
 

 

 

 

 

 

Accurate Estimation of the Polymer Coverage of Hairy 

Nanoparticles  
 

 

Journal: Soft Matter 

Manuscript ID SM-ART-06-2018-001311.R1 

Article Type: Paper 

Date Submitted by the Author: 20-Aug-2018 

Complete List of Authors: Asai, Makoto; Columbia University in the City of New York, Chemical 
Engineering 
Zhao, Dan; Columbia University, Chemical Engineering 
Kumar, Sanat; Columbia University,  

  

 

 

Soft Matter



 1

Accurate Estimation of the Polymer Coverage of  1 

Hairy Nanoparticles 2 

Makoto Asai, Dan Zhao, Sanat K. Kumar
* 

3 

Department of Chemical Engineering, Columbia University, New York, 10027, USA. 4 

*Address correspondence to: sk2794@columbia.edu 5 

 6 

ABSTRACT 7 

Understanding and predicting the mechanisms underpinning the self-assembly of polymer-grafted 8 

nanoparticles (PGNPs) are important for controlling the engineering applications of these novel materials. 9 

The self-assembly of these materials is driven by their surfactancy, i.e., by the fact that the (inorganic) 10 

nanoparticles energetically dislike the (organic) polymer tethers. In previous work we developed a model 11 

in which a grafted polymer chain was treated as a rigid equivalent sphere (ES) which was impenetrable to 12 

the NPs, but completely penetrable to other ESs. This description, along with a geometric analogy with 13 

patchy particles, allowed us to facilely explain the self-assembly of PGNPs. However, since we model an 14 

ES as being completely penetrable to other ESs but impenetrable to the NPs the physical correspondence 15 

between a “real” grafted polymer and an ES is not clear. The application of the ES model to experiments 16 

and to computer simulations has therefore seen limited success, and only qualitative agreement has been 17 

obtained. In this paper, we develop a more realistic description, termed the modified ES (mES) model, 18 

based on the work of Daoud and Cotton on curved polymer brushes, which takes the impenetrability of 19 

the individual chain monomers into account. While this approach increases the complexity of our 20 

formalism, we find that the resulting mES model quantitatively captures computer simulation results on 21 

the structure of the PGNPs and also quantitatively explains their self-assembly over a broad range of 22 

conditions. 23 

 24 
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 25 

Introduction 26 

A central challenge in improving the properties of polymer nanocomposites is to control the spatial 27 

dispersion of the nanoparticles (NPs).1-4  One particularly facile approach is to graft the NPs with polymer 28 

chains.5-8 It has been found that these grafted NPs behave akin to surfactants due to the dislike between 29 

the typically hydrophilic cores and the hydrophobic corona. This surfactant-like nature causes these 30 

tethered NPs to assemble into a large range of superstructures especially in the low grafting density, �, 31 

limit (typically for � ≲ 0.1 chains/nm2, see reference 9) , i.e., where the cores are not completely shielded 32 

from other cores by the corona.9-23  33 

To understand this behavior, we have previously developed the equivalent sphere (ES) model.24 A 34 

spherical NP of radius ��  randomly grafted with �  chains was considered, where each chain was 35 

comprised of 	 catenated monomers. As a significant simplification we modeled each grafted polymer as 36 

a rigid ES of radius �. We further assumed that the ES served to exclude a “patch” on the grafting NP’s 37 

surface where the core of another bare NP cannot contact. It is noted that the second NP has grafted 38 

polymers on its surface as well but for simplicity we only calculated the excluded area on the NP to 39 

another "bare" NP. This is reasonable in the low grafting density regime studied in the current paper, 40 

where the self-assembly of PGNPs most likely occurs. However, there was no excluded volume 41 

interactions between two (or more) ESs, either on a single NP or across multiple NPs. This last 42 

assumption is based on the fact that, while excluded volume interactions apply strictly at the level of two 43 

monomers, the centers of mass of two chains can overlap with only a small free energy cost.25 The 44 

fraction (�∗) of the NP surface that is excluded to a second bare NP due to an ES (or a single grafted 45 

chain) can then be derived: 46 

 �∗ = �2(1 + �) (1) 
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Here, � ≡ � ��⁄ . When � → ∞, �∗ → 1 2⁄ , which means that one ES can cover half of the surface of a 47 

