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Abstract

We study crystal nucleation of the Weeks-Chandler-Andersen (WCA) model, using the recently 
introduced Persistent Embryo Method (PEM). The method provides detailed characterization of 
pre-critical, critical and post-critical nuclei, as well as nucleation rates that compare favorably with 
those obtained using other methods (umbrella sampling, forward flux sampling or seeding). We 
further map our results to a hard sphere model allowing to compare with other existing predictions. 
Implications for experiments are also discussed.

1. Introduction

The nucleation of a crystal out of a supercooled fluid is a fundamental process of enormous 

complexity. Even though Classical Nucleation Theory (CNT) was proposed almost a century ago1, 

it is only recently, with the development of powerful computers, that parameter-free predictions 

have become possible. Hard sphere (HS) models2,3 and other closely related systems4–8 have 

provided fertile test grounds on which implementations of CNT can be tested: Brute force 

Brownian dynamics (BD)4,5, forward flux sampling (FFS)2,4,6, umbrella sampling (US)4, 

metadynamics and seeding method7. Despite its obvious theoretical motivations, these models are 

also of considerable experimental interest, as they approximately describe colloidal dispersions9–

*Email: yangsun@ameslab.gov (Y.S.) or fzhang@ameslab.gov (F.Z.)
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11. Experimental nucleation rates, however, remain in significant disagreement with most existing 

theoretical predictions using these simple models4,12. 

Recently, we have introduced the Persistent Embryo Method (PEM)13 and applied it to the 

investigation of the nucleation of pure Ni and binary CuZr by all atom MD simulations. In this 

paper, we demonstrate that PEM is an efficient method by applying it to the Weeks-Chandler-

Andersen (WCA) model14, assuming the validity of CNT. As we describe further below, PEM can 

measure the nucleation rate in the low-density regime and does not make any geometrical 

assumption on the shape of nucleus. Moreover, PEM can obtain the unbiased configuration of the 

critical nucleus. We expect that PEM will become the method of choice as the optimal 

implementation of CNT for certain problems. Furthermore, given the current disagreements 

between nucleation rates as measured in experiments or calculated by theory, new techniques are 

crucial, in that they provide additional insights on the origins of such discrepancies. 

This paper is organized as follows: in Sec. 2 we present the WCA model, including the description 

of Brownian dynamics and order parameter. In Sec. 3 we show the method and discuss the 

calculation of other necessary quantities, such as the chemical potential. Sec. 4 describes the 

persistent-embryo method (PEM) and Sec. 5 describes the determination of attachment rate. In Sec. 

6, we derive the rate equation and present our predictions. In Sec. 7, we discuss our results and 

compare them with existing estimates obtained by other methods. A comparison with experimental 

results is also included. The conclusions are left for Sec. 8. 

2. WCA model and simulation details
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To relate our calculation to experiments9–11, and also to compare with previous computational 

work4–6, we performed Brownian dynamics (BD) simulations of N particles interacting with the 

WCA potential14: 

𝑈𝑊𝐶𝐴(𝑟) = { 4𝜀[(𝜎
𝑟)12

― (𝜎
𝑟)6

+
1
4]         𝑟 ≤ 2

1
6𝜎

0                                                  𝑟 > 2
1
6𝜎

where  is the unit of length and  is the unit of energy. The WCA model is a softer version of the 𝜎 𝜀

HS system14, and it is possible to define a mapping from the WCA model to the HS model, as we 

discuss further below. 

Brownian dynamics is the overdamped limit of Langevin dynamics. In Brownian dynamics, the 

equation of motion of particle i is:

 
𝑑𝒓𝒊

𝑑𝑡 =
1

𝑀𝛾
[ ― ∇𝑖𝑈 + 𝑾𝒊(𝑡)]          (1)

where  is the friction coefficient with units of inverse time.  is the stochastic force and M 𝛾 𝑾𝒊(𝑡)

is the mass of the particle, which is subject to a conservative force . The stochastic force is ― ∇𝑖𝑈

correlated according to the dissipation-fluctuation theorem , 〈𝑾𝒊(𝑡)𝑾𝒋(𝑡′)〉 = 6𝑀𝛾𝑘𝐵𝑇𝛿𝑖𝑗𝛿(𝑡 ― 𝑡′)

where the  is the Kronecker delta function and  is the Boltzmann constant. The timestep of the 𝛿 𝑘𝐵

simulation is 0.0004  (  is the LJ time unit which equals , where m is the unit of mass). Note 𝜏 𝜏 𝑚𝜎2

