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Conforming nanoparticle sheets to surfaces with
Gaussian curvature†

Noah Mitchell,∗a‡ Remington L. Carey,a‡§ Jelani Hannah,a Yifan Wang,a¶ Maria Cortes
Ruiz,a Sean McBride,a∗∗ Xiao-Min Lin,b and Heinrich M. Jaeger∗a

Nanoparticle monolayer sheets are ultrathin inorganic-organic hybrid materials that combine
highly controllable optical and electrical properties with mechanical flexibility and remarkable
strength. Like other thin sheets, their low bending rigidity allows them to easily roll into or con-
form to cylindrical geometries. Nanoparticle monolayers not only can bend, but also cope with
strain through local particle rearrangement and plastic deformation. This means that, unlike
thin sheets such as paper or graphene, nanoparticle sheets can much more easily conform to
surfaces with complex topography characterized by non-zero Gaussian curvature, like spherical
caps or saddles. Here, we investigate the limits of nanoparticle monolayers’ ability to conform
to substrates with Gaussian curvature by stamping nanoparticle sheets onto lattices of larger
polystyrene spheres. Tuning the local Gaussian curvature by increasing the size of the substrate
spheres, we find that the stamped sheet morphology evolves through three characteristic stages:
from full substrate coverage, where the sheet extends over the interstices in the lattice, to cov-
erage in the form of caps that conform tightly to the top portion of each sphere and fracture at
larger polar angles, to caps that exhibit radial folds. Through analysis of the nanoparticle posi-
tions, obtained from scanning electron micrographs, we extract the local strain tensor and track
the onset of strain-induced dislocations in the particle arrangement. By considering the interplay
of energies for elastic and plastic deformations and adhesion, we construct arguments that cap-
ture the observed changes in sheet morphology as Gaussian curvature is tuned over two orders
of magnitude.

While any flat thin sheet can easily be rolled into a cylinder, com-
mon experience suggests that conforming the same sheet to a
sphere is considerably more difficult. In order to accommodate
the curvature of the sphere, one must fold, cut, or stretch the
sheet. On surfaces with Gaussian curvature — that is, curvature
in two independent directions, such as on a sphere or saddle —
triangles no longer have interior angles which sum to 180◦. Con-
forming a flat sheet tightly to such a surface thus necessarily in-
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troduces stresses from stretching or compression. If the stresses
build up, the material may respond by delaminating or forming
cracks, dislocations, or folds1–3. For applications where initially
flat sheets are to conform to arbitrary surface topographies, the
ability to cope with Gaussian curvature therefore translates into
the ability to bend and deform locally in-plane.

Relatively stiff materials such as paper or graphene have diffi-
culty coping with these stresses, and therefore rip or fold instead
of conforming to surfaces with Gaussian curvature. Studies of
softer elastic sheets, on the other hand, have led to the under-
standing of curvature as a tool for patterning defects3–5, cracks1,
folds6,7, wrinkles7,8, blisters2, and even controlling phase tran-
sitions to and from the solid state9,10. In this article, we extend
these efforts by focusing on a particular material: close-packed
nanoparticle monolayers. These hybrid organic-inorganic materi-
als combine remarkably high Young’s modulus (several GPa) with
the ability to deform and rearrange locally in a plastic manner.
Furthermore, their versatility has given rise to prospective appli-
cations in filters11, solar cells12, sensors13–15, batteries16, and
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Fig. 1 Nanoparticle sheets conform to highly curved surfaces. In
the situation under study, a preformed nanoparticle monolayer is pressed
against a substrate comprised of a lattice of larger spheres. As the sheet
is stamped, the nanoparticles become pinned to the substrate spheres.
The three snapshots (top) are from a simulation of an elastic network.
As the thin sheet conforms to the substrate while experiencing pinning
forces, stresses result in broken bonds between nanoparticles.

beyond due to their optical17, electrical18,19, and chemical prop-
erties20.

In nanoparticle monolayers, individual metallic or semicon-
ducting particle cores are embedded in a matrix of interpene-
trating ligand molecules that are bound to each core21,22, with
the organic matrix largely determining the sheet’s bulk mechan-
ical properties. While these properties have been studied for
sheets in planar geometries23–25 and for cylindrical, scroll-like
structures26, the ability of flat sheets to conform to surfaces with
Gaussian curvature has received little attention27. Here, we in-
vestigate this by stamping monolayers of dodecanethiol-ligated
gold nanoparticles onto surfaces formed by lattices of larger
polystyrene (PS) spheres.

The situation we address begins with pre-assembled flat sheets
that deform as they are stamped against a highly curved sur-
face, as illustrated in Fig. 1. For nanometer-thin sheets, van der
Waals forces generate adhesion that effectively immobilizes the
nanoparticles as they come into contact with the substrate. Fur-
thermore, in contrast to continuum elastic sheets, the discrete
nanoparticle lattice allows for the formation and proliferation of
defects in addition to straining, folding, and fracturing during the
conformation process.

The effect of strong pinning to the substrate results in strikingly
different behavior than found for the equilibrium arrangement of
interacting Brownian particles on spheres5,10, frustrated equilib-
rium conformations of macroscopic, continuum elastic sheets1,2,
or non-equilibrium growth of colloidal crystals on spherical in-
terfaces9. Because the pinned sheet cannot relax to minimize
free energy, the effects of geometric frustration build up accord-
ing to history-dependent, sequential rules. This sequential adhe-
sion gives rise to qualitatively different stress fields in the sheet
and suppresses wrinkling before the appearance of sharp folds.

