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Anisotropic Contraction of Fiber-Reinforced
Hydrogels†

Shuangping Liu,a Samuel I. Stupp,abc and Monica Olvera de la Cruz∗abd

Hydrogels reinforced by fibers can undergo remarkable anisotropic contraction triggered by ex-
ternal stimuli, which has a broad appeal for various applications. However, little is known about
how to optimize the contraction anisotropy by tuning the microstructures of fiber-reinforced hydro-
gels. Here, we investigate the underlying mechanisms controlling the anisotropic contraction of
fiber-reinforced hydrogels. Using a simplified model incorporating the directional constraint of the
fibers, we show that the contraction anisotropy can be substantially enhanced if the hydrogel is
prestretched along the fiber direction. We further explicitly model fibers as periodically distributed
cylindrical rods in the finite element simulations, and find that the contraction anisotropy can be
maximized by varying the transverse fiber-fiber distance; this maximum anisotropy can be im-
proved by reducing the longitudinal fiber-fiber distance and increasing the fiber length. Our study
provides insights into designing novel fiber-reinforced hydrogels, suggesting possible applications
in soft robotics, tissue engineering and beyond.

1 Introduction
Hydrogels, which can undergo dramatic volumetric changes in
response to diverse stimuli such as temperature, pH, light and
electric field1,2, have emerged in a broad range of applications
in tissue engineering3, soft robotics4,5, drug delivery6, intelli-
gent biosensors7,8, and 3D printing9. In particular, great atten-
tion is being focused on developing hydrogels with anisotropic
mechanical properties that can be utilized to mimic a vari-
ety of biological tissues with anisotropic morphologies, includ-
ing cornea10, skins11, striated muscles12,13 and articular carti-
lages14,15. Anisotropic hydrogels are also exploited for the fabri-
cation of soft robotic actuators to trigger unidirectional motion16;
in 3D printing, the anisotropic swelling of the hydrogel-based ink
is critical to transform 2D patterns into the desired 3D shapes9.
Thus designing hydrogels with ordered microstructures that im-
part controllable anisotropic mechanical properties is of both the-
oretical and experimental interest.

Previous research has reported diverse microstructures that en-

a Department of Materials Science and Engineering, Northwestern University, Evanston,
Illinois 60208, USA; E-mail: m-olvera@northwestern.edu
b Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
c Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago,
Illinois 60611, USA
d Department of Physics and Astronomy, Northwestern University, Evanston, Illinois
60208, USA
† Electronic Supplementary Information (ESI) available: [details of any
supplementary information available should be included here]. See DOI:
10.1039/cXsm00000x/

dow the isotropic hydrogels with anisotropic mechanical behav-
iors. For example, carbon nanotubes have been aligned in an oth-
erwise isotropic hydrogel matrix using dielectrophoresis to gen-
erate both mechanical and electrical anisotropy17. Charged ti-
tania nanosheets can be cofacially oriented as layered structures
which resist the hydrogels to shrink along the orthogonal direc-
tion to the sheets16. More types of microstructural morpholo-
gies including lamellar18, porous19 and crystalline structures20

are also investigated in previous studies. In particular, hydro-
gels with fibrous microstructures have been extensively explored
and commonly adopted in biomimetics to simulate many soft tis-
sues11,13,14,21,22. Remarkable anisotropic swelling and contrac-
tion of fiber-reinforced hydrogels have been reported in recent
studies. Chin, et. al. have fabricated the thermo-responsive
tubular polymer hydrogel from a scaffold consisting of aligned
self-assembled peptide amphiphile (PA) nanofibers; with speci-
fied temperature changes, the contraction strain perpendicular
to the PA nanofibers is observed to be ∼ 100% higher than that
along the PA nanofibers23. Similar anisotropy is also found in
the swelling of the 3D printing ink based on hydrogels filled with
aligned cellulose fibrils9.

The anisotropic swelling and contraction of fiber-reinforced hy-
drogels stem from the directional constraints enforced by the ori-
ented fibers. In the homogenization-based constitutive models
for anisotropic hydrogels24, these constraints are incorporated
as an energetic contribution with extra parameters defined to
characterize the strength of the fiber reinforcement. Previous
studies following this approach have investigated the anisotropic
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swelling of fiber-reinforced hydrogels in various geometries such
as thin sheets25 and cylindrical tubes26. However, fiber proper-
ties, such as their dimensions and distributions, are not available
in these phenomenological models; such morphological informa-
tion is necessary for experiments to fabricate hydrogels with de-
sired anisotropy. In fact, it still remains poorly understood how
to maximize the swelling and contraction anisotropy of hydrogels
by tuning the underlying microstructures.

