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Phase diagrams of mixtures of dipolar rods and discs  

Ryan C. Maloneya and Carol K. Hall*a 

Self-assembly of binary mixtures that contain anisotropic, interacting colloidal particles have been proposed as a way to 

create new, multi-functional materials. We simulate binary mixtures of dipolar rods and dipolar discs in two-dimensions 

using discontinuous molecular dynamics to determine how the assembled structures of these mixtures differs from those 

seen in single component systems. Two different binary mixtures are investigated: a mixture of an equal number of dipolar 

rods and dipolar discs (“equal number”), and a mixture where the area fraction of dipolar rods is equal to the area fraction 

of dipolar discs (“equal area”). Phase boundaries between fluid, string-fluid, and “gel” phases are calculated and compared 

to the phase boundaries of the pure components. Looking deeper at the underlying structure of the mixture reveals complex 

interplay between the rods and discs and the formation of states where the two components are in different phases. The 

mixtures exhibit phases where both rods and discs are in the fluid phase, where rods form a string fluid while discs remain 

in the fluid phase, a rod string-fluid coexisting with a disc string-fluid, a “gel” that consists primarily of rods while the discs 

form either a fluid or string-fluid phase, and a “gel” that contains both rods and discs. Our results give insight into the general 

assembly pathway of binary mixtures, and how complex aggregates can be created by varying the mixture composition, 

strength of interaction between the two components, and the temperature. By manipulating the properties of one of the 

components it should be possible to fabricate bifunctional, thermally responsive self-assembled materials.

Introduction 

Colloid self-assembly can, in principle, be precisely 

controlled, resulting in a variety of structures that have 

proposed for applications in biotechnology,1-3 photonics,4-7 and 

electronic devices.8-10 The wide variety of colloidal particles that 

can be created yields systems with unique rheological, 

viscoelastic, and gelation behavior. Concentrated colloidal gels 

have been used as inks in 3-D printing to create precise periodic 

structures.11 Long chains of colloidal particles have been used 

as nanowires for light-emitting diodes,12 and 

chemical/biological sensors.13 Ferromagnetic nanoparticles 

have been used to create artificial cilia.14 New fabrication 

techniques allow for precise control over the size, permeability, 

and elasticity of colloidal capsules that can be used for drug 

delivery.15 The wide array of potential applications drives the 

desire to study systems of ever-increasing complexity. 

Colloids that contain one or more sources of anisotropy, 

either through shape, surface coating, or internal charge 

distribution, are of interest because the asymmetric interaction 

between particles gives rise to complex behavior. One of the 

most extensively studied anisotropic colloids is the dipolar 

colloidal sphere. Experiments,16-18 analytical theories,19-23 and 

computer simulations24-30 have been used to evaluate the self-

assembly behavior of these particles. Dipolar spheres in 2-D 

have been shown to assemble into chains, gels, rings, and 

branched structures at low volume fraction in addition to 

forming crystalline phases at high volume fraction.31 The 

specific phase that forms, and its stability, are related to the 

concentration of particles and the temperature. More complex 

2-D structures can be achieved through the application of 

external magnetic or electric fields. Application of a 

homogenous field in one direction causes dipolar spheres to 

align into  chains of finite length.32 Dipolar spheres in a rotating 

field assemble in layers rotating with either synchronous or 

asynchronous behavior.33  

 Rod-shaped particles have also been widely investigated 

due to their tendency to form nematic and smectic phases that 

can be used for display devices. Monte Carlo simulations with 

Gibbs-Duhem integration found that the phases formed by rod-

shaped colloids depend on their aspect ratio and 

concentration.34 Additionally, rod-shaped particles can be 

fabricated with patchy surfaces or asymmetric charge 

distribution, thereby adding an additional source of anisotropy 

to gain further control and complexity over the self-assembled 

structures. External electric fields have been used to induce a 

dipole in rods that causes them to assemble into rings35 or 

chains aligned in a head-to-tail or side-by-side orientation in 2-

D36,37 depending on the fabrication techniques and the 

materials used in their preparation. Gold nanorods coated with 

cetyl trimethyl ammonium bromide on the sides and 

polystyrene on the ends have been assembled into both head-

to-tail and side-side oriented chains, rafts, and spherical 

structures, depending on solvent quality.38 Rods with 

permanent dipoles oriented in the direction of the short axis 
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can assemble into ribbons and rings.39 To the best of our 

