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sponse of glassy polymers from nonaffine lattice dy-
namics

Vladimir V. Palyulina, Christopher Nessa, Rico Milkusa, Robert M. Elderbc, Timothy W.
Sirkb†, Alessio Zacconea∗

We study the viscoelastic response of amorphous polymers using theory and simulations. By ac-
counting for internal stresses and considering instantaneous normal modes (INMs) within ather-
mal non-affine theory, we make parameter-free predictions of the dynamic viscoelastic moduli ob-
tained in coarse-grained simulations of polymer glasses at non-zero temperatures. The theoreti-
cal results show very good correspondence with rheology data collected from molecular dynamics
simulations over five orders of magnitude in frequency, with some instabilities that accumulate in
the low-frequency part on approach to the glass transition. These results provide evidence that
the mechanical glass transition itself is continuous and thus represents a crossover rather than
a true phase transition. The relatively sharp drop of the low-frequency storage modulus across
the glass transition temperature can be explained mechanistically within the proposed theory: the
proliferation of low-eigenfrequency vibrational excitations (boson peak and nearly-zero energy ex-
citations) is directly responsible for the rapid growth of a negative non-affine contribution to the
storage modulus.

1 Introduction
Molecular simulations can provide detailed insights into the fun-
damental dynamics and related viscoelasticity of glass-forming
polymers. Yet, a key challenge lies in collapsing this informa-
tion into compact theoretic models that extend our understand-
ing of macroscopic mechanics and ultimately inform engineering
decisions. The dynamics of glasses and other amorphous mate-
rials under even small deformations are complex compared with
most crystalline solids. In centrosymmetric idealised crystals at
low temperature, lattice inversion symmetry ensures that atoms
are displaced homogeneously under applied deformation, i.e. all
displacements are affine. The sum of forces on each atom in the
deformed configuration is thus zero due to centrosymmetry, lead-
ing to straightforward determination of the elastic properties1.
Amorphous solids, in contrast, lack such symmetry, and rather ex-
hibit a static snapshot configuration closer to that of liquids. As a
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consequence, net remnant forces under shear displace the atoms
from their affine positions, causing the so-called non-affine defor-
mation (Fig. 1). Except at infinite frequency of applied shear,
where this non-affine relaxation is inhibited, classical affine mi-
croscopic theory fails to predict the mechanical deformation be-
haviour of amorphous solids2.

Recent works address this shortcoming using theoretical mod-
els based principally on solutions of the equation of motion for
the non-affine displacement of a tagged atom2–5. A correction
to the stress response can be obtained2 by enforcing mechani-
cal equilibrium on every atom at all steps in the deformation:
the forces arising when nearest-neighbour atoms try to find their
affine position are relaxed at all steps, and the displacement field
which satisfies the mechanical equilibrium contains additional
non-affine displacements on top of the affine ones. This non-affine
deformation framework is crucially dependent on the vibrational
density of states (VDOS), since one needs to evaluate this force-
relaxation over the whole space of degrees of freedom, and on
a quantity which describes how the force field due to affine dis-
placements depends on eigenfrequency2,6. Both the VDOS and
the eigenmode-correlator of the affine force-field are found by di-
agonalisation of the Hessian matrix of the system. Importantly,
the low-frequency part of the VDOS makes the most substantial
contribution to the viscoelastic moduli, which is consistent with
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the observation of anomalous soft modes in glasses7–9. These
modes arise from the lowest energy barriers for rearrangements
of atoms10–12.

The non-affine deformation framework as described above as-
sumes that the system is athermal. Practically, this means that
the system resides at, or very close to, a local minimum of the
potential energy, fluctuations are negligible, and features of the
behaviour are described by standard normal mode analysis. In
reality, however, the system spends most of its time off the energy
minimum even at low non-zero temperatures. One approach to
the computation of the VDOS in this case is based on instanta-
neous normal modes (INM)13,14. Instead of using the energy
of the system at the potential minimum as in conventional nor-
mal mode analysis, single snapshots of the system are considered
and averaging is performed over the snapshots. This method
was earlier applied to liquids15 as well as glassy systems such
as LJ glass16, silica17 and proteins18. The instantaneous nor-
mal modes of liquids have predictive power only at high frequen-
cies19–21. For amorphous solids these modes can be defined at
much slower timescales, i.e. some properties of solids as well as
the glass transition can be associated with INMs22.

