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We computationally study the thermodynamic assembly of more than 40,000 hard, convex poly-
hedra belonging to three families of shapes associated with the triangle groups 323, 423, and 523.
Each family is defined by vertex and/or edge truncation of symmetric polyhedra with equal edge
length, producing shapes for which the majority are intermediates of more symmetric polyhedra
found among the Platonic, Archimedean, and Catalan solids. In addition to the complex crystals
cI16 lithium, BC8 silicon, γ-brass, β-manganese, and a dodecagonal quasicrystal, we find that most
intermediate shapes assemble distorted variants of four basic cubic crystals: face-centered cubic,
body-centered cubic, simple cubic, and diamond. To quantify the degree of distortion, we developed
an algorithm that extracts lattice vectors from particle positions and then evaluates closeness to the
four reference cubic crystals. This analysis allows us to group together in shape space related inter-
mediate structures that would otherwise be placed in different lattice systems had we followed the
lattice systems’ strict definitions for angles and lengths of lattice vectors. The resulting landscapes
show, as a function of shape, regions where ordered structures assemble, what is assembled and at
what density, locations of transitions between regions of ordered structures, and regions of disorder.
Our results provide a guide to self-assembling a host of related colloidal crystals through systematic
design, through careful tweaking of particle shape.

I. INTRODUCTION

With the growing interest in assembling colloidal crys-
tals from nanometer- to micron-sized particles for a host
of applications, it is important to understand how par-
ticle attributes relate to the thermodynamically stabi-
lized crystals into which the particles assemble [1–10].
Computer simulations now easily allow studies of families
of continuously related shapes, permitting the discovery
of trends in crystal structure as particle shape is varied
smoothly and systematically. In one-parameter families
of shapes, the shape is varied between two ends of com-
monly known symmetric shapes. Examples include bowls
where the thickness of the bowl is varied [11], superballs
that interpolate between a cube and an octahedron via
a sphere [6, 12, 13], polyhedra interpolating between a
tetrahedron and an octahedron [4], and polyhedra inter-
polating between a cube and an octahedron [7]. All these
works predict crystal structures that change as a function
of particle shape. Unlike atoms, colloidal particles do not
obey charge quantization, and thus intermediate struc-
tures are not only possible, but expected. Intermediate
shapes between the two ends of the interpolation between
regular shapes assemble structures that have been re-
ported as distorted versions of basic crystals [7, 12, 13]. It
is these distorted structures we focus on here. We argue
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that understanding distorted – or, as we shall call them,
intermediate – structures is important because i) they are
abundant, as we will show; ii) they may be relevant for
experiments, as experimentally synthesized shapes may
be intermediate shapes; iii) they may have interesting
macroscopic properties in their own right, opening up
the parameter space for materials; iv) they may be useful
for gaining insight into structural transitions as a func-
tion of shape; and v) they can be useful for designing
glass-forming shapes that do not assemble any ordered
structure.

In this paper, we computationally study the thermody-
namic assembly of tens of thousands of hard, symmetric,
convex polyhedra that belong to three families of contin-
uously modified shapes, and quantify the degree of dis-
tortion of colloidal crystal structures assembled by inter-
mediate shapes by introducing an algorithm that extracts
lattice vectors from particle positions and evaluates the
similarity of the intermediate structure to four reference
crystals: face-centered cubic (FCC), body-centered cu-
bic (BCC), simple cubic (SC), and diamond (DIA). This
analysis allows us to group together in shape space re-
lated structures that would otherwise be placed in differ-
ent lattice systems (triclinic, monoclinic, orthorhombic,
tetragonal, hexagonal, cubic) had we followed the lat-
tice systems’ strict definitions for angles and lengths of
lattice vectors. Our results are presented as “assembly
landscapes” – surfaces of the minimum density for self-
assembly vs. shape parameters – that reveal regions in
shape space where ordered structures assemble, locations
of transitions between ordered structures, and regions of
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disorder. We find that the minimum assembly density
systematically increases towards the edges of regions of
order, indicating a tendency towards decreasing thermo-
dynamic stability of the ordered phase relative to that
of the disordered fluid. In addition to distorted crystal
structures, we find complex crystal structures in isolated
regions of shape space. These structures include cI16
lithium (Li), γ-brass, β-manganese (Mn), a dodecagonal
quasicrystal (QC), and, here reported for the first time,
BC8 silicon (Si). We conclude by comparing our assem-
bly landscapes to previously reported putative densest
packing landscapes evaluated for the same three shape
families [14].

