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Betweenness Centrality as Predictor for Forces in
Granular Packings '

Jonathan E. Kollmer,*¢ and Karen E. Daniels®

A load applied to a jammed frictional granular system will be localized into a network of force
chains making inter-particle connections throughout the system. Because such systems are typi-
cally under-constrained, the observed force network is not unique to a given particle configuration,
but instead varies upon repeated formation. In this paper, we examine the ensemble of force chain
configurations created under repeated assembly in order to develop tools to statistically forecast
the observed force network. In experiments on a gently suspended 2D layer of photoelastic par-
ticles, we subject the assembly to hundreds of repeated cyclic compressions. As expected, we
observe the non-unique nature of the force network, which differs for each compression cycle, by
measuring all vector inter-particle contact forces using our open source PeGS software. We find
that total pressure on each particle in the system correlates to its betweenness centrality value
extracted from the geometric contact network. Thus, the mesoscale network structure is a key

control on individual particle pressures.

1 Introduction

For idealized granular particles in a jammed configuration, there
are many different ways for the force and torque balance on each
particle to be satisfied for any given packing geometry and bound-
ary conditions: this is known as the force network ensemble. T2 A
key reason for this ensemble of configurations is that particles de-
form at their contacts, and thereby store information about their
loading history; 2™ the rate- and asperity-dependence of real fric-
tional contacts make this an even more prevalent effect.”
Generally speaking, the inter-particle forces within these mate-
rials are mathematically under-determined: particle positions are
insufficient to determine the force network. Furthermore, while
two packings might have the same occupied volume or internal
pressure, they can nonetheless have vastly different bulk mate-
rial properties.m. Therefore, a promising approach is to make
predictions for the physical properties of granular materials using
tools and concepts from statistical physics,? by directly consid-
ering the ensemble of states. However, the choice of the correct
ensemble remains the subject of active research.410-14
Importantly, the transmission of forces occurs primarily via lin-
ear structures running through a series of connected particles (see
Fig.[I), forming a force network. This network provides the gran-
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ular material with structures at many scales, from the particle
(micro) scale to the force chain (meso) scale to the bulk (macro)
scale. The mesoscale force network contains only a subset of the
particles, and yet carries most of the load. Because these force
chains can span significant portions of the system, it becomes in-
adequate to use either local or mean field approaches to describe
the systems behavior. 117 Thus, it is attractive to focus attention
on force networksT821 within jammed granular packings.

In order to make quantitative predictions about the role of force
networks, it is useful to draw on the field of network sciencel22-25
in addition to statistical mechanics or grain-scale solid mechanics.
Mathematical networks are often represented as a graph consist-
ing of nodes and edges.2 In the case of a granular system, each
node would represent a particle, and edges connect two parti-
cles (nodes) which share a contact. In many cases, it is informa-
tive to weight each edge by its contact forces; here we consider
binary (unweighted) networks. These techniques have recently
been applied in a variety of granular contexts ranging from shear
to compression to vibration®*31 and a summary of the many ap-
plications can be found in a recent review.32

As shown in Fig. [1} the force chain network that results from
repeated experiments on the same particle network is both vari-
able in the details, and repeatable in other aspects. For instance,
the same two particles on the right side are often in strong con-
tact with the wall. Thus, while the force-configuration fluctuates
around several preferred states, some particles are loaded more
often than others and the configurations are not completely ran-
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Fig. 1 Five representative loading cycles for the same configuration of a granular packing, with N =29 photoelastic disks floated on an air table. In
these darkfield images taken in polarized light, brighter particles are those with higher contact forces.® Particle outlines are superimposed as green

circles.

b(n) ;

Fig. 2 Schematic illustration of the concept of betweenness centrality,
with each node color-coded by its b value (brighter corresponds to larger
values). The bright node at the center has high a high value of b because
many shortest-paths between any other two particles have to go through
it. The dark nodes (here, arranged at the edges for clarity) have b = 0,
since they never act as connecting nodes.

dom. This raises the question of what properties of the particle
packing make it more or less likely for a particular particle to bear
a strong load.

This variability suggests that prior studies of the statistics of
inter-particle contact forces®3334 arise through simultaneously
sampling two ensembles: the positions of the particles, and the
valid configurations of forces. While there have been a few ex-
periments probing granular ensembles,®35 it has been difficult to
decouple the external load that probes the force network from
other forces acting upon the system, like gravity or basal fric-
tion.38 The experiments described here examine the distribution
of forces in a loaded granular system, isolated from the effects of
configuration.