In this work we show that a combination of the non-affine
theory and the INM approach produces quantitative parameter-
free predictions for viscoelastic behavior of amorphous solids. We
compute the VDOS and correlators of affine forces from averages
over snapshots of the system rather than from a long-time av-
erage, which is necessary for taking the temperature-dependent
unstable modes into account14. As a model system we use poly-
mer glasses. However, the method and the results are relevant far
beyond this particular system. Our choice is based on high prac-
tical relevance of polymer materials and the fact that their com-
plexity better highlights the usefulness of the theory. The stor-
age modulus G′ computed within our framework matches results
from simulations across a wide range of temperatures, the only
departure being at low frequencies around and above Tg, where
the timescale for structural relaxation competes with that of the
externally applied shear, thus violating our harmonic approxima-
tion. The loss modulus G′′ is qualitatively predicted across the full
range of temperatures explored, though the quantitative agree-
ment is not as good as that for G′.

As temperature is increased, the system spends more time fur-
ther away from local potential energy minima23, leading to in-
creased importance of INMs as well as local internal stresses (be-
cause away from the minimum the first derivative of intermolec-
ular interaction is non-zero). Once the internal stresses are in-
cluded, the analysis produces some negative eigenvalues, which
correspond to imaginary frequencies in the VDOS and therefore
to non-propagating relaxation modes down from saddles (these
modes are localised). The number and the density of these re-
laxation modes grow with temperature, reflecting an increasing
instability of the system. Importantly, this growth is continuous
across the glass transition, providing evidence that the glass tran-
sition, at least in its mechanical manifestations, has hallmarks of
a crossover rather than a true phase transition. As such, our ap-
proach offers fundamental insights into the mechanics of amor-
phous materials across the glass transition, as well as a robust

shear strain

instantaneous positions  

position at the minimum 

of the potential

b

a

Fig. 1 (a) Affine (top) vs non-affine (bottom) deformation. In the case
of affine deformation the forces acting on a selected atom from its neigh-
bours add up to zero. This changes in the case of non-affine deformation.
The net force (affine force field) is non-zero and causes an additional dis-
placement. The blue and red colors denote the atoms belonging to differ-
ent polymer chains. (b) Instantaneous mode method uses the instanta-
neous positions of atoms (translucent spheres) rather then the positions
at the minimum (solid sphere).
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prediction of the viscoelastic properties of real amorphous mate-
rials across both solid and liquid states.

2 Theory and Simulations
We focus on the case of small deformations, within the regime
of linear viscoelasticity and avoiding complications such as
shear banding24, local anharmonicity and nonlinear plastic
modes25,26, all of which lie out of the scope of our approach. Our
formalism below is written accordingly. The non-affine theory2–4

computes corrections to the elastic moduli due to additional dis-
placements caused by an extra net force from neighbours in the
case of non-centrosymmetric materials (Fig. 1). The non-affine
displacements cause softening of the material. The correspond-
ing correction to the elastic free energy is negative and for shear
deformation it can be expressed as

F = FA−FNA = FA−
1
2 ∑

i

∂ fi

∂γ

∂ri

∂γ
γ

2, (1)

where the affine part FA was given already by Born and Huang1,
γ is a shear angle (shear strain amplitude), fi is the net force
which acts on the atom i in its affine position (see Fig. 1), ri is
radius-vector to i-th atom, FNA is the non-affine contribution to
free energy. If the interactions between the atoms are described
by harmonic central forces then Eq. 1 can be written as27

