

𝜉𝑝
= 2 +

3
2 𝜙,

(22)

(23)

where . Figure 3 shows a comparison for  The primary difference is that 𝑟 = 𝑟/𝑅𝑔 𝜙 = 1. 

there is a much sharper increase in the chain liquid and a faster recovery to the random 

correlation value of g(r) = 1. This is accompanied by weaker excess correlations for the 
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linear chain (inset). The main reason for these trends is clear: linear chains can fully 

interpenetrate, while globules cannot, leading to a deeper correlation hole. 

Figure 4 (main) shows the site-level collective density fluctuation structure factor 

normalized by  as a function of dimensionless wave vector. For the lowest volume 𝑁

fraction , S(k) is very similar to , as expected. For small wave vectors, S(k) is 𝜙 = 0.1 𝜔(𝑘)

constant and equals the dimensionless compressibility, . It crosses over to the scaling 𝑆0

behavior, , at larger wave vectors, . As volume fraction increases, the ∼ (𝑘) ―3 𝑘𝑅𝑔 ≫ 1

dimensionless compressibility decreases according to Eq. (17) and the crossover to the 

globule behavior occurs at larger wave vectors (smaller length scales). This is equivalent 

to a narrowing or filling in of the correlation hole at larger volume fraction, as seen in the 

 results in Fig.3. 𝑔(𝑟)

As a measure of macromolecular coordination number, the number of 

neighboring globules ( ) within a distance  of a tagged globule is calculated using Eq. 𝑛𝑝 𝑟 ∗

(9) with  = 1.0, 1.5, 2.0. The results are shown in the inset of Figure 4 as a 𝑅 ≡ 𝑟 ∗ /𝑅𝑔

function of macromolecular volume fraction. As volume fraction increases, the number 

of nearest neighbor globules rapidly increases in a nearly linear manner; the slope is 

sensitive to the chosen dimensionless distance of inter-molecular separation that defines a 

neighbor. However, for all volume fractions studied  is independent of . This is 𝑛𝑝 𝑁

different than for chains where the number of neighbors grows as .  𝑁

IV. INTERPENETRATING RING RESULTS 

A. Model Parameters

While for the simple globule model the macromolecular volume fraction is the 

appropriate measure of dimensionless density, for rings this is not true. Moreover, we 
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find (as expected) from Eq. (21) that employing a literal constant macromolecular 

volume fraction ( ) ensemble yields a dimensionless compressibility  that rather 𝜙 𝑆0

strongly depends on ring degree of polymerization, N. Such a trend is not physically 

expected under dense liquid conditions, and it also disagrees with simulations [8, 33–35] 

which find that the ring melt equation-of-state (EOS) is essentially identical to that of 

linear chains, unaffected by geometric or topological effects. Moreover, for chain and 

ring liquids the EOS is nearly N-independent, which implies . This follows 𝑆0 ∼ 𝑁0

because of the fundamental connection between the pressure, temperature, and 

dimensionless compressibility at the segment level, which is . To  𝛽𝑃 =  ∫𝜌𝑠

0 𝑑𝜌′𝑠 𝑆 ―1
0 (𝜌′𝑠)

leading order, this exact relation implies under isobaric and isothermal conditions that S0 

is essentially independent of N, as discussed previously for chain polymer melts [62]. 

Thus, we implement our ring liquid model in a "constant dimensionless compressibility 

ensemble'' [62] defined as adopting a fixed, N-independent, value of . The precise 𝑆0

magnitude of the latter can vary with local chemistry, polymer concentration, and degree 

of coarse graining. At a fixed S0, the corresponding effective volume fraction is then 

determined by solving Eq. (21). As discussed below, the latter becomes a relatively weak 

but nontrivial varying function of N to maintain the constant compressibility constraint.