knowledge, the fabrication of rods with a permanent dipole 

oriented in the direction of the long axis has yet to be achieved, 

but with the rapid advancement in fabrication techniques in 

recent years, it is only a matter of time before such particles are 

created. In the meantime, discontinuous molecular dynamics 

simulations of 2-D  rods with an extended dipole have shown 

that the charge separation on the dipole moment plays a key 

role in determining if rods align with predominately head-to-tail 

or side-side orientation.40 

In addition to creating colloidal particles with new 

anisotropy, studies have been done on mixing particles to 

create new materials. Monte Carlo simulations of binary 

mixtures of colloidal spheres of many different diameters and 

interaction energies have shown that these mixtures always 

form a percolated network at a lower density than that required 

for percolation of either pure system.41 Experiments on 

mixtures of oppositely-charged spherical colloids show that 

they form crystalline arrays when the charge is low, but 

irreversibly aggregate into fractal structures when the charge is 

high.42, 43 The aggregation of oppositely charged colloids can be 

directed by using an AC electric field to form chains in two 

dimensions.44 Discontinuous molecular dynamics (DMD) 

simulations of mixtures of dipolar colloidal spheres have shown  

that the spheres assemble into bicontinuous gels.45 Mixtures of 

rod-shaped liquid crystals and spherical colloids have been of 

particular interest. Monte Carlo simulations46 and 

experiments47 have shown that mixtures of hard rods and hard 

spheres undergo entropically-driven phase separation into 

lamellar, columnar, and miscible phases, depending on the 

overall colloid concentration and the relative concentrations 

and sizes of the rods and spheres. Theoretical predictions48 

from four decades ago which predicted that large spherical 

magnetic particles suspended in nematic liquid crystals could 

produce macroscopic ferromagnetic phases have recently been 

experimentally realized.49 Molecular dynamics (MD) 

simulations have been used to expand upon these results, 

focusing on the organization and dynamics of magnetic spheres 

of similar or smaller size than the width of the rods in the liquid 

crystal.50-52 

In this paper, we present results from DMD simulations of 

two-dimensional mixtures of dipolar rods and dipolar discs. Two 

mixtures are simulated: one with an equal number of rods and 

discs (“equal number mixture”), and the other where the areas 

occupied by rods and discs are equal (“equal area mixture”). The 

dipolar rods have a length to width ratio of 4:1, which is  lower 

than the aspect ratio  at which rods form nematic and smectic 

phases in two dimensions.53 By limiting the possibility of 

forming liquid crystalline phases, we focus our attention on 

those aspects of the phase behavior due to the dipolar 

interactions between rods, between discs, and between rods 

and discs.  We perform simulated annealing simulations, which 

involves running fixed area fraction simulations at a high 

temperature and then lowering the temperature in discrete 

steps, allowing the system to equilibrate at each temperature. 

We compute extent of polymerization and percolation 

probability to determine when the mixtures transition from a 

fluid to string-fluid and string-fluid to percolated network 

respectively. The string-fluid to percolated network transition is 

of particular interest because percolation is a necessary 

criterion for gelation. Additionally, we compare the phase 

transitions found in the mixtures to the phase transitions found 

in the constituent single component systems.  