Depending on the Gaussian curvature, K, of the corrugated
substrate, which we control by the PS sphere diameter D via

K = 4/D2, we find three characteristic stamped-sheet morpholo-
gies. As seen in Fig. 2, increasing D leads from sheets that entirely
cover the corrugated substrate to sheets that have fractured into
caps closely conforming to the top portions of the PS spheres.
Finally, the largest PS spheres yield caps exhibiting radial folds
similar to those seen in macroscopic, continuum sheets8,28. We
show that these curvature-dependent morphologies emerge from
the interplay between strong pinning to the substrate, elastic en-
ergies, and costs for defect formation. This allows us to generate
predictions for the conditions required to obtain full coverage and
for the limits to which nanoparticle sheets can conform tightly to
arbitrarily curved surfaces.

In what follows, we first describe the experiments and resulting
sheet morphologies. We then provide energy scaling arguments
that rationalize the crossovers between stamped sheet morpholo-
gies as a function of D or K. In subsequent sections, we examine
each regime in turn and find that detailed measurements corrob-
orate the overall scaling picture. We directly measure the local
strain within the stamped sheets and compare them to simula-
tions of two-dimensional spring networks made to conform to
sphere lattices. From these measurements and simulations, we
determine the onset of finite size effects due to the discrete na-
ture of the nanoparticles. This analysis provides a correction to
the overall scaling picture for small PS sphere sizes and allows us
to predict the maximum polar angle up to which the sheet can
tightly conform to individual PS spheres without material failure.

1 Experimental procedure
Dodecanethiol-ligated gold nanoparticles were synthesized via a
digestive ripening method followed by extensive washing with
ethanol and finally dissolution in toluene29. This process yielded
nanoparticles with diameter 5.2± 0.3 nm and ligand lengths
1.7±0.3 nm. Nanoparticle monolayers were self-assembled at the
surface of a water droplet. After depositing a drop (∼ 150 µL) of
deionized water onto the hydrophobic surface of a piece of polyte-
trafluoroethylene (PTFE), 5-7 µL of the nanoparticle-toluene so-
lution were pipetted around the drop perimeter. The solution
climbed to the top of the droplet almost immediately, and, as the
toluene evaporated, the nanoparticles self-assembled into a close-
packed monolayer with an average lattice spacing of 7.2±0.8 nm
(Fig. 3a-d). Waiting several hours allowed some of the water to
evaporate as well. Given the strong pinning of the drop’s contact
line to the substrate, this evaporation changed the droplet shape
from spherical cap to flattened dome (not shown in Fig. 3b).

At this stage, a silicon chip coated with a lattice of polystyrene
(PS) spheres was gently pressed into the assembled monolayer
and peeled away (Fig. 3e,f). These PS sphere lattices were cre-
ated by diluting solutions of PS spheres (Bangs Laboratories) by
a factor of 100 using deionized water, then depositing 5-7 µL of
the diluted solution onto 25 mm2 silicon chips and allowing them
to dry. Our experiments used sphere diameters ranging from 100
nm to 1.9 µm. Variations in PS sphere sizes increased with size,
ranging from a standard deviation of 2% for 100 nm spheres to
12% for 800 nm spheres, while the 1.9 µm spheres had a standard
deviation of 20%. Because the nanoparticle monolayers readily
adhere to the PS spheres, the layers delaminate from the water
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increasing sphere size
D = 100 nm D = 210 nm D = 560 nm D = 1.9 μm

200 nm 200 nm 200 nm 2.0 μm

a b c d

Fig. 2 Sphere size tunes through stamped nanoparticle sheet morphologies. (a) At small sphere diameter D, the monolayer sheet is able to
cover the polystyrene sphere array completely, but does not fully conform to each sphere. (b-c) As D increases, the sheets tightly conform to the upper
portions of the spheres. However, they no longer bridge the crevices between spheres and instead form azimuthal cracks. (d) At even larger D, sheets
buckle out of plane, creating radial folds.

Fig. 3 Schematic of the experimental procedure for conforming
self-assembled gold nanoparticle monolayer sheets to a lattice of
polystyrene spheres. (a-b) Drying-mediated assembly of a nanoparti-
cle monolayer at the surface of a water droplet. (c-d) Close-up illustrat-
ing the self-assembly of the monolayer at the water-air interface. (e-f)
Stamping a lattice of larger polystyrene (PS) spheres onto the nanopar-
ticle monolayer and peeling it away from the water droplet.

and transfer to the PS spheres, as when inking a stamp. These
‘stamped’ monolayers were then imaged using a Carl Zeiss Merlin
scanning electron microscope (SEM).

2 Monolayer morphology: coverage,
cracks, and folds

SEM imaging revealed that the nanoparticle sheets reproducibly
retain their monolayer structure as they are transferred onto the
substrate of PS spheres. The sheet morphology, however, varies
with the size of the PS spheres used. For PS diameters D ≈ 100
nm, monolayers typically cover the substrate without cracks or
folds (Fig. 2a). For these small D, the monolayers do not enter
deeply into the crevices between spheres, instead getting pinned
at the apex of each PS sphere and bridging the crevices as free-
standing membranes.

Once D becomes larger, the stamped sheets are able to follow
the substrate surface topography more closely, creating snugly
fitting caps. Remarkably, the sheets conform tightly to the PS
spheres up to polar angles (measured from the apex of each
sphere) of 20-30◦ without buckling, wrinkling, or creating folds.
This already indicates behavior quite distinct from that of other
thin sheets, such as paper, mylar, polystyrene, or graphene, which
invariably generate folds or rip2,6,30–32.