𝜀

the Brownian time  is defined as , where  is the diffusion coefficient on the Brownian 𝜏𝐵 𝜏𝐵 =
σ2

𝐷 𝐷

motion determined by the Einstein relation . Following Kawasaki and Tanaka5, we 𝐷 = 𝑘𝐵𝑇/𝑀𝛾

studied the WCA model at the reduced temperature , i.e. . For simplicity, 𝛽𝜀 = 40 𝑇 = 0.025 𝜀/𝑘𝐵
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both  and  were set to unity. Therefore,  and . All the simulations were 𝑀 𝛾 𝐷 = 0.025 
𝜎2

𝜏 𝜏𝐵 = 40𝜏

performed using the GPU-accelerated LAMMPS code15–17.  Some of the results were also tested 

using HOOMD-blue18,19.

Identification of fluid-like and solid-like particles was accomplished by the use of the bond-

orientational order parameter20,21, which is described below for the sake of completeness. For each 

particle i, the bond-orientational order parameter is:

𝑞6𝑚(𝑖) =
1

𝑁𝑏(𝑖) ×
𝑁𝑏(𝑖)

∑
𝑗 = 1

𝑌𝑙𝑚(𝑟𝑖𝑗)          (2)

where  are the spherical harmonics,  is the position vector of particle j regards to particle i, 𝑌𝑙𝑚 𝑟𝑖𝑗

and  is the number of nearest neighbors of particle i. The normalized bond-orientational order 𝑁𝑏(𝑖)

parameter is: 

𝑞6𝑚(𝑖) =
𝑞6𝑚(𝑖)

[∑6
𝑚 = ―6|𝑞6𝑚(𝑖)|2]1/2          (3)

A correlation between two particles (i, j) is defined by:

𝑆𝑖𝑗 =
6

∑
𝑚 = ―6

𝑞6𝑚(𝑖)𝑞 ∗
6𝑚(𝑗)          (4)

If  exceeds a threshold, then the two particles are considered bonded. To compare with a 𝑆𝑖𝑗

previous study4, we chose   as the number of particles within a cutoff of , and a threshold 𝑁𝑏(𝑖) 1.5𝜎

value for  of 0.7. We denote  as the minimal number of connected neighbors for a particle to 𝑆𝑖𝑗 𝜉

be considered as solid. In our simulation, if a given particle has 6 or more connected neighbors, it 

is considered as a solid-like particle, i.e., . This choice is somewhat arbitrary, and we will 𝜉 = 6
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show later it leads to a significant uncertainty in the calculation of related physical quantities, as 

we explore the case of  and , and make an additional comparison with Filion et al.4. 𝜉 = 8 9

3. Chemical potential differences 

The chemical potential difference between solid and fluid ( ) is required for calculation of ∆𝜇

nucleation rates by CNT. To compute  , we make use of the Gibbs-Helmholtz integration:∆𝜇

∆𝜇
𝑇𝑓

= ∫
𝑇𝑓

𝑇𝑚

∆𝐻(𝑇)

𝑇2 𝑑𝑇          (5)

where  is the enthalpy difference between the solid and fluid under the target pressure,  ∆𝐻(𝑇) 𝑇𝑚

is the melting temperature, and  is final target temperature. The NPT ensemble was applied to 𝑇𝑓

calculate enthalpy (H). For a fixed density, we first ran a BD simulation at the target temperature 