Highlights of our results include the following. Phase 

diagrams in the area fraction versus temperature plane were 

calculated for equal number and equal area mixtures of dipolar 

rods and discs, with particular focus on the fluid, string-fluid, 

and “gel” phases. For both mixtures at high temperature, rods 

preferentially form clusters with other rods creating a rod string 

fluid, while the discs remain in the fluid phase. After the 

formation of the rod string fluid, the two mixtures behave 

differently as the temperature is lowered. In the equal number 

mixture, the onset of gelation is characterized by formation of 

a rod “gel” that encompasses nearly all the rods in the system 

and very few discs. Lowering the temperature results in a 

coarsening of the rod “gel” through side-by-side rod 

interactions, with the discs beginning to form small clusters in 

the voids of the rod network. Finally, at the lowest 

temperatures simulated, a rod and disc “gel” forms that is 

characterized by a large network of rods with discrete clusters 

of discs. In the equal area mixture, the onset of gelation is 

characterized by the formation of a rod “gel” that contains 

nearly all the rods in the system, but also many discs. Lowering 

the temperature results in the formation of small clusters of 

discs in the voids of the rod network, but the rod network does 

not coarsen as in the equal number mixture. Finally, at the 

lowest temperatures simulated, a rod and disc “gel” forms that 

is characterized by discrete clusters of rods that get connected 

to one another through clusters of discs. The rod and disc “gel” 

of both mixtures has a large number of rod-rod and disc-disc 

interactions, but a relatively small number of rod-disc 

interactions. The phase transitions found in the equal area 

mixture closely match to the phase transitions exhibited by pure 

dipolar discs, while the phase transitions in the equal number 

mixture are more like those for pure dipolar rods.    

Model 

We model each dipolar disc as a hard disc with diameter σ 

containing two oppositely-charged small discs of diameter 0.3σ 

that are separated by a distance of 0.6σ, as shown in Figure 1(a). 

The dipolar rods are modeled as spherocylinders with seven 

overlapping hard discs of diameter σ separated from their 

nearest neighbors by 0.5σ. The seven overlapping hard discs 

create a rod with a 4:1 aspect ratio, which is comparable to the 

aspect ratio of silica-coated gold nanorods created by Wu and 

Figure 1: Model of (a) dipolar disc of diameter σ and (b) 4σ:1σ aspect ratio dipolar rod. 
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Tracy.54 Two small, oppositely charged discs of diameter 0.3σ 

are imbedded in the end discs to represent charges on the 

extended dipole as shown in Figure 1(b). The distance between 

the two charged discs on the dipolar rods is 3.6σ. The 

overlapping hard discs on the same chain do not interact with 

each other, but are bonded to their nearest and next-nearest 

neighbors using the Bellemans’ method.55, 56 The length of the 

bond linking neighboring discs varies between (1+δ)σ⁄2, and (1-

δ)σ⁄2. The length of the bond linking next-nearest neighboring 

discs is between (1+δ)σ and (1-δ)σ. The Bellemans’ constant, δ, 

defines how tightly the discs that make up the rod are bound to 

each other and is set equal to 0.02. This value ensures a 

relatively rigid rod, with the angle between the two end discs 

and the center disc on a rod greater than or equal to 170 

degrees. 

The two small discs representing charges of an extended 

dipole are used to model the dipolar interaction instead of a 

point dipole. This is done to facilitate the use of the DMD 

technique, which requires isotropic interactions around each 

simulated structure. A dipole-dipole interaction potential 

between point dipoles is not isotropic, and therefore would not 

be suitable for DMD. We replace the point dipoles with two 

opposite charges and can then treat each charge as being at the 

center of an isotropic square well and shoulder potential. The 

Bellemans’ method is then used to maintain the position of the 

two charges on the dipolar discs and dipolar rods. The small 

charged discs on a dipolar disc are bonded to each other with a 

bond length between (1 + 𝛿)0.6𝜎1 and (1 − 𝛿)0.6𝜎1. Each 

charged disc is also bonded to the main hard disc with bond 

lengths between (1 + 𝛿)0.3𝜎1 and (1 − 𝛿)0.3𝜎1. The small 

charged discs on the dipolar rod are bonded to each other with 

bond lengths of (1 + 𝛿)3.6𝜎1 and (1 − 𝛿)3.6𝜎1, and each 

charged disc is bonded to the hard disc at the end of the rod 

that they are closest to with a bond length between 

(1 + 𝛿)0.3𝜎1 and (1 − 𝛿)0.3𝜎1.  