In this contribution, we aim to achieve an in-depth understand-
ing of the mechanisms maximizing the anisotropic contraction
of fiber-reinforced hydrogels. Based on the Flory-Rehner the-
ory, we firstly inspect the contraction anisotropy of a uniaxially
constrained hydrogel, a simplified model which retains the direc-
tional constraint of the fibers. An upper bound of the contraction
anisotropy determined by the prescribed isotropic contraction ra-
tio is discovered when the hydrogel is initially strain-free. We fur-
ther investigate potential improvements of this upper bound by
applying prestrains to the hydrogel. Our study reveals a remark-
able enhancement of the contraction anisotropy when the uniax-
ially constrained hydrogel is prestretched along the constrained
direction.

To examine the anisotropic contraction under the impact of the
finite dimensions of fibers, we perform finite element simulations
with periodic boundary conditions incorporated. By releasing
the longitudinal restrictions of the fibers, maximum contraction
anisotropies are identified when varying the transverse fiber-fiber
distance. More approaches to improve the maximum anisotropy
are noticed and explained, such as reducing the longitudinal
fiber-fiber distance and increasing the fiber length. Our study pro-
vides new perspectives to control the anisotropic contraction of
fiber-reinforced hydrogels, thus suggesting potential utilizations
in designing novel anisotropic hydrogels for soft robotics, tissue
engineering and biomedical devices.

2 Flory-Rehner theory

We describe the deformation and contraction of the hydrogel us-
ing the classical Flory-Rehner theory27. The free energy of a hy-
drogel consists of the elastic energy of the polymer network and
the polymer-solvent mixing energy:

F = Fel +Fmix (1)

Various forms of elastic energy have been proposed in former re-
search to characterize the reduction of entropy by stretching the
cross-linked polymer network28–30. In the present work, Fel fol-
lows the simplest form derived by Wall and Flory based on the
Gaussian statistics28:

Fel(λ1,λ2,λ3,T ) =
1
2

NkT
[
λ

2
1 +λ

2
2 +λ

2
3 −3− ln(λ1λ2λ3)

]
(2)

where N is the number of polymer chain segments between the
crosslinking junctions and λ1, λ2, λ3 are the stretch ratios along
the three principal axes in reference to the molten state of the
polymer.

The polymer-solvent mixing energy Fmix is given by the Flory-

Huggins theory31

Fmix(φ ,T ) = kT
V
ν
[(1−φ) ln(1−φ)+χφ(1−φ)] (3)

where V is the volume of the whole hydrogel, ν is the volume of
each solvent molecule, φ is the volume fraction of the monomers
and χ is the Flory-Huggins interaction parameter between poly-
mer chains and the solvent molecules. Let Vm be the volume of
the polymer chains in the molten state, the volume fraction of the
monomers is defined as

φ =
Vm

V
= (λ1λ2λ3)

−1 (4)

The free energy given in Eq. 2 and 3 allows us to analyt-
ically solve the equilibrium state of hydrogel for simple cases
that are pivotal to our subsequent analysis. For an isotropic
free-shrinking hydrogel, λ1 = λ2 = λ3 = φ−1/3. When the gel is
in equilibrium with the external solvent, the osmotic pressure
Π =−(∂F/∂V )T = 0, which gives

χ =
1
2

Nν

Vm

(
1
φ
− 2

φ 5/3

)
− 1

φ 2 ln(1−φ)− 1
φ

(5)

If a uniaxial constraint is applied to an isotropic hydrogel
along the longitudinal direction, the principal stress along the
transverse directions should still vanish at thermodynamic equi-
librium. Let λ⊥ = λ1 = λ2 be the transverse stretch ratio,
and λ‖ = λ3 be the longitudinal stretch ratio, then σ1 = σ2 =

(Vmλ⊥λ‖)
−1 (∂F/∂λ⊥)T,λ‖ = 0, which delivers

χ =
1
2

Nν

Vm

(
1
φ
− 2

φ 2λ‖

)
− 1

φ 2 ln(1−φ)− 1
φ

(6)

The principal stress in the longitudinal direction σ3 is written as

σ3 =
1

Vmλ 2
⊥

(
∂F
∂λ‖

)
T,λ⊥

=
NkT
Vm

φ

λ‖

(
1
φc
− 1

φ

)
(7)

where φc = λ
−3
‖ and Eq. 6 is used to eliminate χ. When φ = φc,

σ3 = 0, and Eq. 6 reduces to 5 due to the vanishing of the longitu-
dinal constraint. In the following analysis, the uniaxial constraint
applied to the hydrogel is described using the longitudinal strain
ε‖ in reference to the isotropic free-shrinking state at the current
χ:

ε‖ =
λ‖−λ

λ
(8)

where λ is the equilibrated stretch ratio of an isotropic free-
shrinking hydrogel.