( ) to obtain the target pressure  in the fluid for subsequent simulations. The target 𝛽𝜀 = 40 𝑃𝑓

pressure in different densities was presented in Table 1, in the reduced form. To perform the 

constant pressure simulation for Brownian particles, we used the Berendsen barostat22. We ran 

separate simulations with 4000 particles in a solid face-centered cubic (FCC) phase and a fluid 

phase at the same temperature. We considered the FCC phase as it is well established that it has 

the lowest free energy among all putative crystalline phases in HS system. Other possibilities, such 

as body-centered cubic (BCC) and icosahedral phases, do not seem to play a role in the nucleation 

of monodisperse HS system3. As a cross-check, we ran simulations with a BCC embryo and found 

that it did not nucleate a crystal (see Appendix B). 
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To prepare the supercooled fluid phase, we first melted a crystal at a high temperature and cooled 

it down to the target temperature. The numerical integration was carried out using a chained 

trapezoidal rule with the interval of temperature . ∆𝑇 = 0.0001 𝜀/𝑘𝐵

The melting temperature, as a function of fluid density, is the lower limit of Gibbs-Helmholtz 

integration. To determine the melting point, we ran BD simulation on a solid-fluid interface 

generated by melting half of the initial crystal (FCC) structure. During the simulation, the periodic 

boundary condition was applied, and we only allowed the length of the box in the direction 

perpendicular to the interface to change, resulting in constant interfacial area, constant normal 

pressure: NPxAT ensemble, with x being the perpendicular direction. A typical configuration of 

NPxAT simulation is shown in Fig. 1. We monitored the length of the simulation cell  along the 𝐿𝑥

x-direction to locate the phase transition at different temperatures: increasing of  implies melting 𝐿𝑥

and vice versa. 
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Fig. 1: Typical configuration of NPxAT simulation. The central part is the crystalline phase, while 
the remaining fluid. Periodic boundary conditions were applied during simulation.  is the length 𝐿𝑥

of simulation box along x-direction.

A typical measurement of the melting point is exemplified in Fig. 2: At , the 𝑇 = 0.0319 𝜀/𝑘𝐵

simulation box expands, indicating that the solid is melting towards the fluid. At , 𝑇 = 0.0317 𝜀/𝑘𝐵

the simulation box shrinks, implying that the fluid side is crystalizing towards the solid. Only at 

, the box size stays around  and both phases coexist. Therefore, this is the 𝑇 = 0.0318 𝜀/𝑘𝐵 35.7 𝜎

melting temperature (within a  precision) at a fluid density  All the 0.0001 𝜀/𝑘𝐵 ρσ3 = 0.7525.

melting points thus obtained are shown in Fig. 2(b).

Fig. 2: (a) Lx as a function of temperature at . (b) Melting point 𝑇 = 0.0317,  0.0318, 0.0319 𝜖/𝑘𝐵

as a function of reduced density . (𝜌𝜎3)

With the measured melting points and enthalpies, we compute the chemical potential differences 

by Equation 5. A summary of thermodynamic properties is given in Table 1. In Fig.3, we compared 

the reduced chemical potential differences with the results from Filion et al.4, obtained by a 

thermodynamic integration of the equation of state23. Both methods provide consistent results.
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Table 1. Thermodynamic properties calculated at various reduced densities, including the reduced 
pressure ( ), melting points ( ) and reduced chemical potential differences ( ).𝛽𝜌𝜎3 𝑘𝐵𝑇𝑚/𝜀 𝛽|𝛥𝜇|

𝜌𝜎3 𝛽𝑝𝜎3 𝑘𝐵𝑇𝑚/𝜀 𝛽|𝛥𝜇|
0.7525 11.34 0.0318 0.3298
0.7557 11.58 0.0324 0.3591
0.7588 11.83 0.0331 0.3925
0.7620 12.04 0.0337 0.4208

Fig. 3: The reduced chemical potential differences as a function of fluid density. The data from 
ref. 4 is also included in this figure.

4. The persistent embryo method (PEM)

Nucleation is described as a competition between the favorable fluid-to-crystal transition against 

the unfavorable cost to create the solid-fluid interface (SFI), leading to an excess free energy :(∆𝐺)
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∆𝐺(𝑁) = 𝑁∆𝜇 + 𝑠(𝑁
𝜌)

2
3
𝛾𝑖          (6)

where  is the chemical potential difference.  is the SFI free energy, and s is a ∆𝜇( < 0) 𝛾𝑖( > 0)

geometric factor that accounts for the possible non-sphericity of the critical nucleus. 