F = FA−
1
2

ΞiH−1
i j Ξ jγ

2, (2)

where an affine force field Ξi is responsible for a force fi = Ξiγ

acting on atom i, and Hi j is the Hessian (which for a system of
N particles has size 3N×3N), which includes the internal stresses
induced by thermal fluctuations via the INMs (for details see SI).
Summation over repeated indices is implied. Assuming the sys-
tem dwells in the vicinity of a local energy minimum, the micro-
scopic equation of motion for a particle of mass m can be written
as that of a damped harmonic oscillator

mr̈i +ν ṙi +Hi jr j = Ξiγ, (3)

where the second term characterises energy dissipation due to
viscous damping (with friction coefficient ν), the third term is the
harmonic force pulling the particle back into the minimum and
the right hand side is the non-affine force, which depends on the
shear amplitude γ.

Transformation of Eq. (3) into Fourier space allows us to obtain
an expression for the complex viscoelastic modulus, which in the
continuous limit reads (see2 for more details)

G∗(Ω) = G′+ iG′′ = GA−
1
V ∑

k

Γ(ωk)

mω2
k −mΩ2 + iΩν

, (4)

where Ω is the applied strain frequency, Γ(ωk) = 〈Ξ2
p〉ωp∈[ω,ω+dω]

is the affine force field correlator, and GA is the affine contribu-
tion1. The important quantity, which implicitly enters the ex-
pression, is the vibrational density of states D(ωk) normalised as
∑k D(ωk) = 1. The inputs to the expression for G(Ω) are the eigen-
values (ωk) and eigenvectors (through Γ(ωk)) of the Hessian ma-
trix Hi j, which we obtain from molecular simulations of glassy

polymer configurations as described in the following. It is impor-
tant to stress here the difference to Ref.2. In Ref.2 it is assumed
that the Hessian is positive definite. In our approach considera-
tion of INMs leads to the appearance of the negative eigenvalues
of the Hessian, i.e. summation includes the imaginary part of the
frequency (VDOS) spectrum.

In the thermodynamic limit the summation can be expressed as
an integral over the frequency domain:

G(Ω) = GA−
3N
V

∫
C

D(ω)Γ(ω)

mω2−mΩ2 + iΩν
dω, (5)

where Ω is as an applied strain frequency, GA is derived in Sec-
tion 1 of the Supplementary Information and ν is a constant fric-
tion. The integration should be performed over a contour which
includes the positive part of imaginary axis of ω values and the
positive part of real axis.

Two sizes of polymeric systems were considered, where the
number of linear homopolymer chains is either N=50 or N=100
and the chain length is fixed at M = 100. All dynamics used
the LAMMPS28 code under periodic boundary conditions. We
explored the role of chain length on the vibrational properties
in an earlier article and verified therein that there is no size
dependence in this system when N ≥ 5040. We adopt the con-
ventional Kremer-Grest bead-spring model29, i.e. polymer back-
bone covalent bonds were simulated using a finite extensible
nonlinear elastic (FENE) potential, while non-bonded interac-
tions were represented by a shifted Lennard-Jones (LJ) pair po-

tential. For the FENE potential UFENE = −0.5KR2
0 ln
[

1−
(

r
R0

)2
]

the parameters were set as K = 30,R0 = 1.5. This choice of
K provides a separation in characteristic frequency that is in-
structive when interpreting the VDOS. For LJ potential ULJ =

4ε

[(
σ

r
)12−

(
σ

r
)6−

((
σ

rc

)12
−
(

σ

rc

)6
)]

the constants were cho-

sen to be ε = 1,σ = 1 and the cutoff radius rc = 2.5 (which
matches that used in the computation of Hi j). Bead trajecto-
ries are updated according to Langevin dynamics, with a damping
constant ξ (which is related to the theoretical damping term by
ξ = m/ν). ε sets the LJ energy scale and K is the bond energy
scale, where K/ε = 30. With reference to fundamental units of
mass M, length d, and energy E , we set σ = 1 and m = 1, giv-
ing a time unit of τ =

√
mσ2/ε. We report frequency in units of

1/τ and temperature in units of kbT throughout. We equilibrate
the system in a melted state at T = 1.0, maintaining zero external
pressure using a Nose-Hoover barostat. We then cool the system
by decreasing T ∗ with a characteristic timescale τc ≈ 7 · 103τ fol-
lowing the equation T ∗(t) = Tstart(1− t/τc) + Tend(t/τc) until the
target temperature is reached. A typical size of a cubic simulation
box after the equilibration was about 17 length units for systems
with 5000 monomers and about 21 units for 10000 monomer sys-
tem.