The hard discs of a dipolar disc or rod interact with other 

colloids through the hard sphere potential (UHS), defined as: 

 
𝑈𝐻𝑆( 𝑟1) = {

∞, 𝑖𝑓 𝑟1 < 𝜎
0, 𝑖𝑓 𝑟1 ≥ 𝜎

  (1) 

where r1 is the distance between two hard discs. Charged discs 

on the same colloid do not interact. Charged discs i and j on 

different colloids interact via an attractive four-step square-well 

potential if the charges are of opposite sign, or a repulsive four-

step square-shoulder potential if the charges have the same 

sign. The four-step square-well and square-shoulder potentials 

are defined as: 

 

𝑈𝑟𝑜𝑑−𝑟𝑜𝑑(𝑟𝑖𝑗) =

{
 
 

 
 

∞, 𝑖𝑓 𝑟2 < 𝜎1
±휀1, 𝑖𝑓 𝜎1 ≤ 𝑟2 < 𝜎2
±휀2, 𝑖𝑓 𝜎2 ≤ 𝑟2 < 𝜎3
±휀3, 𝑖𝑓 𝜎3 ≤ 𝑟2 < 𝜎4
±휀4, 𝑖𝑓 𝜎4 ≤ 𝑟2 < 𝜎5
0, 𝑖𝑓 𝑟2 ≥ 𝜎5

  (2) 

 

𝑈𝑑𝑖𝑠𝑐−𝑑𝑖𝑠𝑐(𝑟𝑖𝑗) =

{
 
 

 
 

∞, 𝑖𝑓 𝑟2 < 𝜎1
±휀5, 𝑖𝑓 𝜎1 ≤ 𝑟2 < 𝜎2
±휀6, 𝑖𝑓 𝜎2 ≤ 𝑟2 < 𝜎3
±휀7, 𝑖𝑓 𝜎3 ≤ 𝑟2 < 𝜎4
±휀8, 𝑖𝑓 𝜎4 ≤ 𝑟2 < 𝜎5
0, 𝑖𝑓 𝑟2 ≥ 𝜎5

  (3) 

 

𝑈𝑟𝑜𝑑−𝑑𝑖𝑠𝑐(𝑟𝑖𝑗) =

{
 
 

 
 

∞, 𝑖𝑓 𝑟2 < 𝜎1
±휀9, 𝑖𝑓 𝜎1 ≤ 𝑟2 < 𝜎2
±휀10, 𝑖𝑓 𝜎2 ≤ 𝑟2 < 𝜎3
±휀11, 𝑖𝑓 𝜎3 ≤ 𝑟2 < 𝜎4
±휀12, 𝑖𝑓 𝜎4 ≤ 𝑟2 < 𝜎5

0, 𝑖𝑓 𝑟2 ≥ 𝜎5

  (4) 

where rij is the distance between two charges and the signs of 

the potential are negative for unlike charges and positive for like 

charges. The magnitudes of the energies, 휀1 = 2.244, 휀2 =

1.648, 휀3 = 1.088, 휀4 = 0.733, 휀5 = 1.195, 휀6 = 0.785, 휀7 =

0.303, 휀8 = 0.148, 휀9 = 1.556, 휀10 = 1.063, 휀11 = 0.633, 

휀12 = 0.192 as well as the locations for the well boundaries, σ2 

= 0.45σ, σ3 = 0.595σ, σ4 = 0.9σ, and σ5 = 1.10σ are chosen to 

approximate the Yukawa potential, which is the screened 

Coulomb potential. The Yukawa potential, 𝑈(𝑟∗), is the 

potential energy between a pair of charges of opposite signs,57 

and is defined as: 