During PEM simulation, the number of total particles was set to 13500. The NVT ensemble was 

applied during PEM simulation. We first ran a BD simulation for  at  and 50,000 𝜏𝐵 𝜌𝜎3 = 0.7525

we did not observe a single nucleation event. PEM13 starts with the creation of a small embryo 

consisting of a crystal of  atoms ( ), where  is the size of critical nucleus. We 𝑁0 𝑁0 ≪ 𝑁 ∗ 𝑁 ∗

inserted this embryo into the supercooled fluid and found that without any other modification, the 

embryo quickly dissolves back into the fluid. We therefore attached each of the initial embryo 

particles to a tunable spring while the other end of the spring is fixed to the embryo particle’s 

equilibrium position, so that the embryo is prevented from shrinking and forced to grow. As the 

embryo grows, springs are gradually softened so that at a size  they are completely 𝑁𝑠𝑐( < 𝑁 ∗ )

removed. This was accomplished by parameterizing spring constants according to: 

𝑘(𝑁) = { 𝑘0
𝑁𝑠𝑐 ― 𝑁

𝑁𝑠𝑐
     𝑖𝑓 𝑁 < 𝑁𝑠𝑐

         0               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (7)

where  is the number of (solid-like) atoms within the nucleus. We ensured that the tunable 𝑁

parameter  is much smaller than critical nucleus size ( ). Some “trial and error” 𝑁𝑠𝑐 𝑁 ∗

experimentation is needed to determine the  and  if an estimation of  is unavailable.𝑁0 𝑁𝑠𝑐 𝑁 ∗

To prepare the sample for our simulation, first we ran a BD simulation to melt the FCC crystal to 

a fluid phase. Then we selected an arbitrary particle as the center and inserted the crystalline 
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embryo (mostly in FCC phase) into the fluid and deleted the fluid particles which are nearest 

neighbors to each particle of initial embryo. During this procedure, we added some crystalline 

particles into the system while removing the same number of fluid particles, so that the overall 

density remained constant.

Once the initial configuration was prepared, we started the relaxation of the entire system. First, 

we fixed the embryo particles and only heated the fluid particles to a relatively high temperature, 

and then annealed the fluid particles at high temperature. Finally, we quenched the fluid particles 

down to the target temperature ( ). This procedure is designed to equilibrate the solid-fluid 𝛽𝜖 = 40

interface and repel any fluid particles that could be trapped inside the embryo. This preparation 

process allowed the system to reach thermal equilibrium for further PEM implementation.

We monitored the number of solid-like particles and updated the spring constant every 10,000 

steps ( ), which we denoted as a loop. At the end of each loop, the size of the crystalline 0.1𝜏𝐵

nucleus ( ) was recalculated, and the spring constant was updated according to Equation 7.  We 𝑁

terminated the simulation if the number of solid-like atoms grew too large (of the order of ), 5𝑁𝑠𝑐

as the system was irreversibly crystallized. 

The critical nucleus size ( ) was computed by the following algorithm: as shown in Fig. 4, we 𝑁 ∗

firstly plotted the embryo size ( ) versus time. According to the CNT, when the size of nucleus 𝑁

reaches ,  reaches a maximum: The nucleus has equal probability to either dissolve or further 𝑁 ∗ ∆𝐺

grow. Therefore, the nucleus size will fluctuate around  over a significant period of time, 𝑁 ∗

reflected as a plateau in the  times series. To guarantee that the selected plateaus correspond 𝑁(𝑡)

to the critical nucleus, we monitored the height and time width for each plateau. Occasionally, 

there are sporadic plateaus driven by thermal fluctuations, but those are relatively low and narrow. 
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After a plateau is identified, the average is computed and assigned the critical value . We 𝑁 ∗

launched many independent simulations (up to 60) to generate significant statistics. A collection 

of all plateaus is provided in Appendix A. For each plateau, we calculated its average height to 

cancel out the thermal fluctuation. The critical nucleus size , as well as the standard deviation 𝑁 ∗

of the measurement, is then determined by averaging the heights of all the plateaus.