NP in this limit. For � grafts the fraction (�∗) of the NP surface that is excluded to a second bare NP can 48 

then be described by analogy to random sequential adsorption: 49 

 
��∗���∗ = 1 − �∗						(0 ≤ �∗ ≤ 1) (2) 

That is, we write that �∗ can only increase if the newly grafted ES shields unexcluded parts of the 50 

surface. This yields �∗ = 1 − ����∗, which we have found to be in good agreement with our simulation 51 

results on NPs literally grafted with ES. Thus, we have a means of describing the excluded surface area 52 

afforded by the grafted polymers on the surface of the NP with variations in � and �.   53 

We then drew a geometric analogy between NPs grafted with ES and patchy particles. Regions on the 54 

NP surface from which a second NP is excluded (due to the presence of the ES) are defined as repulsive 55 

patches while the remaining NP surface is attractive to a second NP. In this representation, thus, the 56 

polymer chains (or the ESs) are abstracted away and only manifest themselves as an effective (angle and 57 

distance dependent) inter NP potential. With this mapping we can predict the self-assembled structures 58 

formed by a particular NP with knowledge of the �∗ and the geometric structure of the PGNPs. Our idea, 59 

which has been previously discussed in reference 24, is sketched in Figure 1. When the polymer surface 60 

coverage �∗ is large, we get well dispersed NPs. As the ES coverage decreases we first see the formation 61 

of small clumps comprised of 2-4 NPs. Further decreases in �∗ yield linear strings of NPs and finally two 62 

and three-dimensional aggregates. Since this argument is purely geometrical, we can provide precise 63 

values of �∗ where these “structural” transitions occur. We do not have the ability to decide if these are 64 

thermodynamic transitions or not.  65 

In reference 24 we postulated that � = ��  where �  is the radius of gyration of the grafted polymer 66 

chain in a good solvent and � is an empirical fitting parameter. Figure 2 (a) uses the naive ansatz that 67 

� = 1 and we see that the ES model then only provides qualitative agreement with experimental data and 68 

simulation results from the literature.24 For example, it is clear that regions where strings are formed in 69 
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the Monte Carlo simulations are predicted to form clumps etc. Clearly, there is room for improvement in 70 

terms of this model prediction. 71 

Instead, we have empirically found that we need to use �	 ≈ 0.46 to get better agreement with 72 

experiments and simulations.24, 26 However, it is unclear why we have to use an �	that is less than �  and 73 

whether the factor �	 = 0.46 is universal. When this information is absent, the conventional ES model is 74 

limited in terms of structure prediction. Additionally, the model has a major simplification in that the 75 

excluded volume interactions between two (or more) grafted chains are ignored since the ES are assumed 76 

to be fully penetrable to each other but completely impenetrable to the core of another NP. We conjecture 77 

that dispensing with these assumptions, by modeling the grafts more realistically, should allow for a more 78 

reliable representation for these systems.27 So, in this paper, we introduce this improvement to the 79 

conventional ES model. In particular, we use the Daoud-Cotton model for polymer brushes to more 80 

accurately model the polymer chains in this situation. By validating against computer simulations, we 81 

show that this model provides an improved description of the structure of these NPs and hence their self-82 

assembly behavior. Thus, we propose that this modified ES (mES) model can be used to reliably 83 

understand the self-assembly of this class of materials. 84 

 85 

Results and Discussion 86 

mES Model 87 

The basic strategy for constructing the mES model is to more accurately account for the structural 88 

properties of real polymer brush chains than in the ES model, i.e., to account for the excluded volume 89 

interactions at the level of two monomers. According to the Daoud–Cotton picture of a star polymer,28 90 

which can be extended to describe polymer statistics on curved surfaces,29 the grafting process only 91 

weakly changes the effective chain size, �, i.e., by a factor ��$ %⁄ , where �	is the number of grafts. Since 92 

� should be a function of 	 (the degree of polymerization for the grafted chain) and �, we assume that an 93 
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appropriate size of the brush chain follows �(	, �) = �(	) × �(�), that is we assume that the 	 and � 94 

dependences are separable. 95 

Before considering the � dependency, first, we investigate the statistics of a single grafted polymer 96 

( � = 1 ).  Let us consider one free (ungrafted) polymer chain with radius of gyration �  and 97 

polymerization degree 	.  The monomer density at a distance ( from the polymer’s center of mass is 30 98 

 )(() = 	*4+� , (,�- (3) 