 
𝑈(𝑟∗) = −휀 𝑟∗⁄ 𝑒𝑥𝑝(−𝜅∗(𝑟∗ − 1))  (5) 

where 휀 is a constant related to the strength of interaction, 𝜅∗ 

is the reduced inverse Debye length, and 𝑟∗ is the reduced 

distance between charges and is defined as 𝑟∗ = 𝑟 𝜎⁄ . We chose 

parameters for the Yukawa potential based on 20 nm diameter 

gold nanorods synthesized by Kozek et al.58 and Maity et al.36 

and suspended in a 10−5 M NaCl solution. From these values, 

we calculate the Debye length, 1 𝜅⁄ , to be 96.1 nm using the 

formula for monovalent electrolytes 1 𝜅⁄ = 0.304 [𝑁𝑎𝐶𝑙]0.5⁄ , 

where [NaCl] is the concentration of NaCl. From the Debye 

length, the reduced Debye length, 𝜅∗ = 𝜎𝜅, is 0.208. The 

reduced temperature for our simulations is 𝑇∗ = 𝛼𝑘𝐵𝑇 휀⁄ , 

where 𝑘𝐵  is the Boltzmann constant, ε is the constant in the 

Yukawa Potential, and 𝛼 is 0.864. The value for 𝛼 is calculated 

by setting the Yukawa potential in Equation (5) equal to the 

simplified Coulomb potential, 𝑈𝑐(𝑟
∗) = 1 𝑟∗⁄ , at 𝑟∗ = 0.3 the 

distance of closest approach for two charged discs in our 

simulations.  

 The energy values 휀1 through 휀12 in Equations (2)-(4) were 

chosen to fit the continuous Yukawa potential in Equation (5). 

This was done by calculating the total Yukawa potential 

between the four charges on two colloids in the configurations 

shown in Table 1. The energy values of the discontinuous 

potentials were then selected so that the total discontinuous 

interaction energy matched as best as possible to the total 

Yukawa potential. Emphasis was placed on developing a 

discontinuous potential that would match the interaction 

energies of the small colloidal aggregates that have been seen 

in previous experimental and simulation investigations on 

single-component systems (two colloids in head-to-tail and 

side-by-side orientations and three discs in a close packed 
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staggered chain as shown in the first column of Table 1). Figure 

2(a)-(c) show the charge-charge discontinuous potentials 

(black) as a function of the distance between charges (a) on two 

rods, (b) on two discs, or (c) on one rod and one disc. The total 

Yukawa potential (red) between the respective colloids aligned 

head-to-tail as a function of the distance between the closest 

charges is shown for comparison. The hashed-out regions of the 

potentials in Figure 2 indicate the areas of the charged discs’ 

energy wells that are inaccessible due to the hard sphere 

boundary of the hard disc or hard rod on which the charge 

resides.  

 The locations of the discontinuities in the potential 

energy were chosen to highlight structural features commonly 

seen in dipolar colloids. The first well distance, between 𝜎1 and 

𝜎2, was chosen to allow the colloids to form head-to-tail chains. 

The second well distance, between 𝜎2 and 𝜎3, gives a region 

where the colloids can come together at an angle and for the 

creation of “Y-shaped” junctions. The third well, between and 

𝜎3 and 𝜎4, describes the interaction between the dipoles in the 

close packed staggered chain configuration. The fourth well, 

between and 𝜎3 and 𝜎4, describes the region where colloids can 

come together in a side-by-side orientation. 

We chose to compare the charge-charge discontinuous 

potential to the total Yukawa potential between colloids 

because, for the majority possible of orientations and 

configurations between two colloids, the only charges that will 

“feel” each other in our discontinuous potential are the two 

charges nearest to each other. Therefore, we designed our 

discontinuous potential so that two interacting charges would 

well approximate the total interaction between colloids. 