Fig. 4 shows a typical PEM simulation, where we show the embryo size versus time at 𝜌𝜎3

.  was applied in this case. There are several critical plateaus before the nucleus = 0.7525 ξ = 6

irreversibly grows. The actual critical nucleus including all the atoms shows a clear anisotropic 

shape with obvious crystalline facets.
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Fig. 4: Nucleus size versus time in the PEM simulation. The dot line (blue) shows the number of 
atoms in the embryo , and dash line (green) indicates the threshold to remove the springs . (𝑁0) (𝑁𝑠𝑐)
The solid line corresponds to the critical nucleus size  which is determined statistically from (𝑁 ∗ )
8 plateaus (see Appendix A for the collection). The three insets show the time-averaged shape of 
pre-critical, critical and post critical nuclei at the corresponding time (arrow). The blue dots 
indicate the embryo and red ones are particles attached to the embryo.

We considered at least 8 plateaus at every density. The averaged critical nucleus size  and the 𝑁 ∗

standard deviation are summarized in Table 2. A comparison between our result and ref. 8 is given 

in Fig. 5. Overall, our results of  are in better agreement with those obtained by Forward Flux ξ = 6

Sampling (FFS)8 than those from the seeding method8. The deviation between PEM and the 

seeding method may originate from the geometrical assumption of critical nucleus in seeding 

method. Another comparison between PEM and the seeding method can be found in the 

supplementary material of ref. 13. To make a comparison, both results from  and  are 𝜉 = 6, 8 9

included in Fig. 5. 
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Fig. 5: Critical nucleus size ( ) as a function of reduced (fluid) density ( ). Both  (red 𝑁 ∗ 𝜌𝜎3 𝜉 = 6
solid line),  (blue dash line) and  (green dot line) are considered. Previous results are 𝜉 = 8 ξ = 9
given by either Forward Flux Sampling (FFS) or the seeding method from ref. 8, using . 𝜉 = 9

Table 2: Estimates for the nucleus size ( ) and its standard derivation ( ), attachment rate 𝑁 ∗ ∆𝑁 ∗

( ). and  are calculated in terms of  and , as shown explicitly.𝑓 + 𝜏𝐵 𝑁 ∗ Δ𝑁 ∗ 𝜉 = 6, 8 9

𝜌𝜎3 𝑁 ∗ ± ∆𝑁 ∗  (𝜉 = 6) 𝑁 ∗ ± ∆𝑁 ∗  (𝜉 = 8) 𝑁 ∗ ± ∆𝑁 ∗  (𝜉 = 9) 𝑓 + 𝜏𝐵

0.7525 429.76 ± 26.4 348.06 ± 21.1 308.89 ± 18.8 490.7
0.7557 300.67 ± 20.3 236.13 ± 19.3 206.09 ± 18.1 486.9
0.7588 228.30 ± 14.0 172.85 ± 10.6 147.65 ± 9.1 436.4
0.762 190.91 ± 19.9 141.31 ± 16.8 118.73 ± 15.3 437.8

5. Attachment rate

Page 13 of 28 Soft Matter



14

The attachment rate at the critical nucleus was calculated by the method first introduced by Auer 

and Frenkel24. It considers the size change of the critical nucleus, based on the iso-configurational 

ensemble25, which is given by the formula:

𝑓 + =
〈|𝑁(𝑡) ― 𝑁 ∗ |2〉

2𝑡           (8)

To determine the attachment rate, we selected ta snapshot from PEM simulations whose nucleus 

size is exactly  as the initial configuration. We then performed 50 independent runs starting 𝑁 ∗

from this configuration. Different trajectories were reached in these runs because of the random 

noise introduced by reinitializing the random force term  in the Langevin equation for each 𝑾(𝒕)

particle. (The springs are absent.)