In order to choose appropriate values of , we first consider a melt of linear 𝑆0

thread chains described at the identical level of coarse graining with the same formulation 

of PRISM theory. To estimate  requires values of the packing length and segment size. 𝑆0

While for chain melts the packing length can vary over the range  nm [48] 𝑝 ≈ 0.15–0.4

and is scale-invariant, the statistical segment size carries uncertainty since it is sensitive 

to the degree of local coarse graining. We employ several standard models to estimate : 𝜎
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the Kuhn length , the persistence length ( ), and the statistical length (𝜎𝑘 ≃ 𝐶∞ 𝑙𝑏 ≈ 0.5 𝜎𝑘

) where  is the backbone chemical bond length (~0.15 nm) [2,48]. 𝐶∞ 𝑙𝑏,  𝐶∞~ 4 ― 10 𝑙𝑏

For ideal chains, it is known that , where  in the 𝜔(𝑘) = 12(𝑘𝜎) ―2 𝜎 = 𝐶∞ 𝑙𝑏,

intermediate scaling regime [2,3,49]. As an example, for polystyrene (PS) melts [48], 

 nm and  nm, yielding . If one uses the persistence length then 𝑝 ≈ 0.4 𝜎𝑘 ≈ 1.5 𝑆0 ≈ 0.8 𝑆0

, and if one uses the statistical length ( 5 nm) then . Thus, the melt ≈ 2 𝜎𝑠 ≈ 0.4 𝑆0 ≈ 9

dimensionless compressibility can vary by a factor of ~10 even for fixed chemistry. To 

cover these possibilities (chemical variations, as well as concentrated solutions versus 

melts) we adopt values of  between 0.3 and 15 in our numerical work.𝑆0

B. Results

Given S0 and N as input, Eq. (21) determines the effective macromolecular 

volume fraction of the ring liquid. The main frame of Figure 5 shows in a linear–log 

representation the effective volume fraction  as a function of N for  to 15; 𝜙𝑒𝑓𝑓 𝑆0 = 0.3

the inset shows the corresponding log–log plot. In the linear–log representation all curves 

are of a sigmoidal form. Moreover, for small N the effective volume fraction is always 

very low. As N increases from ~10 to 500, there is a dramatic increase in the effective 

volume fraction. Finally, at large N the effective volume fraction displays a quasi-plateau 

although it continues to grow slowly as . In this regime  ranges roughly 𝜙𝑒𝑓𝑓 ∼ log 𝑁 𝜙𝑒𝑓𝑓

from ~18 for  down to ~5 for . 𝑆0 = 0.3 𝑆0 = 15

A second way to analyze the effective volume fraction is to calculate  as a 𝑁/𝜙𝑒𝑓𝑓

function of N. For all dimensionless compressibilities studied, we find (not shown) that at 

small N this quantity is roughly constant, at most varying by a factor of 2. At large N, 

there is a crossover to linear behavior where  due to the roughly constant 𝑁/𝜙𝑒𝑓𝑓 ∼ 𝑁
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plateau of  at large N. This reflects the crossover behavior of the two-length scale 𝜙𝑒𝑓𝑓

ring model. For intermediate N, the dramatic increase of the effective volume fraction is 

akin to that of interpenetrating chain polymers. However, at large N the effective volume 

fraction is limited by the space-filling nature of rings on large length scales. 

For chosen values of  and N, the effective volume fraction, and thus the ring 𝑆0

liquid intermolecular structure, can be calculated using Eqs. (3), (6), (9), and (20). Figure 

6 shows the site–site pair distribution function  as a function of separation 𝑔(𝑟)

normalized by the radius of gyration. The solid (long dashed) curves show results for 𝑆0

 for three values of N. At small r all curves approach  = 0.3 (10) 𝑔(𝑟 = 0) = 0

continuously. Compared to the analogous simple globule model results (Figure 3) the 

interpenetrating ring liquids display a much sharper increase in  (weaker correlation 𝑔(𝑟)

hole) due to ring interpenetration. The inset of Fig. 6 shows the excess or non-random 

correlation function weighted by the surface area factor. At low dimensionless 

compressibility there are no oscillations, while for large compressibility weak oscillations 

and a small overshoot in  emerge. Compared to globules (Fig. 3 inset), the 𝑔(𝑟)

magnitude of  is much smaller. As found for globules (Fig. 4), ring polymers (𝑟/𝑅𝑔)2ℎ(𝑟)

exhibit collective static structure factors S(k) with no oscillatory behavior (not shown). 

Figure 6 also shows an example of how the ring segment–segment pair 

correlations compare with a linear chain analog at fixed N=1000 and S0=10. The chain 

result, computed using Eqs. (12)–(14), is shown by the short-dashed blue curves and 

should be compared to the long-dashed blue curve ring analog. Rings exhibit a 

correlation hole that extends to longer length scales, with stronger excess correlations. 
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These trends follow from dual nature of rings: globally space-filling in a qualitative sense 

but partially interpenetrating on smaller length scales due to their rough surfaces.  