In order to understand how the variability in force networks
arises, we focus on a mesoscale, nonlocal, measure of the network
connectivity: the betweenness centrality 5.7 As shown schemat-
ically in Fig. [2} the betweenness centrality of particle (node) n
is calculated by considering the extent to which shortest-paths
between two other nodes must travel through that node. Mathe-
matically, this is defined as the fraction of shortest path s;; along
the edges (contact forces) between any two nodes i # n # j in the
system that goes through node (particle) n:

b(n) = si(n).

= . )
iAngj i

In the results presented here, we performed our calculations us-
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ing the open-source functions provided by the Brain Connectiv-
ity Toolbox.8 In all plots, we plot the values of » normalized to
the largest b across all cycles within that dataset, to better al-
low for comparison between datasets with different particle con-
figurations. Note that b depends only the adjacency network of
the particles, rather than the inter-particle forces. This quantity,
therefore, allows us to test how particle-scale forces depend on
mesoscale connectedness. We find that b can be used to predict
the typical force on a particle, averaged over an ensemble of real-
izations.

2 Experiment

Our experiment is designed to generate and characterize many
different force configurations within a quasi-two-dimensional, hy-
perstatic (under-constrained) granular packing at constant vol-
ume. To minimize extraneous external forces, we utilize a hor-
izontal layer of photoelastic disks floating on a gentle air cush-
ion.3? This creates an effectively gravity-free system without
basal friction. The particles are laterally confined inside a pis-
ton that can apply an uniaxial load to the packing, via a series of
quasi-static steps of constant wall-displacement.

A schematic drawing of the experimental setup is provided in
Fig. Each experimental run consists of cyclically loading and
unloading the packing by a small enough wall displacement that
(1) there is no change the nearest-neighbor particle configura-
tion, but (2) the force network is erased between cycles. From
cycle to cycle, there are microscopic changes in the contact points
on the particles, but there are no neighbor changes. The initial
volume V; was chosen to be just before the onset of jamming
(zero pressure), and the final volume so that the mean contact
force rises to approximately 0.5 N. This maximum compression
(minimum volume) was chosen to provide a balance between
two effects: large enough forces to show a fully-developed net-
work with good force resolution, but small enough forces to sup-
press internal rearrangements and out-of-plane buckling. For the
experiments presented here, we uniaxially compress the pack-
ing in steps of constant volume (Ax = 0.2 mm, corresponding to
AV =0.002869V}y). Each step is a quasistatic step in order to allow
us to disregard inertial effects.

The granular material is composed of a bidisperse mixture of
two different radii particles (r; = 5.5 mm and r, = 7.6 mm) to
suppress crystallization. Between runs, the particle positions are
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Fig. 3 Experimental apparatus. Left: Photoelastic particles are floated on a horizontal air table to suppress the influence of gravity and basal friction,
and visualized from above. lllumination in the red channel is unpolarized, providing imaging of the particle positions. lllumination in the green channel
is polarized, providing visual access to the internal stress field within each particle. The red and green color channels of the camera can later be
separated to process particle positions and force information from a single color image. Right: The grains are placed within a horizontal piston, and
cyclically compressed. Particle positions are visible in red, and force chains in cyan.

randomized. We conduct experimental runs to generate an en-
semble of force networks on two complementary system sizes:
N =29 or N = 824 particles. The N = 29 particle system allows
for hundreds of repetitions and high resolution imaging (which
in turn allows for very precise force reconstruction), while the
N = 824 particle system allows for sampling an ensemble further
away from the boundaries of the system. The drawback of the
larger system size, however, is that it is hard to re-compress the
packing while also maintaining the same particle configuration; 4%
we find that only about one hundred cycles are typically possible.

After starting an experiment, we discard the data for the initial
~ 100 cycles to get rid of the most prominent aging effects. Af-
ter this initial annealing period, the force continues to fluctuate
around a well-defined mean while the particle configuration re-
mains unchanged. For each compression cycle we take one image
of the system, at a resolution of 2299 x 2506 pixels.