Fig. 6 shows a determination of attachment rates at . From the upper panel we notice 𝜌𝜎3 = 0.7525

that roughly half of the runs ended up melting back into the fluid, while the other half grew 

irreversibly, as expected. Further confirmation is obtained by plotting the ensemble average ∆𝑁 ∗

. According to the CNT,   at , which is clearly shown in Fig. 6. (𝑡) = 𝑁(𝑡) ― 𝑁 ∗ 𝑑〈∆𝑁 ∗ (𝑡)〉
𝑑𝑡 = 0 𝑁 ∗

Therefore, we can measure the attachment rate by fitting the slope of  to Equation 8. |∆𝑁 ∗ (𝑡)|2

The obtained attachment rates for different densities are summarized in Table 2. 

Page 14 of 28Soft Matter



15

Fig. 6: The upper panel shows the nucleus size versus time for the isoconfigurational ensemble 
including 50 runs. The middle panel shows the ensemble average of . The ∆𝑁 ∗ (𝑡) = 𝑁(𝑡) ― 𝑁 ∗

dot line (green) serves as a guide to the eye for the zero point. The bottom panel shows the 
ensemble average of . The dashed line (red) indicates the linear fitting |∆𝑁 ∗ (𝑡)|2 = |𝑁(𝑡) ― 𝑁 ∗ |2

to the range from  to  to derive the attachment rate. During  to ,  remains 0.5𝜏𝐵 3𝜏𝐵 0.5𝜏𝐵 3𝜏𝐵 ∆𝑁 ∗ (𝑡)
to be almost zero.

6. Nucleation rate 

The nucleation rate J is given by:

𝐽 = 𝜅 exp ( ―
Δ𝐺 ∗

𝑘𝐵𝑇 )          (9)

where  is a kinetic prefactor.  depends on the driving force  and the critical nucleus size 𝜅 Δ𝐺 ∗ |Δ𝜇|

 by13:𝑁 ∗
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Δ𝐺 ∗ =
1
2𝑁 ∗ |Δ𝜇|          (10)

The explicit formula for the nucleation rate is26: 

𝐽 = 𝜌𝐿𝑓 +
|∆𝜇|

6𝜋𝑘𝐵𝑇𝑁 ∗  exp ( ―
|∆𝜇|𝑁 ∗

2𝑘𝐵𝑇 )          (11)

Nucleation rates were computed from Equation 11 and are summarized in Table 3. With nucleation 

rates of the order of  or even smaller, it is not surprising that no nucleation events were 10 ―15

observed by brute-force simulation alone. 

One should notice that the rate  depends on  exponentially, so a small uncertainty in  will 𝐽 𝑁 ∗ 𝑁 ∗

result in a significant variation in . Our calculation in terms of  and  reconfirms this 𝐽 𝜉 = 6, 8 9

statement. It is worth mentioning that PEM rigorously identifies the configuration of critical 

nucleus. The error only enters in the identification of the number of solid-like particles. Further 

discussion about the order parameter can be found in ref. 27–29.

Table 3: Mapped volume fraction ( , see below for its definition) and nucleation rate ( ) 𝜙𝑒𝑓𝑓 𝐽𝜎5/𝐷
as a function of reduced density ( ). Nucleation rate was calculated in the case of  and 𝜌𝜎3 𝜉 = 6, 8

.9

𝜌𝜎3 𝜙𝑒𝑓𝑓 𝐽𝜎5/𝐷 (𝜉 = 6) 𝐽𝜎5/𝐷 (𝜉 = 8) 𝐽𝜎5/𝐷 (𝜉 = 9)
0.7525 0.5200 3.934 × 10 ―31 3.103 × 10 ―25 2.104 × 10 ―22

0.7557 0.5222 1.051 × 10 ―23 1.280 × 10 ―18 1.917 × 10 ―16

0.7588 0.5243 1.097 × 10 ―19 6.715 × 10 ―15 1.022 × 10 ―12

0.762 0.5265 1.294 × 10 ―17 5.120 × 10 ―13 2.185 × 10 ―11

7. Discussion

Computed nucleation rates are compared to other available estimates in Fig. 7. At a density of 𝜌𝜎3