It is noteworthy that the derivation of Eq. 5 and 6 assumes
that χ is independent of φ and only varies in response to the
external stimuli. In practice, however, χ may depend on φ in
certain polymer solutions32, which will be separately addressed
later on in this paper.
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Fig. 1 Schematic plots of hydrogel contractions in response to increas-
ing χ. (a) A fiber-reinforced hydrogel is simplified as a uniform hydrogel
subject to a uniaxial constraint along the fiber direction. (b) The contrac-
tion of a free-shrinking hydrogel (blue curve) and a uniaxially constrained
hydrogel (red curve) with a fixed λ‖ (α‖ = 1). Both of the contractions
start at the intersection point φi = φ ′i = φc = λ

−3
‖ . The arrows represent

the direction of contractions along the φ axis.

3 Anisotropic contraction of a uniaxially
constrained hydrogel

Based on the Flory-Rehner theory, we formulate a simplified
model of fiber-reinforced hydrogels to explore the potential mech-
anisms enhancing the contraction anisotropy. Specifically, the
anisotropic contraction of the aforementioned uniaxially con-
strained hydrogel is investigated in the absence of the oriented
fibers (see Fig. 1a): in the longitudinal direction (parallel to
the fiber direction) the contraction of the hydrogel is restricted,
whereas in the transverse directions the hydrogel can shrink
freely. Herein we essentially preserve the directional constraint
from the fibers which apparently plays a critical role in the
anisotropic contraction, and meanwhile eliminate the complex lo-
cal deformations introduced by the fibers for simplicity.

In experiments, the anisotropic contraction of a hydrogel with
non-trivial microstructures is often investigated and evaluated by
comparing with the isotropic contraction of an unmodified hy-
drogel9,16,23. Following this paradigm, we firstly imagine that a
free hydrogel undergoes an isotropic contraction in response to
an external stimulus which increases its Flory-Huggins parameter
from χi to χ f , as depicted by the blue curve in Fig.1b. The stretch
ratio of the hydrogel along each dimension is reduced from λi to
λ f , and correspondingly the volume fractions of the monomers
increases from φi to φ f according to Eq. 4. The contraction ratio
along each principal axis, denoted by α0, can be defined as

α0 =
λ f

λi
=

(
φi

φ f

)1/3
(9)

In the following analysis, we assume that α0 is prescribed by the
external stimulus, allowing us to use α0 as a benchmark to evalu-
ate the anisotropic contraction of a uniaxially constrained hydro-
gel.

For a hydrogel uniaxially constrained along the longitudinal di-
rection, it shrinks anisotropically if its χ increases from χi to χ f .
The contraction ratio along the longitudinal and transverse di-
rections are denoted by α‖ and α⊥ respectively. We can likewise
define the contraction ratio α‖ and α⊥ as

α‖ =
λ‖, f
λ‖,i

α⊥ =
λ⊥, f
λ⊥,i

(10)

where λ‖ is the longitudinal stretch ratio and λ⊥ is the trans-
verse stretch ratio. The subscripts i and f represent the initial and
shrunken state respectively. We define the contraction anisotropy
A as

A =
α‖
α⊥

=
λ‖, f
λ‖,i

λ⊥,i
λ⊥, f

(11)

Therefore, the larger A, the stronger the contraction anisotropy of
the hydrogel.

Let φ ′i and φ ′f be the volume fractions of the monomers before
and after the contraction; the contraction anisotropy A is bounded
by the following inequality:

A =
λ‖, f
λ‖,i

λ⊥,i
λ⊥, f

=

(
φ ′f
φ ′i

)1/2(
λ‖, f
λ‖,i

)3/2

≤

(
φ ′f
φ ′i

)1/2

(12)

Eq.12 takes equality when α‖ = 1 and α⊥ = (φ ′i /φ ′f )
1/2, indicat-

ing that the anisotropy of the contraction is maximized when the
hydrogel is not allowed to shrink along the longitudinal direction
(i.e., λ‖ is constant). Using Eq. 5 and Eq. 6, we can evaluate the
maximum contraction anisotropy Amax = (φ ′i /φ ′f )

1/2 in terms of
the prescribed increment of χ (or the isotropic contraction ratio
α0) and the initial strain state ε‖ of the hydrogel, which provides
clues to improve the contraction anisotropy of the hydrogel.