Figure 7 shows calculations of the mean number of nearest neighbor rings using 

Eq. (9) for  (solid) and 2 (dashed) as a function of N for S0 varying from 0.5–15. 𝑅 = 1

For all cases, as ring size grows there is a dramatic increase in the number of neighboring 

rings until it tends to saturate at large enough N. This behavior is very different from both 

the behavior of the simple globule model where  is independent of N, and also that of 𝑛𝑝

linear chains where  grows in an unbounded manner as . The interpenetrating ring 𝑛𝑝 𝑁

liquid displays behavior intermediate between linear chains and globules. Our results for 

the number of nearest neighbors mimic the effective volume fraction in the sense that 𝑛𝑝

. The inset of Fig. 7 investigates this in detail by plotting  as a function of ∼ 𝜙𝑒𝑓𝑓 𝑛𝑝/𝜙𝑒𝑓𝑓

N. Except at very low N (not relevant to polymer systems), the latter quantity is nearly 

constant with a proportionality constant that depends on . 𝑅

Finally, we compare our theoretical results for the number of nearest neighboring 

rings with three simulation studies [32–34]. Each simulation is different in detail with 

regards to the model adopted, the polymer concentration, and/or the precise manner 

(distance criterion) in which a nearest neighbor is defined. However, there are common 

features. Michielleto and Turner (MT) [33] simulated a concentrated solution of rings 

with a relatively large local stiffness and a distance criterion of 2Rg. It is their results for 

the intra-ring structure factor that we have employed in our theoretical analysis. Their 

system parameters are: , and thus . Since 𝜌𝑠𝜎3
𝐿𝐽 = 0.1, 𝜎𝑘 = 10 𝜎𝐿𝐽, 𝐶∞ ≈ 10 𝜎 = 10 𝜎𝐿𝐽

the polymer mean square end-to-end distance is , the dimensionless 〈𝑅2〉 = 𝑁𝜎𝑘 𝜎𝐿𝐽

segment level density in our model is estimated as . From Eqs. (13) and (14)  𝜌𝑠𝜎3 = 10
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this implies . In a second study, Halverson, Lee, Grest, Grosberg, and Kremer 𝑆0 ≈ 1.1

(HLGGK) [34] employed the standard bead-spring Kremer–Grest (KG) model to study 

ring melts with systems parameters: , and thus 𝜌𝑠𝜎3
𝐿𝐽 = 0.85, 𝜎𝑘~𝐶∞𝜎𝐿𝐽, 𝐶∞ ≈ 1.4 𝜎 =

. These parameters yield the estimate . Then, using Eqs. (13) and (14) 1.4 𝜎𝐿𝐽  𝜌𝑠𝜎3 ≈ 1.4

we estimate  The third simulation study by Smerk and Grosberg (SM) [32] also 𝑆0 ≈ 6.

employed a KG polymer model. 

MT and HLGGK computed the number of nearest neighbor rings (  in our 𝑛𝑝

notation) based on a distance criterion ( ), while SM computed a different r*  Rg

geometric measure based on interpenetrating surfaces. MT found ~6–9 as N=256–𝑛𝑝

2028, following crudely a N0.27 power law. HLGGK found that ~1.5–3 for N=10–2000. 𝑛𝑝

However, if they choose the distance to define a neighbor to be the larger (by a factor of 

order 2) "ring end-to-end distance" they found ~11–16, in reasonable accord with the 𝑛𝑝

findings of MT. SG found ~2–18 for N=10–1600 based on their geometric criterion. 𝑛𝑝

So, although the models and criteria used in these simulation studies are not the same, all 

find  grows significantly with increasing ring size. 𝑛𝑝

The  data from the three simulations discussed above are shown in Figure 8 𝑛𝑝

along with our theoretical calculations for a range of S0 values. As a quantitative caveat 

we note that the simulations of MT and HLGGK analyzed the number of nearest 

neighbors based on the g(r) between rings at the center-of-mass level. This is not 

identical to our analysis based on the site–site g(r) via Eq. (9), though the two are very 

close in spirit. Recall we employed the single ring structure factor of MT, for which we 

estimate S0~1.1. Rather surprisingly, there is almost quantitative agreement between our 

S0=1 calculations and the MT results. Even more surprising is that the HLGGK 

Page 24 of 41Soft Matter



25

simulations (for which we estimate S0~6) almost quantitatively agree with our theoretical 

calculations for S0=5–10 despite the fact that our  was constructed from the MT 𝜔(𝑘)

simulations. Qualitatively, the simulation results of SG also seem roughly consistent with 

our calculations, especially given the unavoidable uncertainties of determining the 

appropriate parameters of our coarse-grained thread model and the different geometric 

manner SG employed to define neighbors. 