We then obtain the viscoelastic moduli by mechanical spec-
troscopy, applying small amplitude oscillatory simple shear strain
to the sample as in Refs.5,30. For every sample we have simulated
20 periods of the applied periodic strain, beyond which there is
no further change to the stress-strain relationship (see illustra-
tions in the Supplementary Information). From the stress-strain
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Fig. 2 Dependence of viscoelastic moduli on the frequency of external shear Ω and temperature T obtained from theory and simulations. (a),(b)
respectively, G′(Ω) and G′′(Ω) for two different values of friction, which correspond to ν in theory and connected to a Langevin thermostat damping
as ν = m/ξ . T = 0.1,N = 100,M = 100. The dashed vertical lines correspond to the frequencies in Figs. 2(e),(f). (c),(d) respectively, G′(Ω) and
G′′(Ω) from LAMMPS simulations for the dependence of storage modulus G′ as a function of the deformation frequency for different temperatures,
N = 50,M = 100. To highlight the applicability of the theory the dark blue dashed line shows the result for T = 0.05 while the red dashed line is the result
for T = 0.4. (e) Comparison of theoretical predictions with the mechanical spectroscopy simulations for G′ as a function of temperature. The data are
shown for low (Ω = 0.03), middle (Ω = 20) and high frequencies (Ω = 200), N = 50,M = 100,ν = 1. (f) Comparison of theoretical predictions with the
mechanical spectroscopy simulations for G′′ as a function of temperature. The data are shown for three frequencies in the vicinity of the loss peak,
(Ω = 10.5,Ω = 48,Ω = 70), N = 50,M = 100,ν = 1. In all cases the theoretical and simulation results were obtained for 5 realisations of a corresponding
system and then averaged.
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curves we compute the storage G′ and loss G′′ moduli

G′ =
σ0

ε0
cosδ ,G′′ =

σ0

ε0
sinδ , (6)

where σ0 is the average amplitude of stress, ε0 is the amplitude
of strain (fixed at 2%) and δ is a phase shift between the two. We
have checked that 2% strain is still in the linear regime and pro-
duces the same results for G′ and G′′ as strains of 0.5% and 1%.
We have encountered the lower limit of simulating the moduli at
lower frequencies (Ω . 0.001− 0.01) due to the increase of the
noisiness of the simulation results and the difficulty of approxi-
mation of the data with trigonometric functions.

The cooling procedure is initiated with a random seed so that
each realisation has a different arrangement of the beads. In or-
der to estimate the error we have obtained 5 different realisations
in order to smooth out the sample-specific effects. The error bars
in Figs. 2(e,f) and Fig. 3 (a) are standard deviations of the av-
eraging over these realisations. The theoretical results also have
some spread in values and, thus, we show their standard errors.
We do not show errors in Figs. 2(a,b,c,d) to avoid obstructing the
view. The size of the error bars in all cases can be understood
from Figs. 2(e,f).

3 Viscoelastic moduli
Using the methods described in the previous section we first com-
pare theoretical predictions of G′ and G′′ (obtained using instan-
taneous static simulation snapshots to form the VDOS with INM)
against simulation results obtained by mechanical spectroscopy
for low temperature, T = 0.1. Fig. 2(a,b) shows the storage (a)
and loss (b) moduli for low and high internal friction ν (cf Eq. 4
and ξ in simulation description), respectively. For the correspond-
ing friction coefficients, the theory provides a good quantitative
prediction of the mechanical spectroscopy data (continuous lines
and symbols, respectively, in Fig. 2(a,b)) without any free param-
eter.