At larger polar angles, azimuthally oriented cracks appear,
which hint at large radial stress as the sheets conform to the
PS spheres during the stamping process. These cracks prevent
the sheets from bridging the gap between neighboring spheres
(Fig. 2b-c). For sphere diameters larger than roughly 1 µm, not
only do the sheets tear azimuthally to form caps on each sphere,
but also they form localized radial folds to accommodate the mis-
match between flat and spherical metrics (Fig. 2d).

The azimuthal cracks in Fig. 2b-c and the radial folding lines
in Fig. 2d form during the stamping process, in which the mono-
layers are deformed under vertical pressure to conform against
the non-Gaussian topography, as sketched in Fig. 1. Once the
nanoparticles are in contact with the polystyrene surface, the ad-
hesion immobilizes these local deformations. For D around 200
nm, portions of the monolayer that did not adhere to PS spheres
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Fig. 4 Energy scaling captures changes in sheet morphology. The
interplay of different energy costs provides crossovers from fully covered
PS lattices (incomplete adhesion, green region), to plastic deformation
(red region), to the formation of localized folds (blue region). Each en-
ergy is for a nanoparticle annulus of radial width δ r — with stretching
modulus Y and bending modulus B — and a PS sphere of diameter D.
The energy cost of not adhering to the PS substrate, Eγ , grows with the
area of the annulus, πD sinθδ r, and depends on the adhesion energy,
γ. Similarly, the stretching energy, Es, and the energy of plastically de-
forming the annulus by dislocation proliferation, Ed , likewise grow with
the area of the annulus. The stretching energy also depends strongly on
the polar angle, θ , through the strain εi j = εi j(θ) as Es ∼ Dsinθδ rθ 4, de-
picted by the offset between colored dashed blue, gray, and orange lines.
The plastic deformation energy, Ed , has a minimum set by the energy of
unbinding a pair of dislocations, Edisloc, and the factor Γ is a phenomeno-
logical constant characterizing the work necessary to plastically deform
a unit area of the sheet. The energy of creating a localized fold, E f , is set
by the energy to crease the sheet. The fold energy per unit length of the
fold, e f , depends on the fold angle and microscopic details of the lattice.

tend to tear in the interstices between polystyrene spheres. For
larger D, the azimuthal fractures become more pronounced, al-
lowing the interstitial portions of the sheet to recede further down
(Fig. 2c). For the largest sphere sizes (D ≥ 690 nm), the non-
adhering portions may be swept away as the water dewets the
chip while it is being pulled off the droplet at the end of the
stamping process (Fig. 2d).

3 Energy scaling
In this section, we provide a self-consistent rationalization for the
observed changes from incomplete adhesion to plastic deforma-
tion to folding, using scaling arguments for continuum sheets. In
subsequent sections, we examine each regime in turn and find
that detailed measurements corroborate the overall scaling pic-
ture presented here, while also providing corrections due to the
discrete lattice structure of our sheets.

A simple geometric insight underpins the trend in behavior
seen in Fig. 2. On a flat sheet, the circumference of a circle grows
in proportion to its radius, r. On a sphere, however, the circum-
ference of a circle at the same distance r from the sphere’s apex
grows more slowly due to the Gaussian curvature. In other words,
when a flat disc of given r is made to conform to the surface of
a sphere, it must deform to compensate for the deficit in circum-
ference. The sheet must therefore not only bend, but also strain
elastically in the form of radial expansion, azimuthal compres-
sion, or some combination of the two.

If the sheets furthermore become pinned to the PS spheres dur-
ing the stamping process, the nanoparticles attach sequentially
one annulus at a time, starting from each sphere’s apex (Fig. 4a).
As successive annuli conform to the substrate, the cost of elastic
energy may exceed the energetic costs associated with delami-
nating, forming defects, ripping apart, or folding. To understand
the competing energy scales, consider an annulus of nanoparticle
sheet with radial width δ r that has been conformed onto a PS
sphere of diameter D to sit at polar angle θ . Such an annulus
has an area πDsinθδ r (to zeroth order in strain). Conforming
this annulus to the sphere requires energies due to bending and
stretching, and these conformational energy costs compete with
alternative behaviors, such as remaining free-standing instead of
conforming, plastically deforming and fracturing, or folding.

3.1 Energy costs to conform: bending and stretching

First, conformation of the annulus requires areal bending en-
ergy density Eb ∼ B/D2, where B is the sheet’s 2D bending mod-
ulus. The total bending energy in the annulus then becomes
Eb ∼ (B/D)sinθδ r. Here we are neglecting small corrections to
this approximation of order O(θ 2) (see Supplementary Informa-
tion). Thus, the cost of bending decreases as D grows, as shown
by the downward dashed line in the left portion of Fig. 4b.

Second, the sheet must also stretch to conform to a sphere.
The total stretching energy, Es, stored in the annulus is propor-
tional to its surface area and the stretching energy density. This
stretching energy density, Es, is a quartic function of polar angle
on the sphere, Es ∼ θ 4, as shown in the Supplementary Infor-
mation. Therefore, the cost of stretching increases linearly with
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D, but the magnitude depends sensitively on the polar angle:
Es ∼ Dsinθδ r θ 4. While Fig. 4b omits linear and sublinear de-
pendence on θ for clarity, this strong dependence of Es on polar
angle is shown by the rising dashed lines. The changing colors
(blue, gray, orange) denotes that, for a given sphere size D, the
stretching energy in an annulus grows rapidly with polar angle.

We emphasize that the stretching energy scaling in our sheets
strongly contrasts from the well-studied case of equilibrated
sheets conformed to a sphere, in which the energy density de-
creases quadratically with polar angle, θ for small θ (see Sup-
plementary Information). This difference highlights the distinct
character of sequential adhesion to a substrate seen in our sys-
tem.