II. MODEL AND METHODS

A. Shape families

We studied three families of shapes that have
tetrahedral symmetry (triangle group 323), octahe-
dral/cubic symmetry (triangle group 423), and icosa-
hedral/dodecahedral symmetry (triangle group 523), as
in [14], see Fig. 1a-c. Polyhedra are constructed by apply-
ing edge truncation and/or vertex truncation to all five
Platonic solids defining three domains of two-parameter
shape families with parameters 0 ≤ a, c ≤ 100 (Fig. 1a-
c). The most regular polyhedra are found in the four
corners of each domain. For family 323 (Fig. 1a), clock-
wise from top left is the cube, octahedron, tetrahedron,
and tetrahedron. For family 423 (Fig. 1b), clockwise
from top left is the cube, octahedron, rhombic dodecahe-
dron, and cuboctahedron. For the family 523 (Fig. 1c),
clockwise from top left is the dodecahedron, icosahedron,
rhombic triacontahedron, and icosidodecahedron. Some
other regular polyhedra are found in the interior; these
include the cuboctahedron (at a = 50, c = 50 in 323
family, Fig. 1a), truncated octahedron (at 25, 25 in 523
family, Fig. 1c), and truncated icosahedron, also known
as the buckyball (at 25, 0 in 523 family, Fig. 1c).

B. Self-assembly simulations

We performed isochoric Monte-Carlo (MC) simula-
tions in shape-fluctuating boxes as in [1, 4, 5]. Shapes
were defined as hard particles with only steric interac-
tion. Potential overlaps between polyhedra were identi-
fied through the Gilbert-Johnson-Keerthi algorithm [15]
and discarded. Each simulation contained N = 2000
particles in a periodic box initiated from an equilibrated
fluid phase at packing fraction (density) φ = 0.4. Most
of the simulations spontaneously crystallized at densities
0.5 ≤ φ ≤ 0.64 within 5 × 106 MC steps. If a simu-
lation did not crystallize within this time limit, we ex-
tended the run for another 200 × 106 MC steps. If still
no crystal was observed within the second time limit, the
system was labeled “disordered.” We initially ran four

independent simulations with different initializations for
each shape in a parameter grid of 21 × 21 (441 shapes
per family). In regions of shape space where we observed
many different crystal structures in close proximity, we
refined the search grid further, e.g., for the tetrahedral
family, for a, c ≤ 34, we refined to a grid of 101 × 101
(40,804 simulations).

C. Structure identification

Initial structure identification was performed using
bond orientational order diagrams (BODs). BODs are
histograms of the directions of bonds connecting a parti-
cle to its nearest neighbors projected onto the surface of
a unit sphere [16, 17]. Clear peaks indicate a well-formed
crystal, and structurally distinct crystals yield different
BODs. Disordered systems have isotropic BODs with no
peaks. By construction, most of the shapes investigated
here are intermediates between more regular polyhedra
that define the boundaries (corners) of our shape space.
Assemblies have been reported previously for these reg-
ular (corner) shapes [1, 4, 5, 18] and for a one-parameter
432 subfamily [7], and those results are confirmed here.
For the intermediate shapes in our families, the BODs
frequently appeared as distorted variants of the high-
symmetry patterns that we typically observe for the reg-
ular shapes. We therefore require a more sophisticated
method to quantify the distortion (shear) of the crystal
unit cells.