To summarize, liquids composed of ring polymers exhibit distinctly different 

behavior compared to their linear chain and simple globule model analogs. In a constant 

dimensionless compressibility ensemble, EOS effects lead to an increase in the effective 

ring volume fraction which have large consequences on packing structure. The effective 

volume fraction, which is proportional to the number of nearest neighboring rings, grows 

dramatically at intermediate N before nearly saturating at large N. This reflects the 

limited interpenetration of rings near their surface (Fig. 1b) and buttresses the physical 

picture of rings packing as an unusual realization of soft colloids. 

V. DISCUSSION 

We have developed a segment or site level statistical mechanical theory for the 

thermodynamics and real space pair structure of dense liquids of simple models of 

globules and interpenetrating ring polymers. The former is valuable as a baseline or 

reference system to compare with collapsed rings, and as a crude model of core–shell soft 

nano- or micron-sized particles with thin or non-existent coronas. To study ring polymer 

liquids, we constructed a two-fractal regime intra-ring structure factor model guided by 

simulation. At small length scales, it describes chain-like macromolecules, while globally 

the rings are collapsed. Motivated by recent simulations, theory and experiments, the 
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crossover between these two regimes was chosen to be mesoscopic, independent of ring 

size N, and of order the entanglement length of the chain analog.

For the simple globule model, we adopted a constant volume fraction ensemble 

relevant to suspension, and found that the equilibrium structure is independent of N. The 

dimensionless compressibility and pressure are predicted to vary exponentially with 

macromolecular volume fraction. Our analysis in Section II.C. suggests the simple 

globule model in conjunction with polymer integral equation theory provides a zeroth 

order understanding of the unusual equation-of-state behavior of dense suspensions 

phytoglycogen nanoparticles [59]. The predicted inter-molecular correlations exhibit a 

correlation hole down to small length scales. The number of neighbors grows 

monotonically with volume fraction and does not saturate given the globules can overlap 

to some degree on the macromolecular scale even though they cannot at the segmental 

scale.

For the interpenetrating ring polymer liquids, we find dramatically different 

behavior. In this case, we adopted a constant compressibility ensemble motivated by 

simulation and experimental studies (and generic theoretical expectations), which find the 

ring and chain melt equations-of-state and density are very similar and not significantly 

N-dependent under isobaric conditions. The effective volume fraction grows at 

intermediate N since changing macromolecular size modulates the relative importance of 

the limited interpenetration in ring liquids. However, the latter appears to be essentially 

bound for very large rings, displaying a near plateau behavior with a slow logarithmic 

increase. The intermolecular segment–segment correlations are weaker than for the 

simple globule model in the sense that the correlation hole is shallower, however the 
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suppression of g(r) below the random value remains stronger than for linear chains. More 

importantly, the number of neighboring rings increases dramatically at small N, akin to 

linear polymer chains, but tends to saturate at large N. Our results agree rather well with 

different simulation studies for the absolute values of the number of neighboring rings in 

concentrated solution and melts and how they vary with N. More generally, we expect the 

theoretical approach and tools developed here are relevant for other complex fluids 

composed of soft partially interpenetrating objects such as core–shell microgels and 

nanogels, hairy colloids, and highly-branched dendritic nanoparticles. 

Going forward, we will use the present structural theory to develop a predictive 

approach at the segmental scale for the dynamics of liquids composed of globular objects 

and ring polymers. The dramatic increase of effective volume fraction and number of 

neighboring molecules for rings raises the possibility of a "topological" glass-like 

transition induced by increasing N, as recently suggested in simulation studies [33,38]. 