In order to measure the vector contact forces on each particle,
we utilize particles made of a photoelastic material (Vishay Pho-
toStress PSM-4, elastic modulus E = 4 MPa). Photoelastic mate-
rials have the property of rotating the polarization of transmitted
light, by a known amount that depends on the local stress ten-
sor. Therefore, it is possible to fit a theoretical model to images
of the modulated light intensity within individual particles, and
thereby obtain the vector contact force at each contact. 21535 we
perform this step using our open source tool PeGS (Photoelastic
Grain Solver) which is freely available on GitHub. 4l As a result,
we get two vectorial contact forces for each contact in the system
(F,, and Fp,) since each side of a contact is processed individually.
We then run PeGS again, giving the average of both forces as an
initial guess. As a final result we then compare the residual of the
force fit from both runs and pick the result with the smaller resid-
ual. This is to improve fitting accuracy and remove outliers. In
order to measure the total pressure on each particle we calculate

P ="Ti(6) )
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Fig. 4 Graphical representation of the average pressure (P) (left) and the
betweenness centrality (b) (right) on each particle in an N =29 system.
Averages are taken over 900 realizations of the configuration. Between-
ness centrality values have been normalized to the largest b across all
cycles of the dataset (see text).

where 6 is the stress tensor, derived from the photoelastic analy-
sis.

In order to calculate network measures, we operate on the bi-
nary contact (adjacency) matrix for each image. This is formed
by identifying all contacts in the system for which we detect a
nonzero value for the absolute force between two particles. We
carefully checked that changing this threshold to 0.01 N or 0.001 N
does not significantly change the results presented in this paper.
At the end of the paper, we will additionally explore the successful
use of a particle-separation criteria as an alternative method.

3 Results

Figure [ shows an analysis a typical run from the N = 29 particle
system illustrating the main result. In the left panel, each particle
is colored by its mean pressure (P), averaged over the ensemble
of 900 images in the run. Bright particles are those that are reli-
ably on a strong force chain. In the right panel, each particle is
colored by its average betweenness centrality value (b), obtained
from the contact network. We take the average although the bi-
nary contact network barely fluctuates (i.e. the experiment was
designed to avoid neighbor changes so most of the fluctuation

1~|§||3
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Fig. 5 (a) Mean pressure (P) as a function of betweenness centrality (b), for each particle in an N = 824 system. Betweenness centrality values
have been normalized to the largest b across all cycles of the dataset (see text). (b) Histogram of betweenness centrality values within four different
pressure bins (symbols) from a), together with fits to Eq. [3| (lines). Each color represents a different bin. (c) Characteristic betweenness centrality
value B, obtained from the fits shown in panel (b) (blue circles) and a second dataset (black diamonds) using the same system but a different particle
configuration. Pressures were averaged over 88 (blue) and 48 (black) realizations of the same particle configuration.

is in magnitude of force). Visually, we observe the presence of
correlations between the bright particles in both images.

Next, we quantitatively explore this correlation using data from
the N = 824 particle system. Fig.[Sh shows a scatter plot of (b) vs.
(P) for each particle in the system, with averages taken across
88 realizations (cycles) of the force network for a single particle-
configuration. We quantify this positive correlation by finding a
Pearson correlation coefficient cx = 0.60 (p = 1.3 x 10781). We
repeat the experiment with a different configuration for 48 cy-
cles and again get strong correlation results of cg = 0.47 (p =
6.1 x 107%9), For the N = 29 particle system the correlation yields
cr=0.75 (p =23 x1079). All three examined systems show a
statistically-significant correlation.

To better visualize the underlying trend, we sort all data from
a single experiment into four bins corresponding to four different
pressure ranges. Fig. [5b shows a histogram of the corresponding
measurements of betweenness centrality (b), taken within each
of these four bins. We observe that each of these four bins has a
histogram following an exponential decay of the form

Poce b)/B 3)

where B is the characteristic value for that pressure range. As
shown in Fig. [Bk, this relationship is a monotonically increas-
ing function, with the largest pressures (strongest, most reliable
force chains) being particularly associated with large values of
(b). Fig. |5 contains data from both datasets of the N = 824 par-
ticle system. Data from the N = 29 particle dataset (providing 29
values of (b)) is too small to be suitable for this statistical evalua-
tion.