3.1 Stress-free initial state

If the uniaxially constrained hydrogel starts to shrink from the
stress-free state (φ ′i = φi = φc, ε‖ = 0), we find that the maximum

contraction anisotropy (Amax) must be smaller than α
−3/2
0 . As

illustrated in Fig. 1b, if φ ′i = φi = φc, φ ′f < φ f for any χ f > χi, i.e.,
the volumetric change of the uniaxially constrained hydrogel is
always smaller than that of a free hydrogel, thus

Amax =

(
φ ′f
φ ′i

)1/2

<

(
φ f

φi

)1/2
= α

−3/2
0 (13)

Eq. 13 can also be analytically proved by comparing Eq. 5 with 6
(see SI). Consequently, Amax is upper bounded by α

−3/2
0 if there is

no prestrain involved in the initial state of the shrinking process.
Contraction experiments of fiber-reinforced hydrogels satisfy-

ing Eq. 13 have been reported in previous research. For example,
in Chin et al.’s work23, the tubular polymer gel shrunk isotrop-
ically to 77% of its original size when the temperature ramped
up from room temperature to ∼ 70◦C, i.e., α0 = 0.77. If the gel
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Fig. 2 Contraction of uniaxially constrained hydrogels with prestrain ε‖ 6=
0. The upper bound of the contraction anisotropy (Amax) as a function of
φi and ε‖ for different Nν/Vm. α0 = 0.8 in all subfigures. The longitudinally
prestretched (ε‖ > 0) and precompressed (ε‖ < 0) states are separated
by the dashed lines. φi is limited within the range 0 ∼ 0.5 because the
final volume fractions φ f and φ ′f must be less than 1 due to the specified
α0.

was reinforced with circumferentially aligned peptide amphiphile
nanofibers, the height and diameter of the tube shrank respec-
tively to 62% and 80% of the original dimensions upon the same
variation of temperature; the contraction anisotropy A = 1.29 is
smaller than α

−3/2
0 ≈ 1.48 within the margin of error (|∆A| ≈ 0.1),

which agrees with Eq. 13.

3.2 Prestrained initial state
If the uniaxially constrained hydrogel is prestrained before con-
traction (φi,φ

′
i 6= φc, ε‖ 6= 0), the upper bound suggested by Eq. 13

may not hold. For example, in supplementary Fig. S1, if φ ′i > φc,
φ ′i and φi at the same χi no longer coincide with each other; it
can be identified that at certain χi and χ f , φ ′f /φ ′i > φ f /φi so that

Amax > α
−3/2
0 .

Indeed, our further analysis uncovers that Amax can be signif-
icantly greater than α

−3/2
0 if the hydrogel is longitudinally pre-

stretched before contraction. Specifically, for an arbitrary φi, a
prestrain within the range from −0.5 to 1.0 is applied to the free-
swelling hydrogel so that φ ′i can be determined by equating Eq. 5
to Eq. 6 and meanwhile incorporating Eq. 8. By setting α0 = 0.8,
we numerically calculate Amax for different Nν/Vm. Results (see
Fig. 2) clearly reveal that Amax can be larger than α

−3/2
0 ≈ 1.40

only when ε > 0. For example, for Nν/Vm = 0.01, Amax can be as
large as 1.54 when ε‖ = 1.0. The value of Amax becomes larger as
a whole when ε increases, and eventually converges to (φ ′i )

−1/2

when the hydrogel volume V approaches Vm. In addition, the
distribution patterns of Amax in Fig. 2 demonstrate a significant
shift when Nν/Vm reduces. Since Nν/Vm is only associated with
the elastic terms in Eq. 2, our observation implies that initially
more swollen states are favored to produce stronger contraction
anisotropy when the hydrogel is less rigid. In conclusion, the
contraction anisotropy of a uniaxially constrained hydrogel can
be substantially stronger if the hydrogel is longitudinally pre-
stretched.

For a realistic fiber-reinforced hydrogel, the prestretching con-
dition may be potentially realized in several approaches. The
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Fig. 3 Contraction of PEO hydrogels upon increasing temperature. The
upper bound of the contraction anisotropy (Amax) as a function of φi and
ε‖ for a PEO hydrogel (left) and a generic hydrogel with φ -independent χ

(right). Nν/Vm = 0.002 and α0 = 0.8 in all subfigures.

simplest approach is to apply an external control to the hydrogel
along the fiber direction. Prestretching may also be introduced if
the fiber-reinforced hydrogel is already in the shrunken state be-
fore performing the contraction experiments. Additionally, incor-
porating the fibers into the hydrogel matrix may lead to intrinsic
prestretching due to the interaction between the fibers and the
polymer chains.

3.3 φ -dependent χ

If χ varies as a function of φ , an explicit dependence of χ on both
the stimulus intensity (denoted by T ) and φ is required to ana-
lyze the contraction of hydrogels through the above approach. In
previous discussions, we have assumed that χ is independent of
φ , therefore the external stimulus and the deformation are natu-
rally decoupled in Eq. 5 and 6, which allows us to investigate the
contraction behaviors without knowing the specific form of χ(T ).
In contrast, if χ also depends on φ , we need to replace χ with χ

in Eq. 5 and 6:

χ = χ−φ
∂ χ

∂φ
(14)

With the knowledge of the function χ(T,φ), the relation between
T and φ at equilibrium can be obtained and exploited to investi-
gate the contraction behaviors.