Here *  is the fractal dimension of the chain, and we use the mass balance condition 99 

. �/012 . sin6 �612 . (0)(()�(782 = 	. If the chain were fully collapsed then * = 3 and Eq. (3) suggests 100 

that the monomer density profile is constant, as expected. For a Gaussian chain * = 2  and so the 101 

monomer density decreases with increasing (. We assume that a single grafted chain on the NP (NP1) 102 

surface has the same density distribution about the center of mass as the ungrafted analog and calculate 103 

the number Ψ;<, ��, � = of monomer units of the polymer overlapping with a second bare NP (NP2) of 104 

radius �� which is placed at a distance < from the center of mass of the polymer chain (see Appendix 105 

Figure A1). That is, we take a NP1 with a grafted chain and ask as to how much grafted chain-NP2 106 

overlap this system has when a NP2 is brought to a distance < from the grafted polymer chain’s center of 107 

mass. To calculate this quantity, the following volume integration should be performed on the region 108 

where the NP2 and the polymer grafted on the NP1 overlap.  109 

 Ψ;<, ��, � = = >)(()�? (4) 

While the calculation of this integration is straightforward, it is mathematically tedious and deferred to 110 

Appendix A. However, illustrative numerical examples of the behavior of this function are shown in 111 

Figure 3. We assumed 2� = 	$ ,⁄  and * = 5 3⁄ , which describes the radius of gyration of coarse-112 

grained Kremer-Grest chains in good solvent.31 Some general comments are in order. In general, the 113 

overlap function Ψ;<, ��, � = increases with decreasing <, till it reaches a plateau value at small <. Note 114 

that Ψ;�� + � , ��, � = = 0 in the situation where the distance between the NP2 and the center of mass 115 
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of the grafted polymer chain is < = �� + �  or for any larger separations since there is no overlap. In 116 

addition, when � ≤ ��, the chain is completely inside NP2 when < = 0 and thus Ψ;0, ��, � = = 	.  On 117 

the other hand, when � > �� , the maximum value in 	Ψ  is less than 	 , because the chain is not 118 

completely inside the NP2 even when their centers of mass coincide: thus, the NP2 can only overlap with 119 

a part of the polymer chain.   120 

While the discussion above focuses on the overlap between a polymer chain grafted onto a NP1 and 121 

the core of a NP2, the more important quantity is what fraction of the NP1 surface is inaccessible to NP2 122 

due to the presence of the grafted chain. To make this calculation we place NP2 in contact with the 123 

surface of NP1 and calculate the number Ψ of monomer units of the polymer overlapping with NP2 (see 124 

Figure 4(a)). The distance between the center of mass of the polymer chain and NP2 is <. When Ψ ≥ 1 125 

then this point corresponds to an overlap between NP2 and the graft – this point is thus excluded to NP2. 126 

We now place the NP1 on several points on the surface: The ratio of the number of points with Ψ ≥ 1 to 127 

the total number sampled should be the exclusion area �∗ for a polymer chain for NP2. Therefore, we 128 

define �∗ as follows:  129 

 �∗ = 14+> �/01
2 > ΨC ∙ sin 6 �61

2  (5) 

 ΨC ≡ E		1, F ≥ 10, F < 1 (6) 

Then, we can determine � using Eq. (1). The geometric concept is shown in Figure 4(b). We evaluated Eq. 130 

(5) numerically since it is difficult to analytically calculate it (Figure 5(a)-(c)). As a reference, we also 131 

show �∗ calculated by the ES model. In this case, we used Eq. (1) with � = 1;� = � =. This figure 132 

critically illustrates the qualitative errors in our previous ES model. In the ES model, �∗ monotonically 133 

increases with increasing 	 and eventually reaches the theoretical maximum value (= 1 2⁄ ). This result 134 

simply follows from the fact that there is strict impenetrability between an ES and the core of a NP2. On 135 

the other hand, in the mES model, �∗  starts to decrease when 	  becomes sufficiently large. This is 136 

because, when �� ≪ � , the NP2 cannot overlap with the whole polymer chain. To illustrate this point, 137 
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we consider the case when NP1, NP2 and the polymer are collinear, but with NP1 and NP2 being in 138 

contact. Under these conditions, < = � − �� ≫ 0. Therefore, the center of NP2 will only experience the 139 

very low-density perimeter of the polymer coil. This means that, in the long chain limit, the NP2 and the 140 

polymer chain interact minimally leading to small �∗ values.  141 

Moreover, we estimated � corresponding to these �∗ using Eq. (1) (Figure 5 (d)). In the conventional 142 