However, when two colloids are in a configuration in which a 

charge on one colloid “feels” both charges on an adjacent 

colloid, the result is a total discontinuous energy of interaction 

that is not a monotonic function of the distance between the 

closest charges. This means that two colloids can become more 

attractive as they move further apart, falling into local energy 

minimums. This is particularly true for the dipolar discs because 

the range of the potential is longer than the diameter of discs. 

To create a monotonically increasing function of the 

discontinuous potential energy as a function of the distance 

between closest charges would have required that the 

discontinuous potential be cut off at a very short distance to 

prevent a charge on one colloid from interacting with both 

charges on an adjacent colloid. The short cutoff would have 

resulted in a potential that was unable to account for side-by-

side and close packed staggered chain interactions. See 

supplemental information for a detailed discussion of this. To 

minimize the impact of these local energy minima we ran the 

simulations for a larger number of collisions to give the colloids 

time to escape local energy minimums. Additionally, we 

repeated simulations with a shorter-range potential which 

minimized occurrence of these local minimums and found 

substantially the same results as we have presented here.  

Methods 

 We performed simulations on two mixtures of dipolar rods 

and discs: one in which the numbers of rods and discs are equal 

(“equal number mixture”), and the other in which the areas of 

the rods (𝜙𝑅) and discs (𝜙𝐷) are equal (“equal area mixture”). 

In the equal number mixture, there were NR = 500 dipolar rods 

and ND = 500 dipolar discs. In the equal area mixture, there were 

NR = 500 rods and ND = 2328 discs. Detailed discussion of the 

results for single component dipolar discs and dipolar rods can 

be found in the work by Schmidle et al.31 and by Rutkowski et 

al.40 respectively. Because the discontinuous potentials used in 

those two papers were slightly different than is used in the 

current investigation, we have performed single-component 

Table 1: Total interaction energy, Uij, between all pairs of charges for the two- and 

three- particle configurations shown in the first column. The second column gives 

the energy of the corresponding configuration based on the Yukawa potential for 

the four charge-charge interactions between pairs of charges on different colloids. 

The third column shows the expression for the total discontinuous potential for 

each configuration based on the energy well cut-offs described by Equations (2)-(4). 

The fourth column gives the resulting total DMD interaction potential between the 

four charges based on the expressions in column three. 

Figure 2: Plot of the discontinuous interaction potential between two charged discs (black) versus the distance between the center of two charges of opposite sign for 

interactions between charges (a) on two rods, (b) on two discs, or (c) on a rod with a charge on a disc. The total Yukawa potential for the interactions between the four 

charges on two colloids in a head to tail orientation (red) is shown for comparison.
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simulations containing either 500 dipolar rods or 500 dipolar 

discs to allow for direct comparison of phase boundaries and 

structures formed by mixtures to those found in the single-

component systems. 

Discontinuous molecular dynamics (DMD) simulations are 

carried out in a square 2-d simulation box with periodic 

boundary conditions in the NVT ensemble. DMD simulations 

proceed by calculating the forces acting on particles only when 

particles are separated by a distance that corresponds to a 

discontinuity in the potential, making DMD a fast alternative to 

traditional molecular dynamics. Constant temperature is 

achieved using the Andersen thermostat, which is implemented 

by periodically selecting a random particle to undergo a collision 

with a “ghost” particle.59 The collisions with the “ghost” particle 

creates a system whose temperature has a Boltzmann 

distribution around the set temperature. The simulations are 

carried out by using a simulated annealing process. The 

simulated annealing process proceeds by heating colloids at a 

fixed area fraction (𝜙 ≡ 𝜙𝑅 + 𝜙𝐷) at a high temperature, 𝑇∗ =

0.6, for approximately four billion collisions to obtain a random 

configuration. After this, the random configuration is cooled in 

discrete temperature steps, each lasting for one billion 

collisions with data collected every five million collisions over 

the final seven hundred million steps before moving on to the 

next step. This sampling rate results in 140 configurations at 

each temperature, which are used in determining phase 

transitions. Large temperature steps are used at high 

temperature since the colloids readily reach equilibrium when 

little or no aggregation is occurring. We use smaller 

temperature steps at lower reduced temperatures to allow the 

colloids to reach equilibrium. These small steps allow us to 

accurately capture the aggregation behavior. Three simulated 

annealing simulations were performed for each system, and 

data is averaged over these three runs. 