To exemplify the above procedure for handling the φ -
dependent χ, we analyze the contraction behaviors of a
crosslinked poly(ethlyene oxide) (PEO) hydrogel, a widely used
thermoresponsive polymer with both upper and lower critical so-
lution temperature phase behaviors33. The free energy of PEO
in aqueous solutions can be formulated using the Dormidontova’s
model34, which incorporates the free energy of both the PEO-
water and water-water hydrogen bondings to successfully explain
the unique phase behaviors of PEO/water solutions. Based on
χ(T,φ) derived from the Dormidontova’s model (see supplemen-
tary Eq. S9; here T represents temperature), we numerically cal-
culate the T ∼ φ relation for both the free-shrinking and uniax-
ially constrained condition, as shown in supplementary Fig. S2.
Given a stimulus of temperature Ti→ Tf , we imagine that a free-
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shrinking PEO hydrogel undergoes an isotropic contraction from
φi to φ f with a contraction ratio of α0 along each dimension, while
a uniaxially constrained PEO hydrogel with a longitudinal pre-
strain ε‖ shrinks from φ ′i to φ ′f . In a similar way as Fig. 2, we
calculate Amax for −0.5 ≤ ε‖ ≤ 1.0 and 0.050 ≤ φi ≤ 0.275 at a
specified α0 (see Fig. 3). Using the same set of parameters, a sim-
ilar diagram for a generic hydrogel with φ -independent χ is also
constructed within the same range of ε‖ and φi for comparison
purposes.

Results in Fig. 3 clearly indicate that the φ -dependent χ of PEO
hydrogel alters the anisotropic contraction behavior by shifting
the maximum of Amax within the inspected range of φ and ε‖.
However, the prestretching mechanism to enhance the contrac-
tion anisotropy still works for PEO hydrogel: Amax can be larger
than α

−3/2
0 only when ε‖ > 0.

4 Anisotropic contraction of fiber-
reinforced hydrogels: finite element
simulations

The finite dimensions of the fibers, which are absent in previ-
ous discussions, can introduce more complexity to the anisotropic
contraction of hydrogels. Besides the inhomogeneous strain field
around the fibers, compact packing of the oriented stiff fibers
within a hydrogel may also dampen the overall contractions along
the transverse directions. Meanwhile, the finite length of the
fibers allows the hydrogel to shrink along the longitudinal di-
rection instead of being completely constrained. As a result, the
anisotropic behavior of the hydrogel significantly deviates from
a uniaxially constrained hydrogel when the fibers have finite di-
mensions. Unfortunately, analytical solutions are difficult to ob-
tain when the fibers are included in the model. Various ap-
proaches have been proposed in former research for numerical
simulations of hydrogels35–39. In particular, the finite element
method is well suited for understanding swelling hydrogels in
complex geometries such as wrinkling, creasing, and other in-
triguing buckled structures40–43. Therefore, we resort to the fi-
nite element method to explore the anisotropic contraction of a
fiber-reinforced hydrogel in the following sections.

4.1 Model geometry and boundary conditions

In our simulations, each fiber is modeled as a rigid cylinder with
diameter d and length l attaching to the surrounding hydrogel
matrix without allowing any relative sliding (see Fig. 4, top left).
The ends of each fiber are smoothed with semi-spherical cups to
avoid singular stress concentration at sharp corners. We arrange
the fibers periodically within the hydrogel so that periodic bound-
ary conditions can be applied to the model. Specifically, the peri-
odic array of fibers and their surrounding hydrogel are described
as identical unit cells spanned by a set of lattice vectors (a,b,c).
Let S and S′ be the opposite faces along the direction of c (see
Fig. 4, bottom), u(r) represent the displacement of an arbitrary
point located at r on S (thus u(r+ c) lies on S′), and (a′,b′,c′) de-
note the lattice vectors after deformation; the periodic boundary

𝐿

𝑙

𝑑
𝐷

𝒄

𝒂𝒓

𝑆

𝒃

𝑆′

𝒓 + 𝒄

Fig. 4 Schematics of the model geometry and periodic boundary condi-
tions in the finite element simulations. Top right: The unit cell in rectan-
gular solid shape with one rigid fiber embedded. Top left: The smoothed
end of the fiber using a semi-sphere with the same radius as the fiber’s.
The bottom illustration shows the correspondence between points on the
opposite faces of a unit cell.

conditions require

u(r+ c)−u(r) = c′− c (15)

which connects the local displacement vector of the unit cell with
the global deformation of the lattice. In finite element simula-
tions, the right-hand side of Eq. 15 is replaced with the displace-
ment of a dummy node which is defined as

uc = c′− c (16)

In our model, uc is not prescribed a priori but determined by the
contraction behavior of the fiber-reinforced hydrogel. Therefore,
constraints among the two opposite faces and the dummy node
are enforced in our simulations to solve uc according to Eq. 15
and 16. Similar constraints can also be derived for the other two
pairs of opposite faces.