The peaks in G′(Ω) (Fig. 2(a)) correspond to the strongest
resonances in the system. The highest peak is located close to
the resonance frequency of FENE bonds ωFENE ≈ 31.3, while the
peak at lower frequencies is located between the FENE bond peak
and the LJ resonance frequency (ωLJ ≈ 7.56). Between the peaks
G′ falls to very small values. With an increase of the friction,
the transition from the high frequency regime to low frequency
regime is smoother, with resonances being smeared off. At very
low frictions (not shown) the theoretical curves show a number
of small single frequency resonances, consistent with low tem-
perature results produced by non-affine theory without INMs for
amorphous silica glasses5. In our case the friction is constant
(Markovian) by construction of the molecular simulations with
Langevin thermostat, and not a function of Ω. In some real ma-
terials such as metallic glass this may not be the case, and an
extension that includes memory-function for the friction has been
reported recently31. In the context of interpretation of experi-
ments one would need to determine the effective friction. The
friction could be found for instance from an analysis of the atoms’
trajectories under the assumption that the atoms move according
to the Langevin equation.
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Fig. 3 Percentage of negative eigenmodes of the Hessian Matrix as a
function of temperature, N = 50,M = 100. The data points were obtained
by averaging over 5 realisations for every point

Increasing T mostly affects the values of the moduli at low fre-
quency, shown in Fig. 2 (c,d). The storage modulus drops sub-
stantially after the temperature exceeds the glass transition tem-
perature Tg = 0.4, i.e. upon "disorder-assisted" melting4. On the
contrary, the loss modulus grows with temperature, which also
reflects a growth in dissipation defined usually as G′′/G′. The
glass transition temperature Tg of our system, which we deter-
mined earlier from the change of thermal expansion coefficient
for this system32, is consistent with the behaviour of the moduli
at low frequencies. The data from simulations for low frequency
Ω = 0.03 (Fig. 2(e)) show that G′ drops significantly at T ≈ 0.4
and thereafter smoothly tends to zero, which is consistent with
recent results33,34 obtained from the stress-fluctuation formal-
ism35. In order to show the limitations of our approach we plot
dashed lines with theoretical results in Figs. 2(c),(d) for T = 0.05
and T = 0.4. It is clear that at low frequencies the simulation
and the theory do not match each other well at the glass transi-
tion point. In order to better compare the theory with simulation
data at different temperatures we have plotted values of the stor-
age modulus for high frequencies and intermediate frequencies
in Fig. 2(e). We see that the theory is able to predict the storage
modulus even in the liquid phase for moderate to high oscillation
frequencies Ω. Fig. 2(f) shows the comparison of theoretical and
simulation data for the loss modulus. Since at very low and very
high frequencies the values of G′′ become very small and rather
noisy, we have chosen a set of frequencies different from that used
for the plot of the storage modulus (Fig. 2(e)). We observe that
the match between the theoretical predictions and the simulation
data is less quantitatively accurate, but is qualitatively good at
intermediate and high frequencies.

Although the non-affine approach was developed originally for
the athermal case2,27, the success of its predictions shown in Figs
2(a,b,e,f) suggests that our inclusion of INMs and internal stresses
makes it applicable over a broad range of temperatures, even
above Tg. We have checked that upon computing the VDOS in
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the standard way, taking configurations from long-time energy-
minimised simulations (which washes out the relaxation modes
and the internal stresses), the comparison with simulation data is
much worse.