ES model, since � was assumed to be related linearly to � , � depends on only 	 (� ∝ � ∝ 	$ ,⁄ ). 143 

However, in the mES model we find that � depends, not only on 	, but also on ��. Furthermore, in the 144 

large limit of large 	, � approaches zero, which corresponds to �∗ approaching zero. From the above 145 

discussion, it is clear that the initial assumption built into the ES model that � is simply proportional to 146 

� , � = �� , is incorrect.  147 

To prove the validity of the mES model, we performed coarse-grained Molecular Dynamics 148 

simulations using the Kremer-Grest model.31 We directly measured the excluded area provided by one 149 

grafted chain, �∗, to the core of a NP2 in the range of 5 ≤ 	 ≤ 10K for up to 107-108 MD time steps, long 150 

enough to achieve equilibrium in all cases. We set �� = 7.0. Simulation details are described in the 151 

Methods Section. First, we calculate the 	-dependence of the �  of one grafted polymer chain. We 152 

obtained � = 0.33	2.M2(	 ≤ 50) and � = 0.49	2.O2(	 > 50). Next, we directly measured �∗ in the 153 

simulations by tessellating the surface of the NP1 using 4112 points placed at the vertices of a spherical 154 

crystal following the symmetry of a (20, 20) icosadeltahedron. We fixed the center of NP1 and performed 155 

MD simulations of a single tethered polymer.  For each MD snapshot, we assign PQ = 1 if there are 156 

polymer beads which overlap with a NP2 located on the Rth point (R = 1, 2,… , 4112) of the surface of NP1, 157 

otherwise PQ = 0.  By taking the time-average 〈PQ〉V of PQ, we calculate the excluded area ratio as �∗ =158 

∑ 〈PQ〉VK$$0Q 4112⁄ .   159 

Figure 6(a) shows an example of the surface distribution of 〈PQ〉V. We see that there is a spherical cap-160 

shaped excluded area formed by a grafted chain on the surface of NP1, indicating that the geometric 161 

concept expressed by Eq. (1), commonly used in the ES and mES models, is reasonable. However, 162 
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because a polymer is treated as a rigid sphere in the original ES model, 〈PQ〉V should be 1 within the 163 

spherical cap-shaped excluded area. In fact, 〈PQ〉V varies gradually as shown in Figure 6(a). Figure 6(b) 164 

shows the 	 -dependence of �∗ . In the ES model, we calculated �∗  using Eq. (1) assuming � =165 

1;� = � = . On the other hand, in the mES model, we calculated �∗  using Eq. (5) without any 166 

assumptions. As a result, the ES model overestimates �∗ compared to those measured in simulations, 167 

especially as 	 becomes larger. On the other hand, we found that �∗calculated in the mES model was in 168 

good agreement with those measured in simulations over the whole range of 	 , including the non-169 

monotonic dependence of �∗ on 	 observed in simulations. Furthermore, we converted �∗ to an effective 170 

�, the size of an ES, using Eq. (1) as shown in Figure 6(c). The size of an ES thus does not monotonically 171 

depend on the �  of the chain. We thus have a full understanding of the surface coverage afforded by a 172 

single grafted chain. 173 

Next, we account for the effect of multiple grafted chains by assuming the validity of the Daoud-174 

Cotton ansatz.28 Note that the separation of the 		and �	dependence inherent in our approach is only 175 

reasonable when the grafting density is relatively low, i.e., when the chains are not significantly distorted. 176 

We thus estimate the �-dependence of �(�) as follows.  177 

 � = �(	, ��) ∙ ��$ %⁄  (7) 

To confirm the validity of Eq. (7), we calculated the �-dependence of �∗ of a polymer chain in the range 178 

1 ≤ � ≤ 100 and 	 = 5, 100, 200 using MD simulations. The images in Figure 7(a) show examples of 179 

the surface distribution of 〈PQ〉V. We found that as � becomes larger, the distribution of 〈PQ〉V  becomes 180 

narrower. (Note that this is a plot of the probability density associated with one representative chain out of 181 

the � that are grafted to the NP1 surface: as � increases the distribution of a single chain narrows in space 182 

as may be expected.) We converted these �∗  to �  using Eq. (1). Figures 7(a) and 7(b) show the �-183 

dependence of �∗ and � as determined from the simulations, respectively.  We confirm the scaling law: 184 