3.2 Alternatives to elastic conformation: avoiding adhesion,
plastic deformation, and folding

These elastic energies compete with the possibility of adopting al-
ternative behaviors. Instead of elastically bending and stretching
to conform, the sheet may only partially conform to the sphere,
or it may plastically deform, rip apart, or form folds.

While stretching and bending cost energy, the adhesion pro-
cess can relieve energy as well, since it replaces two interfaces
(nanoparticle-air and air-PS) with a single one (nanoparticle-PS).
This replacement relieves energy in proportion to the area of ad-
hered material, so there is a fixed areal energy density Eγ relieved
by adhering to the PS sphere. For the annulus, this translates into
a total cost of not adhering to the substrate, Eγ ∼ Dsinθδ r, that
increases linearly with D.

While the stretching energy scales as Es ∼ Dsinθδ r θ 4, the en-
ergy cost Ed of relieving stress through plastic deformation of
the annulus scales similarly with sphere diameter, but has a far
weaker scaling in θ : Ed ∼ max(Edisloc, ΓDsinθδ r), where Edisloc
is the energy of unbinding a single pair of dislocations and Γ is a
phenomenological factor capturing the work required to damage
a unit area of the material. The minimum possible energy to cre-
ate the first defect pair, Edisloc, sets the lower cutoff that freezes
out defect proliferation at small D. Edisloc is determined by the
core energy of a dislocation and the elastic cost of deforming the
portion of sheet surrounding the dislocations, which depends on
microscopic features of the lattice. Finally, the energy cost for cre-
ating a fold in the sheet, E f , increases only with the fold length
(∼ δ r) and thus is independent of D.

3.3 Three regimes arise from energy scaling

Fig. 4b represents these energy scaling relations schematically.
Throughout this figure, linear and sub-linear dependences on the
polar angle θ are suppressed for clarity. In particular, the adhe-
sion and bending energies grow as sinθ , and we omit this de-
pendence. Conversely, we do include the strong θ dependence
of the stretching energy, and illustrate this strong dependence by
the colored dashed lines.

From this scaling we infer that for sufficiently small sphere sizes
(or, equivalently, large Gaussian curvature), the lowest cost will
be incurred by incomplete adhesion, as this causes the least dis-
tortion in the flat sheet. The green region in Fig. 4b represents this

regime, which corresponds to the experimental results in Fig. 2a.
For larger sphere sizes, bending becomes energetically cheaper

than not adhering. However, in order to conform tightly to the
sphere, the monolayer needs to not only bend, but also stretch or
compress. For annuli at small polar angles θ , this elastic energy
cost can be negligible, but as θ grows for a given D, the cost will
eventually exceed the penalty for creating defects. As a result,
beyond some critical polar angle θc, plastic deformation in the
sheet will cause a proliferation of dislocations. We expect that the
formation of cracks follows as a result of this defect formation,
along with the tension that remains while defects are formed.
Since the in-plane stretching is tensile along the radial direction,
as we will see, cracks open up along the azimuth, perpendicular
to the radial tension. This regime is represented by the red region
in Fig. 4b and corresponds to the experimental results in Fig. 2b
and c.

For the largest PS sphere sizes, yet another crossover occurs due
to the difference in scaling between the costs for either elastic
stretching or plastic deformation, which increase linearly in D,
and the costs of forming localized folds, which is independent of
D. This is the regime shown in blue in Fig. 4b, corresponding
to Fig. 2d. Because the energy cost for fold formation lies below
that of plastic deformation in the blue regime, the first response as
strains build up will be to form folds rather than the proliferation
of dislocations.

This energy scaling captures all three regimes of stamped
nanoparticle sheet morphology seen in Fig. 2. We note that this
framework operates in the continuum limit. Additionally, our pic-
ture assumes that chemical properties of the polystyrene do not
vary with PS sphere size, an effect that could alter the adhesion
energy in Fig. 4b. Nevertheless, the essential features are sup-
ported by quantitative comparisons with experiments and simu-
lations given in the following sections.

In the remaining sections, we discuss in more detail each of the
mechanical responses of the flat sheets to the enforced geomet-
ric mismatch: bending, stretching, dislocation proliferation, crack
formation, and folding.

4 Bending and adhesion
The crossover from incomplete adhesion to full adhesion with
plastic deformation occurs in our experiments for PS spheres with
diameters D≈ 200 nm. This crossover enables an estimate of the
bending rigidity in nanoparticle membranes.

Near the apex of the sphere, the two-dimensional bending en-
ergy density of a thin plate in plane stress is33

FB ≈
4B(ν +1)

D2 . (1)

We take the Poisson ratio to be ν = 1/3, the value for a triangular
lattice of spring-coupled nodes, in accordance with the measured
value for nanoparticle sheets34. We take an average radius of
curvature of D/2≈ 100 nm for the crossover.

At the small-sphere crossover between incomplete adhesion
and plastic behavior, we should expect the bending energy to
match the adhesion of the nanoparticle sheet with polystyrene.
Using the result of Ref.35, we estimate the adhesion energy from

1–12 | 5

Page 5 of 12 Soft Matter



the surface tensions of dodecane (21 mN/m) and water (72
mN/m), the surface energy of solid polystyrene (∼ 42 mN/m)36,
and the molar volumes of each. The result is an adhesion en-
ergy of γPS + γdodecane− γPS,dodecane ≈ 60 mN/m. We expect that
the bending energy, FB, matches this value at the crossover.
This gives a bending modulus for the nanoparticle sheets of
B≈ 4.5×10−16 Nm.