, the nucleation rates given by Filion et al.4 using US and FFS are in agreement (within = 0.762

error bar) to our PEM estimates. At the smaller density, PEM gives a slightly lower nucleation rate 
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than FFS from ref. 6. One should notice that the PEM calculations used the NVT ensemble, while 

the US and FFS in ref. 4 operated in the NPT ensemble. As showed in Table 3, the critical nucleus 

size at the density of  is , while the total number of system is 13500. 𝜌𝜎3 = 0.762 𝑁 ∗ = 190.91

When the nucleus reaches the critical size ( ), it is only 1% of the entire system. In this case, the 𝑁 ∗

fluctuations that differentiate the NVT and NPT are virtually negligible5. In NVT simulations, 

there is a feedback mechanism in that a growing crystalline nucleus has a higher density and thus 

reduces the overall pressure, which prevents it from growing any further. Thus, the NVT 

simulation actually evaluates the lower limit of the nucleation rates, as compared to the NPT case. 

The influence of order parameter is explicitly shown in the Fig. 5, and we will discuss it below. 

Besides, there is a recent paper30 which reveals that although FFS is not sensitive to order 

parameter, the conventional FFS sometimes still underestimates the nucleation rate by several 

orders of magnitude. 

Furthermore, we also measured the nucleation rate at large densities where the nucleation can be 

directly accessed by brute-force Brownian dynamics simulations. Mean-first passage time31 are 

measured from 20 brute-force simulations.  Computed nucleation rate is also shown in Fig. 7, 

which is in good agreement with existing estimates. 
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Fig. 7: The nucleation rate as a function of fluid density, in the case of  and . The results 𝜉 = 6, 8 9
from previous work on WCA particles from ref. 4–6 are also included.

To translate the computed nucleation rates of WCA model with HS models, we map the density  𝜌

to the volume fraction  by:𝜙

𝜙 = (𝜋
6)𝜌𝑑3       (12)

where  is the effective diameter of WCA particles. Here we follow the same procedure as 𝑑

described by Filion et al.4 to map the freezing density  of WCA particles to the 𝜌𝑓𝜎3 ≃ 0.712

freezing volume fraction  of hard spheres. Even for the ideal HS model, there is some 𝜙𝐻𝑆
𝐹

uncertainty about the exact value of the freezing volume fraction, which is only accurately 

determined within a range of 23,32,33. In our study,  we choose  , 0.491 < 𝜙𝐻𝑆
𝐹 < 0.494 𝜙𝐻𝑆

𝐹 ≃ 0.492

as this seems to be the most precise value23. Thus, density and volume fraction are related by the 
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effective diameter . The mapped volume fraction is enclosed in Table 3. Note while 𝑑 ≃ 1.097𝜎

the uncertainty in  appears to be quite small, it may result in a very large dispersion when 𝜙𝐻𝑆
𝐹

mapping the number density to the volume fraction. In Fig. 8, the nucleation rates are shown as a 

function of volume fraction and compared to both experimental and other simulation results. The 

horizontal error bar indicates the lower and upper limit for volume fractions. Given the logarithmic 

nature of the plot, slight differences in the mapping result in large shifts of the nucleation rates. 

Another crucial factor is the order parameter, as indicated in Fig. 5, Fig. 7 and Fig. 8. A small 

change in  can lead to a significant change in critical nucleus size ( ) and consequently, the 𝜉 𝑁 ∗

nucleation rate ( ). But the advantage of PEM is that it can get the exact configuration of the critical 𝐽

nucleus, while the error is introduced in the counting of solid-like particles. Considering that the  𝐽

relies on  exponentially, a small difference of  can enhance a huge jump of . Any method, 𝑁 ∗ 𝑁 ∗ 𝐽

as long as it relies on CNT, suffers from this problem. On the other hand, the bond-orientational 

order parameter is not the only representation of the solid particles within the nucleus. An 

alternative option is the  parameter which incorporates a kinetic theory to the descriptor of (𝑛,𝑣)

nucleus and can be used to describe the dynamics of sub-critical nucleus34,35.