 To quantify the extent of aggregation of the dipolar colloids 

in our simulations, we define polymerization and clustering 

criteria. A pair of colloids is considered to be polymerized if a 

charge on one colloid lies within 1.1σ of an opposite charge on 

the other. This distance corresponds to the outermost energy 

well of our discontinuous potential. Two colloids polymerized in 

this manner would be considered a cluster of two particles. If a 

charge on a third colloid is also within 1.1σ of an opposite 

charge on a colloid in a polymerized pair, then all three colloids 

will be in the same cluster. If the charges have the same sign 

they are not considered to be in a cluster since this would be a 

repulsive interaction. 

The extent of polymerization, Φ(𝑇∗), is a measure of how 

many colloids have polymerized with at least one other colloid. 

It is defined as the ensemble average of the number of colloids 

that have polymerized, Na, divided by the total number of 

colloids in the simulation box, N.  

 Φ(𝑇∗) = 〈Na N⁄ 〉 (6) 

We define four parameters: ΦR−R(𝑇
∗), ΦD−D(𝑇

∗), ΦR−D(𝑇
∗), 

and ΦD−R(𝑇
∗) to calculate the extent that rods have 

polymerized with other rods,  discs have polymerized with other 

discs, rods have polymerized with discs, respectively. 

 ΦR−R(𝑇
∗) = 〈NR−R NR⁄ 〉 (7) 

 ΦD−D(𝑇
∗) = 〈ND−D ND⁄ 〉 (8) 

 ΦR−D(𝑇
∗) = 〈NR−D N𝑅⁄ 〉 (9) 

 ΦD−R(𝑇
∗) = 〈ND−R N𝐷⁄ 〉 (10) 

where NR-R is the number of rods that polymerize with at least 

one other rod, ND-D is the number of discs that polymerize with 

at least one other disc, NR-D is the number of rods that 

polymerize with at least one disc and ND-R is the number of discs 

that polymerize with at least one rod. Note that NR-D is not the 

same as ND-R as seen in Figure 3.  

 We also define a fifth parameter: ΦC(𝑇
∗) is the sum of the 

number of rods that have polymerized with discs and the 

number of discs that have polymerized with rods divided by the 

total number of particles. 

 ΦC(𝑇
∗) = 〈(NR−D + ND−R ) N⁄ 〉 (11) 

When the extent of polymerization in Equations (7)-(11) is close 

to zero it means that the colloids are in the fluid phase. When 

Φ(𝑇∗) is close to 1 it means the colloids have polymerized and 

have formed a string fluid. 

We plot the extents of polymerization given in Equations (7) 

and (8) versus temperature at each area fraction to find the 

transition temperature between a fluid and string fluid as 

shown for example in the inset of Figure 4. The general trend 

for ΦR−R(𝑇
∗) and ΦD−D(𝑇

∗) at low 𝜙 is that at high 

temperatures the extent of polymerization is low, and as the 

temperature is lowered the extent of polymerization rises 

rapidly, plateauing near 1. The rod fluid to rod string-fluid 

transition temperature is defined to be the 𝑇∗ value at the 

inflection point in the curve fitted to the ΦR−R(𝑇
∗) versus 𝑇∗ 

data. The disc fluid to disc string-fluid transition temperature is 

defined to be the 𝑇∗ value at the inflection point in the curve 

fitted to the ΦD−D(𝑇
∗) versus 𝑇∗ data. At these temperatures 

the colloids go from a disordered fluid to a string-fluid consisting 

of small clusters of rods (Equation (7)) or discs (Equation (8)).  