The periodic boundary conditions provide a simple and intu-
itive approach to investigate the anisotropic behavior of the hy-
drogel induced by the distributed fibers. However, it is worth
mentioning that although previous experiments have verified the
orientational long range order of the fibers, no periodicity is
found in the positions of the fibers. Therefore, it is apparently
an idealization to use the periodic boundary conditions in our
simulations.

The unit cell in our simulations is modeled using a rectangu-
lar solid with |a| = |b| = D and |c| = L, as illustrated in the Fig. 4
(topright). Here we assume that the unit cell has identical peri-
odicity in the directions of a and b. Within each unit cell, a cylin-
drical fiber is symmetrically placed in the center and oriented to
the direction of c; thus L represents the longitudinal fiber-fiber
distance, and the corresponding contraction ratio is α‖. Likewise
D should be equal to the transverse fiber-fiber distance; α⊥ is the
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transverse contraction ratio as previously defined.

4.2 Constitutive model of hydrogel

We proceed to derive the constitutive model of the hydrogel
within the context of finite element method. The thermodynamic
equilibrium is achieved when the external work done on the hy-
drogel is equal to the change in the free energy:

δF =
∫

V
δFdV =

∫
V

BiδuidV +
∫

S
TiδuidS (17)

where F is the nominal free energy density of the hydrogel, Bi

is the external body force, Ti is the surface traction, and δui are
arbitrary perturbation displacements. When the hydrogel reaches
equilibrium, its chemical potential µ = µexternal = 0; thus in Eq. 17
we neglect the work done by the external chemical potential of
the water.

Eq. 17 possesses the same form as a hyperelastic solid, which
enables us to implement a finite element method for a hydrogel.
In the context of continuum mechanics, it is traditional to formu-
late the free energy density F in terms of the strain invariants:

I1 = λ
2
1 +λ

2
2 +λ

2
3 and J = λ1λ2λ3 = φ

−1 (18)

Substituting Eq. 18 to 2 and 3 gives

F(I1,J,T ) =
1
2

N
Vm

kT (I1−3− lnJ)

+
kT
ν

[
(J−1) ln

(
1− 1

J

)
+χ

(
1− 1

J

)] (19)

Eq. 19 is singular at the molten state of the hydrogel (J = 1),
which may lead to numerical problems if the molten state is in-
volved in the calculations. To overcome this difficulty, we use an
isotropic free swollen state with J > 1 as the reference state in-
spired by the study of Hong et al35. At this reference state, the
hydrogel has isotropic stretching ratio λ0 relative to the molten
state. The volume fraction of the polymer is denoted by φ0 = λ

−3
0 .

Because the volume of the polymer Vm is assumed to be con-
served, φ and φ0 can be connected via

V φ =V0φ0 =Vm (20)

where V0 is the volume of the hydrogel at the reference state. The
nominal free energy density F and the strain invariants I1,J are
converted correspondingly to F ′, I′1, J′ with respect to the new
reference state:

F(I1,J,T )Vm = F ′(I′1,J
′,T )V0

I1 = φ
−2/3
0 I′1 and J = φ

−1
0 J′

(21)

Substituting Eq. 20 and 21 to 19, we obtain that

F ′(I′1,J
′,T ) =

kT
ν

[
1
2

Nν

Vm
φ0

(
φ
−2/3
0 I′1−3− ln

J′

φ0

)

+ (J′−φ0) ln
(

1− φ0

J′

)
+χφ0

(
1− φ0

J′

)] (22)

Contraction

𝐷 𝛼⊥𝐷

𝑑

Fig. 5 The transverse contraction ratio of the fiber-reinforced hydrogel
as a function of the transverse fiber-fiber distance at L/l = 1. The fiber
is modeled as a regular cylindrical rod throughout the hydrogel matrix
rather than a smoothed one to avoid possible numerical difficulties. The
simulations are performed with d = 10 nm and L = l = 30 nm. The lower
limit is calculated from the contraction of a uniaxially constrained hydrogel
illustrated in Fig. 1a with the same set of parameters as used in the finite
element simulations.

We implement the above constitutive model of the hydrogel by
developing a user-defined subroutine for a hyperelastic material
(UHYPER) in the commercial code ABAQUS. The contraction of
the hydrogel is achieved by varying the value of χ calculated from
Eq. 5 or 6. No prestretching is involved in our simulations, as we
are focusing on the effects of the fiber dimensions; prestretching
may also induce excessive deformations which lead to conver-
gence difficulties. We set φi = φ ′i = φc = 0.125 in the following
simulations. The prescribed isotropic contraction ratio α0 = 0.8.
Nν/Vm = 10−4 unless otherwise noted.