The relationship between (b) and (P) establishes an underlying
connection between the system’s microscale (particle-scale pres-
sure) and mesoscale (contact network) via the betweenness cen-
trality parameter. This correlation makes physical sense by con-
sidering two very basic assumptions: that particles transmit force
along inter-particle contacts, and that particles which have more
such paths going through them will be more likely to accumulate
forces from other particles. This relationship is only probabilistic,
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Fig. 6 Pearson correlation coefficient cg between the mean pressure
(P) and the betweenness centrality (b), for each particle in the N = 824
system, as a function of the particle separation threshold §. This is the
same dataset as used in Fig. B, but for this analysis (b) is calculated
from the geometric contact network rather than from thresholded forces.

however, since any given configuration of particles is (1) com-
patible with an ensemble of force networks? and (2) contains
forces which are history-dependent. 342745 This, while there is a
clear positive correlation, there is also significant scatter in the
data.

Finally, we perform a stronger test of whether using thresh-
olded force data to determine the contact network predetermined
this successful result. Using purely geometric data (rather than
the photoelasticity of the particles), we measure the separation
0 = |X; —Xj| — (ri +r;) between all pairs of adjacent i, j particles.
We then apply a threshold to § to determine whether two par-
ticles are specified as being in contact. This gives an adjacency
matrix that varies as a function of §, and now caries the mean-
ing of neighbor network rather than a strict contact network. We
create a set of these adjacency matrices with different values of
d, and for each one calculate (b) using Eq. We then repeat
the analysis shown in Fig. for each value of §. As shown in
Fig. [6] our analysis remains valid for any 26 ~ 0.1(rj + r»). This
resolution is consistent with the resolution of the Hough trans-
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form used to identify the particle positions (approximately 1/10
of a particle radius). From this analysis of neighbor networks,
we observe that it is only necessary to identify particles that are
close enough to be likely touching, rather than experimentally
confirming each contact. Because definitive determination of con-
tacts is challenging for many experiments on foams, colloids, and
grains, the successful use of betweenness centrality without ac-
cess to inter-particle forces opens the possibility to perform future
studies on non-photoelastic particles.

4 Discussion and Conclusions

We have designed an experiment that shows how a network mea-
sure known as betweenness centrality can predict the forces on
a particle. Our predictions are tested using ensembles averaged
over many realizations of the force network for a given particle
configuration. The betweenness centrality provides a new way to
relate mesoscopic network features274% to microscopic particle
configurations. Therefore, its statistical moments might provide
a simple tool for predicting such granular properties as the con-
tact force distribution P(f), heat transport coefficients,*” and the
speed of sound.“48:42

We have also showed that we can extract the necessary contact
network information to make these predictions from purely geo-
metric information, without the need for detailed photoelastic or
other contact-force measurements. Whether or not force-network
prediction can be done from only knowing particle positions has
been a recent issue of debate.2%2 Here, we illustrate how to
use experimentally-measured (imperfect) adjacency information
to make probabilistic predictions for the inter-particle forces. We
observe that this can be done without knowing the exact radii
of each particle,! unlike the analytical solution of Gendelman
et al.®® which is intractable under realistic circumstances. This
insensitivity to contact measurements can be seen in Fig.[6] where
even with 20% error in radii measurements there is a strong cor-
relation present.

Importantly, we also observe variations in the force network
among the different samples in the ensemble (see (Fig.[I). There-
fore, only statistical predictions make sense. However, the re-
maining variability is likely related to such phenomena as Bran-
ley’s coherer, in which there is observed to be significant sensitiv-
ity of the electrical and thermal conductivity of metallic granular
materials in response to electromagnetic waves.>3

In this paper, we have isolated a single problem that can be ad-
dressed by network science techniques: the determination of how
the inhomogeneous force response of a granular material under
uniaxial loading can be inferred from its contact or neighbor net-
work. We hope that centrality-based approaches will also be use-
ful for other particulate and amorphous systems where the mate-
rial explores an ensemble of configurations. For instance, where
dramatic or localized changes occur as a result of force chain re-
arrangements in fragile®% polydirectionally stable®2 or sheared
systemsZ82057 Fyrthermore, because centrality measures are
able to identify the nodes/edges through which large forces will
more likely pass, they may also prove useful in forecasting loca-
tions at which localized failures will occur under loading, for in-
stance through cage-breaking=8. A key advantage would be that

This journal is © The Royal Society of Chemistry [year]
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these measures require much less information than dynamical
soft spots®? or Coulomb failure®?, making them experimentally-
tractable. Finally, it would be important to understand which
of these features are reproducible in numerical simulations, for
which frictional contacts are not necessarily the same as in exper-
imental systems.
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