From this we may deduce a lower bound on the effective thick-
ness teff of the sheet, which can deviate from the physical thick-
ness due to the non-continuum nature of the material26. The
bending modulus is related to teff via B = Yt2

eff/12(1− ν2). Here
the 2D stiffness Y = Et is the product of Young’s modulus E and
physical thickness t. If we assume E ∼ 3 GPa, as is appropriate for
fully dried monolayers23,37, we obtain teff ≈ 14 nm, about 60%
larger than the physical thickness of t ≈ (dAu NP + 2× `ligand) nm
= 8.2 nm. However, we expect that during the stamping process
there is residual water embedded in the ligand matrix. The pres-
ence of water molecules in the matrix has been shown to drasti-
cally affect the elastic properties, reducing elastic moduli by po-
tentially several orders of magnitude38,39. Such decrease in E
then implies an increase in teff, possibly up to around 10t as ob-
served for dried monolayers26.

The crossover from incomplete adhesion on small spheres
to tightly conforming to larger spheres is reminiscent of the
crossover in a thin sheet’s ‘bendability’, which is the ratio of ten-
sile to bending forces, PR2/B, where P is the tension at the edge
of a sheet covering a sphere due to in-plane stretching or inter-
facial forces8. As the PS sphere size increases, so too does the
bendability of the sheet. Our system differs from these recent
studies of comparably stiff sheets, however, because of the strong
pinning of the nanoparticle sheet to the substrate. The apparent
force imbalance in the stretching of the sheet measured in simu-
lations shows that adhesion enables a disproportionate increase
in radial tension, at a rate faster than long-range elasticity would
allow (Supplementary Information Fig. S3). Specifically, adhe-
sion supplies a tension which offsets the imbalance of in-plane
stresses, ∂r(rσrr)−σφφ . While this quantity would vanish with-
out pinning, here the stress imbalance grows as θ 2 for small to
moderate polar angles (see Supplementary Information).

5 Strain analysis

During the stamping process, the first contact between the
nanoparticle sheet and a PS sphere occurs at the sphere’s apex,
θ = 0, where the sheet will be pinned. Subsequent annuli of the
sheet will need to strain or undergo plastic deformation in or-
der to conform tightly to the surface of the PS sphere, but once
this has occurred, these annuli also will become pinned to the
polystyrene. This means that we can obtain information about the
local strain by using the individual nanoparticles as markers and
extracting differences in their average spacing along a sphere’s
surface. Given the random disorder inherent already in the flat
sheets, this procedure requires ensemble averages over several
different imaged PS spheres for statistically relevant results.

a b

rrc d

# sides
4 5 6 7 8

0.1 0.0 0.1

Fig. 5 Identification of defects and extraction of the local strain ten-
sor. (a) Nanoparticles are identified in the original SEM image. (b) Using
a Voronoi tessellation, we enumerate the neighbors of each nanoparti-
cle. For each nanoparticle with six neighbors, comparing the Voronoi cell
to a regular hexagon lying on the tangent plane of the sphere yields the
strain tensor. To restrict the analysis to elastic deformations, we omit par-
ticles whose Voronoi cell is deformed well beyond the elastic limit of the
material, keeping only hexagons whose perimeter to surface area ratio,
s ≡ P/

√
A, satisfies s < scutoff = 4.0. (c-d) The radial strain in the sheet,

εrr, increases with distance from the apex, while azimuthal strain, εφφ ,
does not.
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Fig. 6 Strain analysis shows qualitative agreement between exper-
iments and simulations. Data from nanoparticle sheets on 62 imaged
PS spheres of different diameters reveals that the radial strain, εrr in-
creases with polar angle, while the azimuthal strain, εφφ , is compressive
and comparatively small. The incompressible solution does not fit as well
to the data, showing that nanoparticle sheets behave elastically.

5.1 Image analysis

To study the strains and defect densities of nanoparticle sheets,
we use a custom image analysis routine on each SEM image to
identify the nanoparticle locations and to identify the nearest-
neighbor connectivity of the nanoparticle lattice40. We band-
pass each image in two steps: first convolving it with a Gaus-
sian (whose parameters include nanoparticle characteristics such
as lattice spacing) and then convolving the result with a boxcar
function. Subtracting the two gives a high-pass-filtered image
from which we extract particle positions.

A Delaunay triangulation provides the lattice topology and the
nearest neighbors for each particle. Defects in the lattice are par-
ticles with fewer than six or greater than six neighbors (discli-
nations), and pairs of oppositely signed disclinations form dislo-
cations (for example, a 5-7 disclination pair). Fig. 5b shows an
example Voronoi tesselation of a triangulated nanoparticle sheet
draped on a 690 nm diameter PS sphere. The Delaunay triangula-
tion also enables a direct measurement of the local strain tensor,
εi j. For particles with exactly six neighbors, we measure the dis-
placements of its neighbors from a regular hexagon with bonds
of unit length. In this step, we account for the non-planar ge-
ometry of the substrate by computing displacements only in the
tangent plane to the underlying PS sphere. By comparing each
triad of the central particle and two adjacent neighbors to an un-
deformed reference triangle, we obtain a strain tensor for that
triad of nanoparticles. For each particle that is not a defect, the
average strain field of its six shared triangles represents a measure
of local strain. This strain measurement is well-defined only for
particles that have six nearest neighbors — that is, those particles
which do not form topological defects in the lattice.