To verify our implementation, we numerically calculate the
χ ∼ φ relations for both an isotropic swelling hydrogel and a uni-
axially constrained hydrogel. (see supplementary Fig. S3) The
results show perfect agreement with Eq.5 and 6. In addition, the
calculated uniaxial stress σ3 for the uniaxially constrained hydro-
gel also coincides with Eq. 7 (see supplementary Fig. S3b).

4.3 Results and discussions
We firstly perform simulations for a limiting case where the fiber
length is identical to the longitudinal length of the unit cell
(L/l = 1), as shown in Fig. 5 (top). The hydrogel is therefore com-
pletely constrained along the orientation of the fibers (α‖ ≡ 1).
Simulations show that the transverse contraction ratio α⊥ de-
creases when increasing the transverse fiber-fiber distance (see
Fig. 5 bottom). At small D/d, the transverse contraction of the hy-
drogel is highly restricted by the rigid cross-sections of the tightly
packed fibers. This restriction become less significant as D/d in-

6 | 1–10

Page 6 of 11Soft Matter



a b

c d

𝑙

𝛼∥𝐿

𝛼⊥𝐷

𝐿

𝐷

Contraction

Fig. 6 The anisotropic contraction of the fiber-reinforced hydrogel at L/l > 1.0. (a) Schematic of the geometry to model the anisotropic contraction
when L > l. (b-d) The transverse contraction ratio (b), the longitudinal contraction ratio (c) and the contraction anisotropy (d) as functions of the reduced
transverse fiber-fiber distance (D/d). The data for L/l = 1 in (b) (dashed curves) are identical to Fig. 5 as α‖ ≡ 1. The arrows in both (b) and (d) indicate
the shifts of the minimum α⊥ and the maximum A. The legend in (b) is also shared by (c) and (d). All the simulations are performed with d = 10 nm and
l = 200 nm.
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creases, hence leading to stronger transverse contraction and de-
creasing α⊥. Eventually, the transverse dimensions of the fibers
is negligible so that the hydrogel behaves as if it were uniaxially
constrained without fibers embedded. Thus, α⊥ converges to a
lower limit that can be predicted from the uniaxially constrained
hydrogel model discussed in previous sections. We also conduct
similar simulations for a prestretching fiber-reinforced hydrogel;
same behaviors of α⊥ are found in the supplementary Fig. S4.

Intuitively, however, an infinitely large hydrogel with few fibers
embedded (i.e., D� d) should shrink almost isotropically upon
external stimuli, which can never be captured in the above simu-
lations by assuming L/l = 1 and α‖ ≡ 1. Therefore, we proceed to
investigate the anisotropic contraction at L/l > 1 which allows
the hydrogel to shrink longitudinally (see Fig. 6a). Figure 6b
shows that the transverse contraction ratio α⊥ has a minimum
for each L/l, whereas α‖ exhibits the opposite behavior (Fig. 6c).
These results can be understood as follows. At small D/d, the
transverse contraction can be significantly amplified by releasing
the aforementioned restrictions from the rigid cross-sections of
the fibers. In contrast, the longitudinal contraction is energeti-
cally disfavored due to the induced stress concentration near the
ends of the fibers (see supplementary Fig. S5); meanwhile it is
also restricted by the rigid length of the fibers. Consequently, α⊥
exhibits rapid decrease at small D/d where increasing α‖ is ob-
served. When D/d becomes noticeably larger, both α⊥ and α‖
vary in the opposite way compared to the previous case. Stronger
longitudinal contraction is instead preferred at large D/d when
the fibers are more sparsely distributed: the bulky hydrogel far
from the fibers can undergo less longitudinal strain, thus mediat-
ing the local stress concentration near the fibers.

The anisotropy of the hydrogel contraction (A≡ α‖/α⊥) can be
evaluated from Fig. 6b and 6c. As shown in Fig. 6d, A presents
a maximum for each L/l, just as expected based on the behav-
ior of α‖ in Fig. 6c. A shift of the maxima toward higher D/d
with decreasing L/l is observed in both Fig. 6b and Fig. 6d. In-
deed, the stronger constraint from the fibers at lower L/l need to
be balanced out with larger longitudinal contraction induced by
increasing D/d, thus the optimum D/d increases when reducing
L/l. Besides, we have also inspected the contraction anisotropies
at different Nν/Vm, a dimensionless parameter characterizing the
rigidity of the hydrogel; the maxima therein do not show any
shift along the D/d axis (see supplementary Fig. S6). Addition-
ally, A is observed to be enhanced at lower L/l in Fig. 6d. This
increasing anisotropy stems from the dampening of the longitudi-
nal contraction when decreasing L/l; the longitudinal separation
of the fibers is reduced such that the hydrogel has less freedom
to shrink along the longitudinal direction. Overall, we conclude
that the contraction anisotropy can be maximized by adjusting
the transverse fiber-fiber distance D/d, and this maximum value
can be further elevated by reducing the longitudinal fiber-fiber
distance L/l.