� ∝ ��$ %⁄  in the large 		(≥ 200) / relatively large �(> 20) limit.  On the other hand, the scaling law 185 

does not work for smaller 	 and �. According to Daoud-Cotton theory, polymers are not influenced by 186 
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the curvature of the NP surface when  the end-to-end distance of the chains �X ≪ ��. Indeed, we find that 187 

�X ≈ 4.2��  for 	 = 200 , �X ≈ 2.8��  for 	 = 100 , and �X ≈ 1.8��  for 	 = 50 , respectively, 188 

suggesting that we are approaching the limits of this theory for small 	. 189 

We directly measured the total excluded area ratio �∗ in the simulations with � grafted chains – this 190 

corresponds to the fraction of the NP1 surface that is inaccessible to the NP2 due to the presence of the 191 

grafted chains. In addition, we compared �∗ with those predicted by the ES and mES models.  In the ES 192 

and mES models, we first calculated �  using the hypothetical relationship, � = ��  and Eq. (7), 193 

respectively. Note that since Eq. (7) does not work in the region of small � and small 	 as discussed in 194 

Figure 7, we used the fitted functions obtained from Figure 7(b) as follows: For 	 = 50 , � =195 

3.45��2.2KO  (� < 30) . For 	 = 100 , � = 4.39��2.$0Z  (� < 20) . By substituting �  into Eq. (1), we 196 

calculated  �∗. Finally, using Eq. (2), we calculated �∗ as shown in Figure 8(a)-(c). The mES model 197 

shows good agreement with simulation values of �∗, and the difference between the ES and mES models 198 

becomes larger with increasing 	. This is due to the fact that the difference of � between the ES and mES 199 

models is small until 	 ≈ 50 (see Figure 6(c)). 200 

 201 

Self-Assembly 202 

Finally, we examine whether the mES model can quantitatively explain experimental results and 203 

simulation findings for the self-assembly of this class of PGNPs. To this end, we use the information on 204 

experimental conditions (	, �, ��) and calculate the effective � for each condition using the mES model 205 

and Eq. (1). Then, using the geometric analogy with patchy particles,24 discussed above in the context of 206 

Figure 1, we predicted the self-assembled structures formed and compared them with the morphologies 207 

reported. We refer to the following different systems:  I) polystyrene-grafted silica NPs in a polystyrene 208 

matrix (PS-g-silica NPs)10, 32, II) mixed bimodal polystyrene-poly(2-vinylpyridine) brush coated silica 209 

NPs in a polystyrene matrix (PS-P2VP-g-silica NPs)32, III) polystyrene-b-poly(2-vinylpyridine) block 210 

copolymer physically absorbed silica NPs in a polystyrene matrix (PS-b-P2VP-a-silica NPs)33, IV) 211 
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Coarse-grained bead-spring polymer-grafted onto NPs studied by Monte Carlo simulation (CG 212 

simulation)10. In the case of experiments using polystyrene, we estimated �  as � ≈ [(	 6⁄ )$ 0⁄ , which 213 

is the unperturbed radius of gyration in the melt and [ is the segment length of a polystyrene chain, which 214 

was estimated to be 5 Å.34  In case III), we assumed that since P2VP adsorbs completely on the surface of 215 

NP,  �  of BCP is calculated by only taking the PS block into account. We show all necessary parameters 216 

in Tables 1(a) and 1(b). With given �� , 	  and �  we estimate �  by Eq. (7), and then calculate �  as 217 

� ≡ � ��⁄ .  Figure 2b shows each sample plotted on the � − � plane of the theoretical phase diagram of 218 

the self-assembly of PGNPs. We find that self-assembled structures found in simulations of coarse 219 

grained models and also three different classes of experiments are in good agreement with the mES - 220 

based theoretical predictions over a broad range of � and �	values. We therefore believe that the mES 221 

model allows us to capture the self-assembly behavior of these PGNPs without the use of any adjustable 222 

parameters. 223 

 224 

Conclusions 225 

We propose a new calculation method for the surface coverage afforded by polymer chains grafted on 226 

to spherical NP surfaces. This calculation method can accurately predict the area of the NP surface that is 227 

excluded to another NP by the presence of the grafted chain. A simple extension of this model by 228 

adopting ideas from the Daoud-Cotton approach allows us to model NPs with multiple grafts. All of these 229 

results are in quantitative agreement with coarse grained simulations. Further, we draw an analogy of 230 

these grafted particles to patchy NPs, and from there predict the self-assembled structures that are formed. 231 