Identifying the center of the PS substrate spheres by fitting
their profile to a circle, we rotate the strain field εi j into polar
coordinates (εrr,εrφ ,εφφ ) and average annular bins (i.e., bins of
φi < φ < φi+1) to obtain curves for εrr(θ) and εφφ (θ) as a function
of polar angle on a sphere. Typical results are shown in Fig. 5c-d.
Fig. 6 shows strain curves averaged over several spheres and im-
ages for each sphere size. To further reduce noise from voids and
defects, we also omit particles whose Voronoi cells are deformed
well beyond the elastic limit of the material. Specifically, we en-
force a cutoff in the shape parameter s, defined as the ratio of the
perimeter of the hexagon to the square root of its surface area,
s ≡ P/

√
A. Here, we use the cutoff s < scutoff = 4.0. The results

are not significantly sensitive to the value of this cutoff, so long
as scutoff & 3.9.

Fig. 6 shows the average strain tensor components as a func-
tion of polar angle for different sphere sizes. The analysis indi-
cates that the sheet’s radial tension grows substantially, while the
strain along the azimuth of the PS sphere is weakly compressive.
The shear strain averages to zero, as predicted by the symmetry
of the spherical geometry, with variations in the measured mean
shear of < 1%. As mentioned above, the nanoparticle sheets’ in-
herent disorder creates a distribution of strain component values
for each binned annulus. These distributions have a standard
deviation of ∼ 10% strain — significantly larger than the strains
themselves for all but the largest values of θ considered. By av-
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eraging the strains in annular bins on each PS sphere and by per-
forming ensemble averages over different spheres, the disorder
on the scale of individual nanoparticles is largely averaged out.
As Fig. 6 shows, these ensemble-averaged data can show quanti-
tative (and in some cases for the azimuthal strain also qualitative)
differences as the PS sphere diameter D is varied. This likely is
due to slight, unavoidable variations in the sample preparation
conditions. However, within this variability we find no clearly
discernible trends as a function of D. Considered in aggregate,
these data can therefore be used for qualitative comparison with
models, as we discuss next.

5.2 Spring network simulations

To gain insight into the elastic behavior during the stamping pro-
cess, we model the nanoparticle sheet as a flat, triangular spring
network. Simulations of such networks pinned to a lattice of
spheres reproduce the trends in strain observed in the experi-
ments (Fig. 6 and Supplementary Videos 1-3).

The simulations proceed by minimizing the free energy of a tri-
angular spring network at each time step using a conjugate gra-
dient method as we deposit the network onto a lattice of spheres.
Whenever a node of the spring network makes contact with a sub-
strate sphere, we irreversibly pin that node to the point of contact
for the remainder of the simulation. Increasing the radii of the
substrate spheres with respect to the bond length by a factor of
two (and, proportionately, scaling the number of nanoparticles by
a factor of four) gave virtually identical results for the strain plots
given in Fig. 6 and Fig. 7, indicating that the simulations are rep-
resentative of the continuum limit. Study of the finite size scaling
shows that the strain curves deviate significantly from the contin-
uum limit only for substrate sphere sizes below D . 10a, where a
is the lattice spacing (see Supplementary Information Fig. S5).

In the simulations, a sheet began at a distance R = D/2 above
the plane containing the centers of the substrate spheres, each
of diameter D. The network was then lowered in small incre-
ments (0.001D) and the free energy was minimized for that con-
figuration, subject to the constraint that all particles (nodes of the
spring network) must lie in the common membrane plane or on
a sphere, whichever is higher in the z dimension. For each step,
a sequence of random kicks were applied to each node to escape
local minima in the energy landscape. At the end of the relax-
ation process, nodes in contact with a substrate sphere — that is,
within a small threshold of 10−5a, where a is the rest bond length
(lattice spacing) — are marked as immobilized for the remainder
of the simulation.

As shown by the blue curves in Fig. 6, as well as in Supple-
mentary Videos 1 and 2, these simulations of perfectly elastic
triangular networks show similar behavior in both εrr and εφφ

as a function of polar angle on the underlying sphere. As the
membrane begins to conform to the sphere lattice, pinning en-
sures that the apex of the sphere experiences negligible strain, as
expected. The radial stress increases quadratically, while a com-
pressive azimuthal stress builds up more slowly. The deviation
of εφφ between experiment and simulation at large θ is due in
part to the material failure and plastic deformation of the actual

Fig. 7 Simulations of spring networks with bond breaking repro-
duce behavior seen in experiment. Spring networks were made to
conform to a lattice of spheres, as in Fig. 1. Bonds with ≥ 3% strain are
removed at each time step, mimicking bond breakage. (a-c) As a flat, tri-
angular spring network is pressed against an array of spheres, each node
is immobilized upon contact with a substrate sphere. As the network con-
forms, strains build up, leading to bond breaking for polar angles larger
than θ ∼ 23◦. Particles with severed bonds are colored white at their
centers in the strain images. (d-f) Layers of bonds continue to adhere
to the substrate with many radial bonds broken. (g) Though the actual
strains in the network’s springs do not exceed 3%, the apparent strain
inferred from the placement of nanoparticles continues to increase in the
damaged annuli.
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sheets, which is suppressed in the simulations we show in Fig. 6
(see also Supplementary Video 3).

We note that in experiment, the nanoparticle membrane may
not be perfectly flat in the interstices of the PS spheres, as the
pressure of the water during stamping may push sheet into the
interstices. Modifying the simulation geometry to enforce an in-
dentation of the sheet into the interstices of the PS lattice has
only a weak effect leading to somewhat elevated strains in the fi-
nal, pinned state without changing the qualitative strain behavior
(Supplementary Information Fig. S6).

5.3 Comparison with incompressible solution

Considering the limit in which the nanoparticle sheet is incom-
pressible allows for a useful point of reference against which we
can compare the iterative adhesion of nanoparticle annuli. The
strains required to conform to the substrate in this limit are indi-
cated by the green dashed line in Fig. 6. Namely,

εrr =

√
R2

(R2− r2)
−1, (2)

where R = D/2 is the radius of the PS sphere, while εφφ = 0 due to
incompressibility. All data, whether experimental or simulation-
based, lie below this solution for εrr. This clearly indicates com-
pressible behavior of our nanoparticle sheets.