With an increase of T to a value close or above Tg, the predic-
tions of INM non-affine theory get less quantitatively accurate at
low frequency (see Fig 2(e)). We believe that a growing mismatch
with mechanical spectroscopy data is caused by the increased an-
harmonicity and by swaps of nearest-neighbours. Even at non-
zero temperatures for moderate and high frequencies of shearing,
the atoms mostly dwell around their local minima, hence the har-
monic approximation holds, although internal stresses resulting
from displacements off the minima are important and are taken
into account via the INM in our theory. Increase of the external
shearing period (for Ω� 1) leads to the increase of atom mo-
bility, because the atoms have more time to relax their positions
with respect to their neighbours. Indeed, in the SI we show re-
sults illustrating that the number of nearest neighbour changes
increases with period and temperature. Moreover, we observe a
crossover to a more active increase in number of swaps of nearest
neighbours once the temperature exceeds Tg. Since these swaps
are not taken into account in Eq. (3), a mismatch arises at the
low frequencies once T approaches and even more when it ex-
ceeds Tg. One can also notice that the agreement between the
theory and simulations for the storage modulus G′ (Fig. 2(e)) is
better than for the loss modulus G′′ (Fig. 2(f)) except for very
low temperatures. The possible reason can be attributed to the
increase of the dissipation with temperature which in turn leads
to an increased number of monomer relocations.

4 Analysis of vibrational excitations

If the Hessian matrix is computed for instantaneous atom posi-
tions instead of positions taken from a minimised energy state
of the system, then the diagonalisation of Hi j produces negative
eigenvalues13,14,37. Their presence indicates that the local slope
and curvature of the energy hypersurface has nonconvex compo-
nents, so the density of these modes is linked to non-propagating
relaxation from local saddles (produced by thermal excitation) in

the energy landscape 13. Since the instantaneous positions devi-
ate more from their rest positions as the temperature is increased,
the behaviour of the negative eigenvalues, which correspond to
imaginary frequencies, correlates with softening of the material
and the transition from solid-like to liquid-like properties.

In Fig. 3 we plot the overall fraction of vibrational modes that
are negative as function of temperature. The behavior of unsta-
ble modes is rather similar to silica glasses from Ref.17 and the
small protein system from Ref.18: they appear once the tempera-
ture gets above zero. This fraction could also be obtained by the
ratio of the areas of imaginary part of VDOS to the real one (see
Fig. 3(b)). To understand the nature of these negative modes,
we compute a standard measure of localisation, the participation
ratio p(ω j). For an eigenmode with the eigenfrequency ω j, it is
defined as:

p(ω j) =

(
∑

N
i=1 u2

i (ω j)
)2

N ∑
N
i=1 u4

i (ω j)
, (7)

where ui(ω j) is the total amplitude of the i-th atom’s eigenvector.
p(ω j) quantifies the number of particles participating in a single
mode. For instance, for an isolated particle one has p = 1/N,
while if all particles are involved in a single mode p = 1. For an
amorphous polymer solid, which we consider here, the participa-
tion ratio shows substantial change with an increase in tempera-
ture (Fig. 5).

As is customary13, we show imaginary frequencies as negative
ones. For low temperature (T = 0.05) almost all frequencies are
real and the values of participation ratio for the frequencies close
to 0 are in the range 0.05-0.15. As the temperature approaches
and crosses Tg, more modes become unstable. At around Tg the
shoulder of the first band of participation ratio (with values 0.4-
0.5) is crossing into the unstable domain with values of participa-
tion ratio at ω ∼ 0 in the range 0.35-0.45. However, there is no
special feature visible at Tg = 0.4 and the process appears smooth
across the glass transition. This calculation also shows that the
unstable relaxation modes are localised, with low values of par-
ticipation ratio of imaginary-frequency modes.

One can notice that even for the data at the lowest tempera-
ture T = 0.05 the participation ratio at low (real) frequencies has
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0.3; (c) T = 0.4; (d) T = 0.5. The imaginary frequencies are shown as
negative frequencies. N = 50,M = 100.

values around 0.2-0.4, i.e. the long-wavelength phonons, which
are supposed to have p ≈ 0.6, are not apparent. This does not
mean, however, that the phonons are not present. The necessary
truncation of the system size in simulations often leads to small
values of p(ω) at the phonon frequencies, which is not unusual
for delocalised modes38. Interestingly, just like in the case of de-
pendence of viscoelastic moduli on the temperature, there are no
obvious signatures of a transition in p(ω) at or near Tg.