These results, which therefore have no adjustable parameters, are in excellent agreement with 232 

appropriately curated previous experiments and simulations. We therefore propose that the mES model 233 

can apparently be used to quantitatively understand the structure and the anisotropic self-assembly of this 234 

class of polymer grafted nanoparticles. Importantly, although in the current paper we only focus on the 235 
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case of good solvent conditions, our model can be naturally extended to other solvent qualities (e.g. theta 236 

solvent or poor solvent) by reformulating the Daoud-Cotton model and the associated scaling laws. 237 

 238 

Methods 239 

Simulation Model 240 

Grafted polymers are represented using the coarse-grained bead-spring model of Kremer and Grest.31  241 

Each chain contains 	 beads of mass \ = 1.  All beads interact via the Lennard-Jones (LJ) potential. 242 

 ]^(() = _4` ab�(c
$0 − b�(c

Od ,  ( ≤ (e
				0,   										   		( > (e (9) 

where ( is the distance between two beads, `  is the Lennard-Jones unit of energy, and �  is the bead 243 

diameter. We set (e = 2$ O⁄ �.  Beads along the chain are connected by an additional unbreakable finitely 244 

extensible nonlinear elastic (FENE) potential ]fghg(() = −1 2⁄ ijklm0 lno1 − (( jklm⁄ )0p , with 245 

jklm = 1.5� and i = 30` �0⁄ .  We use the expanded LJ potential for pair interactions between colloid-246 

colloid and colloid-polymer beads as follows;  247 

 ](() = _4` ab �( − Δc
$0 − b �( − Δc

Od ,  ( ≤ (e + Δ
				0,   										 				    			( > (e + Δ (10) 

Here, we choose Δ = 4�  and Δ = 2�  for colloid-colloid and colloid-polymer bead interactions, 248 

respectively.  One end bead of the grafted polymer is fixed on the surface of the colloid (grafting point).  249 

�  grafting points are randomly located on the surface. 	hr(= 4-) colloids have different patterns of 250 

grafting points arrangements.  251 

 252 

Molecular Dynamics Simulation 253 

All simulations are carried out using the LAMMPS parallel MD package.  NVT MD simulations are 254 

performed in an orthogonal cubic simulation box.  Temperature s is set to 1.0 ` it⁄ and is maintained by a 255 

Langevin thermostat with a damping constant u = 0.01��$(\ `⁄ )�$ 0⁄ . it is Boltzmann’s constant.  The 256 
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NPs’ positions are fixed and only the dynamics of grafted polymers is enumerated.  The simulations are 257 

run for 10O − 10Z time steps of length �v = 0.005w\�0 `⁄  to equilibrate the system and then another 258 

10M − 10Z time steps for each observation. 259 

 260 

Appendix 261 

We will explain the derivation of Ψ, which depends on � , �� and <. Figure A1(a)-(e) show 5 different 262 

geometric situations to consider. Here a polymer chain grafted on the surface of a NP1 is drawn as a 263 

spherical sphere with radius of �  (hereinafter called “a polymer coil”) and it has fractal structure inside 264 

the sphere. The integration range is the overlapping range of two spheres (the polymer coil and the NP2), 265 

and the coordinates within the integration range are denoted by ((, 6, /). 6k , (klm  and (kx�  are the 266 

maximum angle and the maximum and the minimum length in the integration range of 6  and ( , 267 

respectively. 268 

 269 

(I) yz ≤ y{ 270 

In this case, we have to consider the following three situations for the range of <: 271 

| ≤ } ≤ y{−yz : the polymer coil is completely inside the NP2. As an example, Figure A1(a) shows a 272 

case where < = ��−� . In this case, Eq. (4) becomes: 273 

 ~;},y{, yz= = ��
��yz�> ����

| > ��{����
| > ������yz

|  (A1) 

As a result, we derive: 274 

 ~ = � (A2) 

 275 

y{−yz ≤ } ≤ y{: the polymer coil and the NP2 are partially overlapping and the center of the polymer 276 

coil (Op) is inside the NP2 (On) and vice versa.  As an example, Figure A1 (b) shows a case where < = ��. 277 