D. Similarity to reference crystal structures

We assert that many of the crystals assembled here
with distorted BODs are more usefully viewed as dis-
torted/sheared versions of cubic reference crystal struc-
tures, i.e. intermediates. To analyze this relationship, we
extract basis vectors from particle simulation data that
assemble periodic structures and then quantify how close
the data are to reference crystals: SC, BCC, FCC, and
DIA [19].

1. Unit cell extraction

Starting from a set of N particle positions {rn}, we
analyze the peak positions of the structure factor

S(q) =
1

N

∣∣∣∣∣
N∑

n=1

exp(iq · rn)

∣∣∣∣∣
2

taking into account symmetry, extinction and interfer-
ence effects. Given a reference crystal structure, we se-
lect a set of M diffraction peaks {(hmkm`m)} and search
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for a basis in reciprocal space {b1, b2, b3} that maximizes

ν =
M∑

m=1

S(hmb1 + kmb2 + `mb3).

Specifically, we use MSC = 6, MBCC = 12, MFCC = 8,
MDIA = 4 diffraction peaks allowed by selection rules,

{(hk`)}SC = {〈200〉},
{(hk`)}BCC = {〈110〉},
{(hk`)}FCC = {〈111〉},
{(hk`)}+DIA = {〈111〉 : hk` = +1},
{(hk`)}−DIA = {〈111〉 : hk` = −1}.

Note that the choices {(hk`)}+DIA and {(hk`)}−DIA lead to
identical quantifications, but we list both for symmetry.
In our algorithm, the search is performed by testing 106

random values for the reciprocal lattice basis. From each
reciprocal lattice basis of a reference crystal structure,
we obtain the corresponding lattice basis {ζ, ξ, ς} in real
space.

2. Color map

We quantify how similar the obtained lattice bases are
to those of the reference crystal structures. For this pur-
pose, we measure orthogonality of vector angles,

λanglepoint =
det{ζ, ξ, ς}2/3

(ζ2ξ2ς2)1/3,

λangleplane =
det{ξ×ς, ς×ζ, ζ×ξ}2/3

((ξ×ς)2(ς×ζ)2(ζ×ξ)2)1/3,

and equality of vector lengths,

λlengthpoint =
(ζ2ξ2ς2)1/3

1
3 (ζ2+ξ2+ς2),

λlengthplane =
((ξ×ς)2(ς×ζ)2(ζ×ξ)2)1/3

1
3 ((ξ×ς)2+(ς×ζ)2+(ζ×ξ)2)

and combine them into

λangle = λanglepointλ
angle
plane,

λlength = λlengthpoint λ
length
plane ,

λ = λangleλlength.

Note that det{ξ×ς, ς×ζ, ζ×ξ} = det{ζ, ξ, ς}2. Similar-
ity to reference crystal structures is measured by

µSC{ζ, ξ, ς} = λ{ζ, ξ, ς},
µBCC{ζ, ξ, ς} = λ{ξ+ς−ζ, ς+ζ−ξ, ζ+ξ−ς},
µFCC{ζ, ξ, ς} = λ{ξ+ς, ς+ζ, ζ+ξ},
µDIA{ζ, ξ, ς} = λ{ξ+ς, ς+ζ, ζ+ξ}.

We choose colors for the assembly landscapes and the
previously reported putative densest packing landscapes
using the following mapping onto the rgb color cube,

〈red, green,blue〉 = 〈(µFCC)p, (µBCC)p, (µSC)p〉,
〈red, green,blue〉 = 〈(µangle

DIA )q, 0, (µlength
DIA )q〉,

where we set p = 4 and q = 2 for contrast and

µangle
4 {ζ, ξ, ς} = λangle{ξ+ς, ς+ζ, ζ+ξ},

µlength
4 {ζ, ξ, ς} = λlength{ξ+ς, ς+ζ, ζ+ξ}.