This corroborates the seminal idea of Y. Frenkel36, that, in the
case of amorphous solids, there is a continuity between the liq-
uid and solid states at least for the mechanical properties, and
that, indeed, liquids behave like solid glasses at sufficiently high
frequency of deformation.

On the microscopic scale, the viscoelastic properties are con-
trolled by the vibrational density of states D(ω) and affine force
field Γ(ω) (see Eq. 4), both of which contribute to non-affine
softening. The density of vibrational states for a polymeric amor-
phous solid at low temperatures consists of two prominent fea-
tures (Fig. 4(a)): a large peak upon normalizing by Debye’s ∼ ω2

law, the so-called ‘boson peak’, which is associated with LJ inter-
actions between beads; and a plateau at higher frequencies cor-
responding to FENE bond and collective bond-LJ vibrations39,40.
The boson peak can be measured by neutron inelastic scattering
experiments for instance for polyethylene41 or PDMS42.

An increase of temperature leads to the shift of boson peak and
the FENE-bond plateau to lower frequencies (Fig. 4(a)), which in-
creases the non-affine contribution (see Eq. 4) and, thus, makes
the material softer. The increase of the boson peak and its shift
to lower frequencies clearly gives rise to an increase (in absolute
value) of the non-affine integral due to the weight in the denomi-
nator which gives high weight to the low-ω part of the VDOS (Fig.
4(c)).

Clearly the VDOS in Fig. 4(a) has a model specific shape. Ad-
ditional interactions could bring another peaks as we have shown
earlier by considering the influence of angular potentials on the
vibrational density of states40. In that case angular interactions
gave additional contributions to the Hessian. The analogous pro-
cedure could be performed for dihedral interactions, hydrogen

bonds etc. Generally, the characteristic energy of an interaction
defines the part of the VDOS it enters40. Additional interactions
will also affect the viscoelastic properties32,43,44. The main basis
of our approach is the harmonic approximation. If this assump-
tion holds we expect that the method will be useful for study of
all-atom models as well as coarse-grained models obtained from
all-atom models by proper renormalisation of cohesive interac-
tion strength as a function of temperature44 or direct coarse-
graining45,46.

Γ(ω) also increases strongly in the range of 20 ≤ ω ≤ 30 (Fig.
4(b)). The large amplitude and fluctuations of Γ(ω) in the high
frequency part does not play a significant role for non-affine con-
tributions due to the fast growth of 1/ω2 part in the integrand in
Eq. 4. Thus, both the density of INMs and the correlator of affine
force field show features leading to the softening of the material
with increasing T . It is clear that in our case the crossover from
solid to liquid state above Tg = 0.4 does not bring any new micro-
scopic signatures of a transition, i.e. the microscopic INM-based
non-affine approach, here quantitatively validated against simu-
lations, corroborates the idea of gradual and continuous amor-
phous solid-liquid crossover.

5 Conclusions
Prediction of the dynamic mechanical properties of amorphous
solids and liquids remains an open challenge in condensed mat-
ter physics. In this article, we have combined microscopic dy-
namical information about internal stresses in the form of INMs
with an athermal non-affine deformation theory. The combined
approach is capable of describing the viscoelastic properties of
polymer glasses, achieving quantitative predictions of G′ across
most frequencies and temperatures (except where the struc-
tural relaxation rate begins to compete with external shearing
frequency) and qualitative agreement of G′′ above and below
Tg. The drop of the low-frequency storage modulus at Tg is
linked to growth of the so-called boson peak (proliferation of soft
modes above the Debye ω2 level) in the VDOS and its shift to-
wards zero frequency/energy, and with the gradual appearance
of non-propagating, unstable relaxation modes (imaginary eigen-
frequencies) below Tg. All other microscopic features of the vibra-
tional excitations and microscopic dynamics change continuously
and gradually across Tg. Our results support the view that the
glass transition represents a fundamental continuity between the
liquid and the amorphous solid state47,48, at least for its mechan-
ical manifestation.
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