5.4 Azimuthal cracks in simulations

The material cannot stretch elastically without bound: sufficiently
large strains will plastically deform the sheet, severing bonds be-
tween nanoparticles to form cracks or dislocations. Indeed, the
radial strains seen in Fig. 6 greatly exceed the critical strain for
failure in flat nanoparticle membranes29. While we will consider
plastic deformation in the next section, we note that introducing
failure into the spring network simulations generates qualitatively
similar morphologies to those seen in experiment. Fig. 7 demon-
strates that introducing a nominal breaking strain of 3% leads to
the formation of partially intact annuli separated by azimuthal
cracks. In Fig. 7g, we show both the strains of particles with all
original bonds intact (closed markers) as well as the ‘apparent’
strain (open markers) resulting from triangulating the point pat-
tern and including all particles with six nearest neighbors, regard-
less of whether the bonds connecting them have severed. This
gives strains that remain qualitatively similar to those seen in ex-
periment, with increased scatter in the apparent strains frozen
into the broken regions pinned to the substrate.

6 Plastic deformation
Given that a flat nanoparticle lattice forms a close-packed array
of hexagons, any particles who do not have six nearest neigh-
bors are defects. We record the location of each defective particle
and its number of nearest neighbors. Fig. 5b shows the Voronoi
tessellation of one representative lattice overlaying the original
SEM image. Each yellow site corresponds to a nanoparticle hav-
ing six nearest neighbors (i.e., a hexagon), while defects are col-
ored white, blue, green, and black for coordination numbers of

z = 4,5,7, and 8, respectively.

As the sheet begins to respond with plastic deformation, dis-
locations proliferate in the material. The density of dislocations
correspondingly increases with polar angle on a sphere, as can
be seen in Fig. 5b. We observe that azimuthal cracks form only
beyond the point of dislocation proliferation, which suggests that
the material yields plastically before cracks coalesce.

6.1 Formation of dislocations

The scaling arguments presented in Fig. 4, which operate in the
continuum limit, predict that plastic deformation should be favor-
able at a critical angle independent of sphere diameter D. In our
experiments, however, we observe an increase in the polar an-
gle at which dislocations appear for the smallest PS sphere sizes,
shown in Fig. 8. This observation implies that the discrete struc-
ture of the nanoparticle monolayers can be important in deter-
mining the details of their mechanical behavior. The continuum
limit description of Fig. 4 does not include microscopic details,
and therefore predicts a size-independent critical angle for the
onset of plasticity. If the discrete structure of the sheet comes
into play, we expect a correction to this picture to appear at small
sphere sizes, where the lattice spacing is a non-negligible fraction
of the system size.

As expected, the most prominent types of strain-induced de-
fects in the nanoparticle arrangement are dislocations — i.e.,
pairs of Voronoi cells with 5 and 7 sides. Fig. 8a shows a rep-
resentative measurement of the crossover from low to high defect
density as a function of polar angle, θ . These data were obtained
from ensemble averages over Voronoi tessellations such as that
shown in Fig. 5b. For each PS sphere diameter D, we identify
a characteristic angle at which the number of defects begins to
grow significantly (black dashed line in Fig. 8a). This analysis
leads to the black data in Fig. 8b, which shows the characteristic
angle as a function of D. This angle approaches a constant value
consistent with scale-invariance in the continuum limit of large
PS sphere sizes, where the nanoparticle lattice spacing becomes
irrelevant. However, we observe an increase in the angle for the
smallest PS sphere sizes. This observed variation in the onset of
dislocation proliferation suggests that the discrete nature of the
lattice becomes important for small D.

If we approximate our sheet as a locally flat, two-dimensional
lattice, each dislocation pair costs an elastic energy41

Edisloc ≈
µa2

2π(1−ν)
ln
(
`

a

)
, (3)

where Y is the sheet stiffness, ν is the Poisson ratio, ` is the final
distance between the unbound dislocations, and a is the lattice
spacing. We assume the elastic core energy to be small compared
to the elastic energy in the deformed sheet, with the understand-
ing that Equation 3 represents a lower bound. Below, we consider
`≈ 1/3

√
ρ, as illustrated in the inset of Fig. 8. Here, ρ is the den-

sity of dislocations (so that ρ−1 approximates the area of a patch
whose elastic deformation is dominated by the dislocation’s pres-
ence). Note that we expect this elastic energy to be felt predomi-
nantly in regions of the material which are not already pinned to
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the underlying substrate.

In order to find a lower bound for the critical angle at which de-
fects may appear, we compare the dislocation unbinding energy
(Equation 3) with the stretching energy for the sheet to conform
to a sphere. Using the results from spring network simulations,
we equate the stretching energy available in an annulus of width
chosen to be δ r = a with the unbinding energy of Equation 3. This
gives the blue solid line in Fig. 8 for ` = (3

√
ρ)−1, with the blue

band denoting the range of results given the standard deviation
of measurements for ρ across sheets on all PS spheres included
in the analysis. As seen by the width of the blue band, the pre-
diction is moderately sensitive to the assumed distance that the
unbound dislocation travel apart in their creation. We measured
the dislocation density, ρ, from the relative frequency of disloca-
tions at θ = 0 in experiments. Despite the approximate nature of
the derivation, the prediction lies within our experimental uncer-
tainty for changes in the choice of δ r by up to a factor of three,
and the agreement in the shape of θc(D) is notable.