Our simulations also reveal that fibers with larger aspect ra-
tio (l/d) can lead to stronger anisotropy of the hydrogel contrac-
tions. Note that L/l is kept as a constant for different l/d such
that same portion of the hydrogel is restricted by the rigid fibers.
Figure 7 clearly shows that A decreases with increasing l/d. More

Fig. 7 The contraction anisotropy of the fiber-reinforced hydrogel as a
function of the shape aspect ratio of the fiber (l/d). L/l = 2.0. The cor-
responding transverse contraction ratio (α⊥, green line) and longitudinal
contraction ratio (α‖, red line) are depicted in the inset. The simulations
are performed with d = 10 nm and D = 40 nm.

particularly, as depicted in the inset of Fig. 7, α‖ exhibits a signif-
icant increase: at l/d = 5, it is only slightly larger than α0 = 0.8,
whereas it reaches ∼ 0.96 when l/d increases to 50. The sub-
stantial increase of α‖ at constant L/l implies that longer fibers
can enforce much stronger longitudinal constraints on the hydro-
gel, thus facilitating the anisotropic contraction. This observation
has been validated in former experiments9,23 where fibers with
a high aspect ratio (l/d > 100) are indeed adopted to achieve
high anisotropy. We note that in Ref.23, the overall mass ratio
of the fibers is 0.7%, the length of fibers in the supramolecular
hybrid hydrogel is more than 400 times of the fiber radius, and
the transverse fiber-fiber distance is roughly 10 times of the fiber
radius. As a result, the constraint from the fibers plays an im-
portant role in causing the strongly anisotropic contraction of the
hybrid hydrogel, as predicted by our finite element simulations
(see Fig. 7). These experimental parameters are indeed close to
the limiting case studied in our previous theoretical model (in
section 3), which essentially neglects the transverse dimension
of the fibers, and assumes that they are long enough to prevent
the longitudinal contraction. Therefore, although the longitudi-
nal contraction cannot be completely restricted in reality, it is still
possible to achieve strong longitudinal constraint by increasing
the fiber length even if the transverse density of fibers is low, lead-
ing to a high contraction anisotropy.

It is worth mentioning that our finite element model is devel-
oped based on several assumptions that significantly simplify the
realistic fiber-reinforced hydrogel systems. For example, the ori-
ented fibers in our model are arranged as a periodic lattice, while
experimentally they usually do not have long-range translational
order. Experiments also show that long fibers can bend and twist
rather than keep absolutely straight in the hydrogel matrix21. In
addition, the interactions between the fibers, which are absent
in our simulations, may also play an important role in the con-
traction of the whole hydrogel system. Besides, prestretching
is problematic in our simulations with finite-length fibers, due
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to the complex interplay between the prestretching stress, fiber
constraint and the isotropic contraction of the hydrogel matrix.
More sophisticated numerical methods are required to handle ex-
tremely large deformations of the elements that may lead to con-
vergence difficulties. Despite all these limitations, our simple fi-
nite element model provides a reference point for more sophisti-
cated models. We stress that the variation trend of the contrac-
tion anisotropy at the limit of both the small and large transverse
fiber-fiber distance should still be valid when the above complex-
ities are considered.

5 Conclusions
This study focuses on the mechanisms controlling the anisotropic
contraction of a fiber-reinforced hydrogel. By idealizing the rein-
forcement of the fibers as a uniaxial constraint, and assuming χ

is independent of φ , we discover that the contraction anisotropy
has an upper bound determined by the prescribed isotropic con-
traction. Numerical analysis of the χ ∼ φ relations further re-
veals that it is possible to exceed this limit by introducing lon-
gitudinal prestretching into the hydrogel; such mechanism also
applies for certain practical systems with φ -dependent χ such as
PEO hydrogels. Assuming the fibers are rigid and periodically
distributed, finite element simulations show that the contraction
anisotropy can be maximized by varying the transverse fiber-fiber
distance; this maximum value can be further improved by re-
ducing the longitudinal fiber-fiber distance or increasing the fiber
length, both of which essentially strengthen the longitudinal con-
straint of the fibers. These findings provide insights into designing
fiber-reinforced hydrogels with desired anisotropic behavior un-
der various stimuli, which can be applicable in soft robotics, tis-
sue engineering and so on. Future studies are needed to elucidate
the potential impact of other important factors on the anisotropic
contraction, including the deformability of fibers, different fiber
arrangements and interactions between fibers and the hydrogel
matrix.
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