In this case, Eq. (4) becomes: 278 
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~;},y{, yz= = ��
��yz� �> ����

| > ��{������
| > ������yz

|

+> ����
| > ��{����

���
> ����������
| � 

(A3) 

Here, the integration range should be divided into two, corresponding to the first and second term of the 279 

right side, respectively. The first and second integration range are represented by filled and dotted areas, 280 

respectively in figure A1 (b). Here, 6k$ is the maximum angle of integration range of 6 in the first term 281 

of right side. So cos6k$ = (<0 + � 0 − ��0) 2� <�  and (klm = <cosθ−w(<cosθ)0 − (<0 − ��0).  As a 282 

result, we obtain: 283 

 

~ = �� �� − ;}� + yz� −y{�=�yz} �

+ �
�yz�}(�� − �) �yz����(� + �);y{� − }�= + (� − �)yz��

− �(y{ − })�(�y{ + })� 

 

 

(A4) 

 

 284 

y{ ≤ } ≤ y{+yz: the polymer coil and the NP2 are partially overlapping and the center of the polymer 285 

coil (Op) is outside the NP2 and vice versa (Figure A1(c)). In this case, Eq. (4) becomes: 286 

 Ψ;<, ��, � = = 	*4+� ,> �/01
2 > sin 6 �6��

2 > (,�$�(78
����

 (A5) 

Here cos 6k = (<0 + � 0 − ��0) 2� <�  and (kx� = <cosθ−w(<cosθ)0 − (<0 − ��0).  As a result, we can 287 

derive: 288 

Ψ = 	2 �1 − ;<0 + � 0 − ��0=*0
2� <(*0 − 1) + �< − ��� �,   *�� + <(*0 − 1)<¡ − ;<0 − � 0 − ��0=*2� <(*0 − 1) ¢ (A6) 

 289 

(II) y{ ≤ yz ≤ �y{  290 
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| ≤ } ≤ yz−y{: the NP2 is completely inside the polymer coil and the center of the polymer coil (Op) is 291 

inside the NP2. As an example, Figure A1 (d) shows a case where < = �� − � . In this case, Eq. (4) can 292 

be described as: 293 

 Ψ;<, ��, � = = 	*4+� ,> �/01
2 > sin 6 �61

2 > (,�$�(��£¤
2  (A7) 

Here, (klm = <cosθ+w(<cosθ)0 − (<0 − ��0).  As a result, we derived: 294 

 ~ = �
�yz�}(�� − �) ¥(y{ + })�(�y{ − }) − (y{ − })�(�y{ + })¦ (A8) 

 295 

yz−y{ ≤ } ≤ y{: the polymer coil and the NP2 are partially overlapping and the center of the polymer 296 

coil (Op) is inside the NP2 (On) and vice versa. This case is geometrically same with a case of Figure A1 297 

(b), but just different of relative size of �  and ��. The obtained result is equal to Eq. (A4). 298 

 299 

y{ ≤ } ≤ y{+yz: the polymer coil and the NP2 are partially overlapping and the center of the polymer 300 

coil (Op) is outside the NP2 and vice versa (Figure A1(c)). This case is geometrically same with a case of 301 

Figure A1 (c), but just relative size of �  and ��. The obtained result is equal to Eq. (A6). 302 

 303 

(III) �y{ ≤ yz 304 

| ≤ } ≤ y{: the NP2 is completely inside the polymer coil and the center of the polymer coil (Op) is 305 

inside the NP2. This case is geometrically same with a case of Figure A1 (d), just different of relative size 306 

of �  and ��. The obtained result is equal to Eq. (A8). 307 

 308 

y{ ≤ } ≤ yz−y{: the NP2 is completely inside the polymer coil and the center of the polymer coil (Op) 309 

is outside the NP2. As an example, Figure A1 (e) shows a case where < = � − ��. In this case, Eq. (4) 310 

becomes: 311 
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 Ψ;<, ��, � = = 	*4+� ,> �/01
2 > sin6 �6��

2 > (,�$�(��£¤
����

 (A9) 

Here sin6k = �� <⁄ , (klm = <cosθ+w(<cosθ)0 − (<0 − ��0) , and 312 

(kx� = <cosθ−w(<cosθ)0 − (<0 − ��0).  As a result, we can derive: 313 

~ = �
�yz�}(�� − �) ¥(} − y{)�(�y{ + }) + (} + y{)�(�y{ − })¦ (A10) 