6.2 Formation of azimuthal cracks

Another response to the buildup of strain is to form cracks in
a material. This irreversible deformation relieves elastic energy
by severing bonds between nanoparticles. We find that, for PS
sphere sizes above 210 nm, nanoparticle sheets generally form
azimuthal cracks such as those seen in Fig. 2c and Fig. 5.

From a geometric standpoint, projecting an annular strip of in-
ner diameter Rθ0 from a flat disk onto a sphere of radius R in-
volves less azimuthal compression if the annulus is placed at a
polar angle θ1 > θ0. This fact is reflected in our experiments and
simulations, with radial strain building up with increasing polar
angle. Once the radial strains are sufficient to rip apart bonds to
form azimuthal cracks, we expect that as the next portion of the
membrane drapes onto the sphere, it is energetically favorable
to adhere to a location further down, where θ1 > θ0. The result
is a portion of uncovered PS sphere between θ0 and θ1, i.e., an
azimuthal crack imprinted on the spherical substrate.

7 Formation of folds at large sphere sizes
For the largest PS sphere sizes, the caps formed by the adhering
nanoparticle sheets are large enough that radially oriented folds
can be observed (Fig. 2d). Such folds provide an alternate mech-
anism to map circles in the plane to circles on a sphere while
minimizing radial tension and azimuthal compression. Localiz-
ing elastic energy into folds relieves the stretching in intervening
patches. At the same time, because of the very high curvature in
one dimension at the fold (which we expect to be comparable to
the inverse lattice constant, κ ∼ a−1), the energetic barrier to fold
formation is larger than the bending energy by a factor ∼ D2/a2,
implying that the cost of having a fold in an annulus of fixed
width, δ r, does not vary with sphere diameter D. This means
that, for sufficiently large D, where the elastic cost of stretching
grows higher and higher, fold formation is no longer frozen out
(Fig. 4).

In previous studies of folding that subjected thin sheets to uni-
axial compression or out-of-plane deformation, folds often span

a

b
dislocation
unbinding

`{

Fig. 8 Strain-induced defects in the nanoparticle sheets. (a) The
proliferation of defects results in increasing dislocation frequency (and
correspondingly, to a decreasing frequency of hexagons) as a function
of polar angle, θ . An example of the angle-dependence of defect densi-
ties is shown for nanoparticle sheets conformed to 250 nm PS spheres.
Here, a crossover appears near θc ∼ 24◦. (b) For small sphere diameters,
the characteristic angle for defect proliferation deviates from its contin-
uum value, with smaller PS spheres triggering the formation of defects
at larger polar angles. An idealized prediction for the energy of a single
defect provides a rough estimate for the critical angle (blue curve with
blue band denoting the uncertainty from the spread in measurements
of the defect density). Data for the smallest sphere diameters included
only sheets stamped on isolated spheres, not sheets which cover close-
packed PS lattices.

10 | 1–12

Page 10 of 12Soft Matter



the whole system42–44, though we note this is not always the
case45. In our system, the fold terminus occurs at a characteristic
polar angle, and the amount of material stored in each fold grows
further from the apex of the sphere in order to accommodate the
curvature of the underlying substrate (Fig. 2d). This type of fold
also appears in skirts and other clothing, where it is called a ‘dart’.

While we robustly observe pronounced folds on large PS
spheres, we find no evidence for smaller-scale wrinkling in the
sheets. This can be predicted from the energy scaling (Fig. 4):
the cost to delaminate from the PS surface exceeds both folding
and stretching energies (Eγ > E f ,Es).

8 Conclusions
In this article, we focused on the ability of preassembled nanopar-
ticle monolayer sheets to conform to a substrate composed of a
lattice of larger spheres. With its local Gaussian curvature, K,
which can be tuned by varying the sphere diameter, such a sub-
strate serves as a model for arbitrary surface topographies. In the
presence of strong pinning to the substrate, the area mismatch
between flat (K = 0) and spherical (K > 0) geometries triggers a
competition between different deformation modes of the sheet,
including delamination, bending, stretching, fracture, and fold-
ing.

Treating the sheets as homogeneous continuum material leads
to a scaling picture which is consistent with the general trends
of elastic deformation in our system. For comparison with ex-
periments, we extracted the local strain tensor components from
images of the sheets, where the nanoparticles served as distance
markers. While this analysis was consistent with our general scal-
ing picture, the details of plastic deformation are only captured if
the discrete nature of the sheets is taken into account, allowing
changes in the number of nearest neighbors for individual parti-
cles. By tracking the onset of strain-induced dislocations within
the sheets, we are able to explain deviations from the continuum
predictions, which are found when the sheets are conformed to
substrates with small D, corresponding to regions of large K.

The observed morphologies for the stamped sheets highlight
the remarkable ability of nanoparticle monolayers to cope with
strain through a combination of elastic and plastic deformations.
This material contrasts with other thin sheets such as paper, my-
lar, or graphene, which lack a similar mechanism for generating
particle dislocations. We note that if the material properties of our
sheets were tuned by changing the gold nanoparticle size, chang-
ing the ligand length, or functionalizing the ligands, a different
sequence of morphological regimes could emerge as the substrate
sphere size varies (Supplementary Information Fig. S7).

There is currently much interest in creating functional materi-
als by stacking ultrathin, essentially 2D layers with different elec-
tronic or optical properties46,47. So far, such stacking has been
limited to flat substrates, where it is relatively easy to obtain good
interfaces between successively deposited layers. In this regard,
the ability of nanoparticle sheets to comply and conform opens up
new possibilities for creating stacked layers with well-controlled
interfaces also on more complex substrate topographies.
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