By the end of this analysis, we have reduced a high di-
mensional space to a single color that simultaneously
tracks changes of magnitudes and/or angles of the lat-
tice vectors for all our assembled structures with up to
two particles in the primitive unit cell.

III. RESULTS

A. Assembly landscapes

We applied the algorithm and color map metric µ to
the cubic structures FCC, BCC, SC, DIA and intermedi-
ate (distorted) versions of them. We separately identified
crystals with unit cells with n > 2 and the quasicrystal
using BODs. The disordered regions, also identified by
their BODs, were not further characterized. We thus ob-
tained diagrams showing assembly structure as a function
of the two shape parameters for each family (Fig. 1g-i).

In the 323 family, the intermediate cubic structures
occurred primarily along and on either side of the diag-
onal that connects the cube and octahedron, and at and
around the truncated octahedron (near a, c = 0, 20 and
near 25, 50), (Fig. 1g). Near the cube (at 100, 100),
the algorithm identified intermediate structures related
to SC. Moving along the diagonal (from the cube at the
top right to the octahedron at the bottom left) there is
a gradual but clear transition from SC to BCC to FCC,
and then again to BCC near the corner at the octahedron
(at 0,0). We also observe a region that assembled DIA
including β-tin, which is distorted DIA. The structures
with n > 2 form a region of cI16 Lithium (at 0,15) near
the truncated octahedron, a region of the dodecagonal
quasicrystal at and around the tetrahedron (at 0,100),
as well as single points of BC8 silicon (at 30,10) and β-
manganese (at 50,22).

In the 423 family, there are large regions of interme-
diate structures related to FCC and BCC, a smaller re-
gion of SC intermediate structures, and clear transitions
between them (Fig. 1h). In contrast, the 523 family
mostly assembled FCC intermediates. We observed a re-
gion of β-manganese and γ-brass for intermediate shapes
near the left edge of the domain, near the dodecahe-
dron. Regions of disorder were frequently found between
structures that had different numbers n of particles in
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their primitive unit cells, the exceptions being BC8 sili-
con (n = 8) adjacent to DIA (n = 2) and β-manganese
(n = 20) adjacent to FCC (n = 1).

We also plotted the minimum assembly density as
a function of the shape parameters (Fig. 1d-f), where
we defined the minimum assembly density as the lowest
packing fraction for which we observed crystal formation.
In the 323 family, the minimum assembly density is low-
est in the FCC region, 51−52%, higher for SC and BCC,
53 − 54%, and rapidly increased in all cases to greater
than 60% as the disordered regions were approached from
any structure (Fig. 1d). In the 423 family, the minimum
assembly density was greater than 54% at the top left
corner as well as along a vertical strip down in shape
space, where SC and BCC intermediates formed. We ob-
served a large region where FCC intermediates formed at
minimum assembly density between 51 − 52%. Towards
the bottom right corner of the 423 landscape, the min-
imum assembly density increased as FCC-intermediates
transitioned to BCC-intermediates, and peaked at 62%
towards the edge of the disordered region and for cI16
Lithium (Fig. 1e). In the 523 family, most shapes assem-
bled FCC intermediates at minimum assembly densities
51 − 52%, while on the upper left edge of the domain,
where γ-brass and β-manganese formed, the minimum
assembly densities increased to 56− 57% (Fig. 1f).

As can be seen by comparing Fig. 1d-f with Fig. 1g-
i, visual inspection of the minimum assembly density
landscapes is all that is needed to identify regions of or-
dered structures and transitions between different struc-
tures, even without knowing the identity of the struc-
tures. Thus, structural signatures of the thermodynamic
assemblies are reflected in the minimum assembly den-
sity, even though the two measurements are independent
of one another.