The advance reported here in conjunction with our new generalized Rouse model [53] 

provides a foundation to understand such a glass-like transition and the ring center-of-

mass dynamics and diffusion constant.
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Figures

Figure 1 - Schematic cartoons of the studied models. (a) In the simple globule model the 

qualitative picture is that polymers (purple curves) are collapsed into compact structures 

(orange spheres) characterized by a radius of gyration, . (b) Per simulation 𝑅𝑔 ∼ 𝑁1/3

studies, rings behave in a compact manner at large scales but a chain-like manner on 

smaller internal scales that allow them to interpenetrate in a limited manner (teal 

spherical shells). The crossover length scale from space filling to interpenetrating 

behavior is  and is taken to be independent of the ring degree of polymerization . 𝜆 𝑁
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Figure 2 - The intra-molecular structure factor normalized by the degree of 

polymerization, , as a function of wavevector normalized by ring radius of 𝜔(𝑘)/𝑁

gyration, . The points show simulation data [33] for three different ring sizes. The 𝑘𝑅𝑔

solid black curve is the adopted simple globule  model of Eq. (15) with . The 𝐴 = 0.286

dashed curves are the ring polymer model of Eq. (20).
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Figure 3 – Intermolecular site–site pair correlation function, g(r), for the simple globule 

model fluid as a function of inter-site separation in units of the radius of gyration, , 𝑟/𝑅𝑔

for macromolecular volume fractions  and 5.0 (solid curves from right to 𝜙 = 0.1, 0.5, 1.0,

left). (inset) The surface area weighted excess correlations  as a function of (𝑟/𝑅𝑔)2ℎ(𝑟)

separation for the same systems (lowest  system is bottom solid curve at ). In 𝜙 𝑟 = 1.5 𝑅𝑔

both the main frame and inset the dashed curves are the analogous chain liquid result for 

𝜙 =  1.0.
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Figure 4 – (main) Collective segment-level density fluctuation structure factor of the 

simple globule model liquid normalized by the degree of polymerization  (solid curves) 𝑁

as a function of the dimensionless wave vector for three macromolecular volume 

fractions and 1.0 (solid curves from top to bottom at low k). The intra-𝜙 = 0.1, 0.5, 

molecular structure factor  (dashed curve) is shown for reference. (inset) The 𝜔(𝑘)

number of nearest neighbor globules surrounding a tagged globule as a function of  for 𝜙

3 choices of nearest neighbor criterion  (bottom to top).𝑅 = 𝑟 ∗ /𝑅𝑔 = 1, 1.5, 2
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Figure 5 – Effective macromolecular volume fraction for the interpenetrating ring 

polymer liquid as a function of . The fixed dimensionless compressibilities range from 𝑁

 to 15 (top to bottom). The main (inset) plot is in a linear–log (log–log) 𝑆0 = 0.3

representation. The black dashed line in the inset shows the power law  for reference.𝑁1.3
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Figure 6 – Site–site intermolecular pair correlation function for ring polymer liquids as a 

function of separation relative to the radius of gyration for two dimensionless 

compressibilities  (solid) and 10.0 (dashed). For each , results for three N 𝑆0 = 0.3 𝑆0

values are shown. For  (10.0) the effective volume fractions are 𝑆0 = 0.3 𝜙𝑒𝑓𝑓

 and 17.1 (1.3, 2.9, and 3.6) for and 10000, respectively. =  8.4, 15.2, 𝑁 = 100,  1000, 

(inset) The excess correlation function multiplied by the surface area factor as a function 

of separation for the same systems as the main frame. In both the inset and the main 

frame, the short-dashed blue curve shows the chain liquid analog for  and 𝑆0 = 10.

.𝑁 = 1000
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Figure 7 – Number of nearest neighbor rings as a function of . The solid curves employ 𝑁

the distance criterion , and 0.5, 1.0, 5.0, 10, and 15 (from top to bottom). The 𝑅 = 1 𝑆0 =

dashed curves employ  , with  5.0, 10, and 15 (from top to bottom). (inset) 𝑅 = 2 𝑆0 =

Same as main frame where  is divided by the effective volume fraction .𝑛𝑝 𝜙𝑒𝑓𝑓
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Figure 8 – Comparison of simulation results with our theoretical calculations for the 

number of nearest neighbor rings. The latter are the same as the main frame of Figure 7 

but in a log–log representation. Results from three simulations are shown as points: 

squares from Halverson, Lee, Grest, Grosberg, and Kremer (HLGGK, Ref. [34]); 

triangles from Michieletto and Turner (MT, Ref. [33]); and circles from Smrek and 

Grosberg (SG, Ref. [32]). 
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