 314 

yz−y{ ≤ } ≤ y{+yz: the polymer coil and the NP2 are partially overlapping and the center of the 315 

polymer coil (Op) is outside the NP2 and vice versa. This case is geometrically same with a case of Figure 316 

A1 (c), just different of relative size of �  and ��. The obtained result is equal to Eq. (A6).  317 
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 382 

 383 

Figures 384 

 385 

 386 

Figure 1: Different aggregate morphologies with increasing polymer surface coverage, following Asai et 387 

al. [Ref. 24] (Aggregate) three-dimensional and (2D-Sheet) two-dimensional aggregates (coordination 388 

number ≥ 4); (String) one dimensional linear aggregate (coordination number = 2 ~ 3); (Clump) small 389 

aggregates including dimers, trimers and tetramers (coordination number = 1 ~ 3); (Dispersed) isolated 390 

particles with full surface coverage (coordination number = 0). The formula for �∗ for each morphology 391 

is presented in Ref. 24. 392 

 393 

DispersedClumpString2D-SheetAggregate

0                                          Surface Coverage S*                                          1
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 394 

Figure 2: Phase diagram of self-assembled structures of PGNPs.  (a) plots based on ES model.  (b) 395 

plots based on mES model. � is the number of chains grafted to a NP, and �	is	defined	in	the	text.	396 

 397 
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Figure 3: Examples of ~. . . . �� = 7.0. � = 3.5, 7.8 and 15.0 for 	 = 30, 100 and 300.     399 

 400 

 401 

Figure 4: Determination of the effective sphere diameter in the mES models. (a) Searching around a 402 

grafted polymer to determine the distribution of Ψ. In the mES model we define the area where Ψ ≥ 1 as 403 

the excluded area, and the ratio of the total excluded area to the NP surface area is �∗. (b) Determining 404 

the ES corresponding to �∗. Grey area indicates the excluded area, 4+��0�∗ where NP2 cannot contact 405 

NP1 in. The dashed line represents the corresponding ES whose size is determined using Eq. (1): 406 

� = 2�∗�� (1 − 2�∗)⁄ . Θ is the contact angle between NP1, NP2 and ES, and it follows from cosΘ =407 

��;�� + � =�$. 408 

 409 
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 410 

Figure 5: Comparison of mES model with ES model.  Comparison of �∗: (a) �� = 3.0. (b) �� = 7.0. 411 

(c) �� = 14.0. (d) Comparison of � derived from  �∗ and Eq. (1). 412 

 413 
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 414 

Figure 6:  Excluded area of single grafted chain on NP1 surface to a second NP (NP2). (a) An 415 

example of the surface distribution of 〈PQ〉V. We set the following parameters: 	�� = 7.0, 	 = 200, � = 1, 416 

� = 11.3. We measured �∗ = 0.23.  Color indicates value of 〈PQ〉V.  (b) 	-dependence of �∗. (c) 	-417 

dependence of � derived using the �∗ and Eq. (1). Error bars show standard error. 418 
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c420 

 421 

Figure 7: Effect of adding grafted polymer chains on the NP1 surface on	®∗	and y. (a) �-dependence 422 

of	�∗. Note that �∗ represents the fraction of the NP1 surface that is excluded to NP2 due to presence of a 423 

single grafted chain.  Pictures shows the surface distribution of 〈PQ〉V  for 	 = 200 and �� = 7.0. The 424 

color scheme is the same as in Figure 6(a) (b) �-dependence of	�. The dashed lines represent Eq. (7). 425 
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 427 

Figure 8:  ¯-dependence of °∗. �� = 7.0. (a) 	 = 50.  (b) 	 = 100.  (c) 	 = 200.  428 

 429 

Table 1(a) Experimental conditions and parameters.  �, �∗ and �∗are calculated by the mES model. 430 

*These parameters were obtained from references. 431 
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 432 

Table 1(b) Simulation conditions and parameters.  �, �∗ and �∗are calculated by the mES model. 433 

*These parameters were obtained from references. 434 
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 435 

 436 
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 437 

Figure A1:  Schematic of geometric relation between the grafted polymer coil and the NP2. The 438 

dashed and solid lines represent a grafted polymer coil (radius of � ) and a NP2 (radius of ��). NP1 439 

which the polymer coil is grafted on is not shown. 440 
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