Despite all these uncertainties, our WCA simulations are in clear agreement with previous 

estimates2,4–6. However, all the computed nucleation rates, including current PEM results, deviate 

from the experimental measurements9–11. As pointed out in ref. 4, this discrepancy is not related 

to inaccuracies of the theoretical calculation but rather, reflects a true deficiency of HS and related 

models to capture the physics of these experimental systems. Our calculations support this 

conclusion.
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Fig. 8: Nucleation rates as a function of mapped volume fraction, for  (red solid line),  𝜉 = 6 𝜉 = 8
(blue dash line) and  (green dot line). Simulation resulting from WCA models4–6,  hard ξ = 9
spheres2 and experiments9–11 are included in the figure. The horizontal error bar when  and 𝜉 = 8

 is the same with the case when . 9 𝜉 = 6

8. Conclusions

We have measured the chemical potential differences between undercooled WCA fluids and solids 

by Gibbs-Helmholtz integration. We implemented the persistent-embryo method (PEM) to 

evaluate the nucleation rates in the density of . The rates 𝜌𝜎3 = 0.7525, 0.7557, 0.7588, 0.762

given by PEM are consistent with the ones available from umbrella sampling (US) and forward 

flux sampling (FFS). Our method-PEM is an efficient method to evaluate nucleation rates and 

provides a unique characterization of not only the critical, but the dynamics of the pre-critical and 

post-critical nucleus. Additionally, estimates obtained within WCA models are in agreement with 
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hard spheres. Our results provide more evidence that the discrepancy between simulation and 

experiments will require more sophisticated models.
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Appendix A: Collection of plateaus

The collection of plateaus is presented in the Fig. A1. 
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Fig. A1: The plateaus to determine the critical nucleus size in different reduced densities ( ): 𝜌𝜎3

(a) 0.7525, (b) 0.7557, (c) 0.7588, (d) 0.762. During the PEM simulation, different , which is 𝑁0
the size of embryo, and , which is the threshold where the spin is removed, were applied and 𝑁𝑠𝑐
indicated by red dot line and green dash line, respectively. The black solid line shows the averaged 
height of each plateau. 

Appendix B: The crystalline and geometrical structure of the embryo

To investigate the effect of geometry of embryo, we launched 36 independent PEM simulations in 

the condition that the embryo is cubic, and 12 plateaus were collected among them. By the same 

procedure, we find that the critical nucleus size ( ) for  is , while 𝑁 ∗ 𝜌𝜎3 = 0.7525 303.44 ± 15.4

in the spherical embryo case the . The two ranges have huge overlaps which 𝑁 ∗ = 300.67 ± 20.3

indicts that the geometry of embryo is not a critical issue in the PEM. A collection of plateaus is 

enclosed in the Fig. A2.
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Fig. A2: The plateaus to determine the critical nucleus size in the case of cubic embryo. The 
(reduced) density is . During the PEM simulation, different , which is the size of 𝜌𝜎3 = 0.7557 𝑁0
embryo, and , which is the threshold where the spin is removed, were applied and indicated by 𝑁𝑠𝑐
red dot line and green dash line, respectively. The black solid line shows the averaged height of 
each plateau. 

Besides the geometry, another crucial factor is the structure of embryo, e.g. how does a BCC 

embryo work in the PEM? This question has been discussed by Auer and Frenkel3, in the year of 

2001. It is claimed that the BCC and icosahedral do not play a role in the nucleation process of HS 

system. To test this, we launched 12 independent runs to justify the effect of BCC. The result 

shows that the BCC embryo cannot grow while in the same time period the FCC embryo can lead 

the crystallization, as shown in Fig. A3. Therefore, the BCC is not dominant if the nucleus is 

relatively large and we excluded the nucleation channel via BCC in our simulation.
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Fig. A3: (color online) A comparison of simulations starting with FCC embryo and BCC embryo. 
The black line corresponds to the FCC embryo, showing that the FCC embryo eventually grew. 
The blue line corresponds to the BCC embryo. Within simulation time, the BCC embryo did not 
grow.
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