B. Comparison to putative densest packing
landscapes

We previously reported putative [20] densest pack-
ings for the three family of shapes studied here calcu-
lated through a combination of Monte Carlo simulations
and analytic optimization [14]. Here, we applied the al-
gorithm we used to identify intermediate structures in
the assembly data to the putative densest packing data
(Fig.1g-l) to make a direct comparison. The solid lines
indicate regions of packings according to contacts calcu-
lated previously [14] and are shown here for reference. Of
course, there is no a priori reason why the crystal that
self-assembles at moderate densities should generally be
the same as the mathematically optimized packing. The
former arises from entropy maximization, while the lat-
ter arises from minimization of the Gibbs free energy in
the limit of infinite pressure.

In comparing visually the assembly and packing land-
scapes for each family, we observe a general correspon-
dence between assembly and densest packing for the sim-

plest crystal structures. For the more complex structures,
the putative densest packings generally differ from the
observed assemblies. Of most relevance to this work is
that those structures identified as intermediate in the as-
sembly landscapes and labeled via the proposed metric to
reflect their similarity to the basic cubic crystals, match
the corresponding putative densest packings of the struc-
tures they are most similar to. This observation demon-
strates a major strength of our metric, in that it reveals
potential relationships between assemblies and packings
that could be missed otherwise.

IV. DISCUSSION AND CONCLUSION

Through a large and comprehensive set of com-
puter simulations requiring significant computational re-
sources, we studied the thermodynamic assemblies of tens
of thousands of polyhedra, most of which are intermedi-
ate shapes that occur through edge and/or vertex trun-
cations of more symmetric polyhedra. We identified the
cubic crystals SC, BCC, FCC, and DIA, as well as inter-
mediate (distorted) versions of them, and more complex
crystals, including cI16 lithium, BC8 silicon, γ-brass, β-
manganese, and a dodecagonal quasicrystal. We pre-
sented an algorithm that easily identifies and accurately
quantifies regions of intermediate crystal structures with
reference to basic cubic crystals. The application of our
algorithm to colloidal crystal assembly opens up new pos-
sibilities for designing materials properties that depend
on targeting crystal structures having a given similarity
to one of these reference structures.

As with previous works on packing, our structure and
minimum assembly density landscapes can guide exper-
iments and theory by serving as “phase diagrams for
shape” – locating regions where crystals form, regions
where crystals fail to form, and transitions between re-
gions. For example, within regions that assemble crys-
tals, our landscapes show how sensitive the assembly of
a crystal in a given region is to small differences in par-
ticle shape within certain regions, and how insensitive
assembly is to small differences in other regions where
small shape changes merely change the similarity of the
resulting crystal to a nearby reference crystal. Also, be-
cause experimentally synthesized shapes may differ from
perfect polyhedra, such knowledge is useful to evaluate
how accurately the shape must be synthesized to achieve
successful assembly. For example, in the 323 family the
region of shape space over which the cI16 lithium struc-
ture forms is much smaller than the region over which
BCC forms (Fig. 1g), implying that to assemble the cI16
lithium structure shape synthesis must be more precise.
The minimum assembly density landscapes provide guid-
ance in selecting shapes for synthesis. For example, to
assemble FCC it may be advisable to use the shape with
the lowest minimum assembly density shown in the in-
terior of the FCC region, 50% (in the 323 family, dark
blue in Fig. 1d), than a shape at the edge of the FCC re-
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gion where the minimum assembly density can be as high
as 60%. Already studies have used our landscapes to,
e.g., quantify order-order transitions in shape space [21]
and determine why shapes in the disordered regions fail
to assemble crystals [22]. Furthermore, the correspon-
dence we observe between two independent measures of a
crystal assembled from a given shape – namely, our algo-
rithm’s structure identification and the minimum density
for self assembly – indicates a connection between them
that should be further investigated in future work.
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FIG. 1. Landscapes in shape space for minimum density for self-assembly, self-assembled crystal structure, and putative densest
packings. Columns: shape family 323 (a,d,g,j), 423 (b,e,h,k), 523 (c,f,i,l). Rows: shapes (a-c), minimum assembly density (d-f),
self-assembled structure (g-i), putative densest packing structure (j-l). In (d-i) height indicates minimum assembly density.
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