This definition for the fluid to string-fluid transition 

temperature works well at low area fractions where the fluid 

phase (low extent of polymerization) is evident. At higher area 

fractions, however, the values of ΦR−R(𝑇
∗) and ΦD−D(𝑇

∗) are 

large (> 0.8) even at high temperature, which indicates that 

most of the colloids are already clustered and no clear fluid 

Figure 3: Examples of 𝛷𝑅−𝐷, 𝛷𝐷−𝑅, and 𝛷𝐶  calculations for a simple four particle 

system. 

Page 5 of 12 Soft Matter



ARTICLE Journal Name 

6 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

phase can be discerned by examining the extent of 

polymerization. Therefore, instead of transitioning from a fluid 

to a string-fluid, the colloids undergo a transition from a state 

where most are clustered to a state where all are clustered at 

high area fractions.   

To determine when the colloids undergo a transition from a 

string-fluid phase to a “gel” phase, we measure the percolation 

probability, 𝛱(𝑇∗). The percolation probability gives the 

probability of finding a network that is percolated, where 

percolation is defined as a cluster that spans the simulation box 

and connects back to itself through the periodic boundaries. We 

note that percolation is a prerequisite for gelation, but it is not 

sufficient by itself to declare a system a gel (which also has 

specific dynamic properties).40 The percolation probability is 

defined as: 

 𝛱(𝑇∗) = ⟨𝐶𝑝𝑒𝑟 𝐶⁄ ⟩ (12) 

where 𝐶𝑝𝑒𝑟  is the number of percolated particle configurations 

at a temperature 𝑇∗ and 𝐶 is the total number of configurations 

measured at that temperature.  The percolation temperature 

(the temperature at which a system undergoes a transition 

between a system that is not percolated and one that is 

percolated) is defined to be the 𝑇∗ value at the inflection point 

of a curve fitted to a plot of percolation probability versus 

reduced temperature.60 

Results  

Fluid phases 

At high 𝑇∗ the dipolar colloids form a disordered fluid phase 

as seen in simulations of hard sphere and hard rod models. We 

do not see any entropically driven phase separation into rod-

rich and disc-rich phases at the area fractions investigated. 

Additionally, the aspect ratio of the rods in our model are below 

the aspect ratio at which we would expect to see the liquid 

crystal nematic or smectic phases. As we will see below, the 

colloids begin to cluster as the temperature is lowered and the 

shape anisotropy and dipolar anisotropic interactions both 

become important.  

Disc-Disc and Rod-Rod Polymerization 

The first transition that the mixtures undergo as the 

temperature is lowered at fixed area fraction is from a 

disordered fluid to a string-fluid. The string-fluid phase consists 

of short chains of clustered colloids. We compare the mixtures’ 

fluid to string-fluid transition temperatures for each area 

fraction simulated to that of the single component reference 

systems in Figure 4. Looking first at the behavior of the dipolar 

discs (blue curves), we see that the transition from a fluid to a 

disc string-fluid occurs at an approximately constant 𝑇∗ as area 

fraction is increased for both mixtures considered in this paper. 

Additionally, the fluid to disc string-fluid transition occurs at 

lower reduced temperature in the mixtures than for single-

component dipolar discs, particularly at high area fractions. 

From this we conclude that the addition of dipolar rods to a 

system of dipolar discs greatly suppresses the formation of the 

disc string-fluid. Next, we consider the behavior of the dipolar 

rods (red). For the equal area mixture, the fluid to rod string-

fluid transition occurs at an approximately constant 𝑇∗ as area 

fraction is increased, and this 𝑇∗ is significantly lower than the 

transition temperature for pure rods. The equal number 

mixture exhibits a fluid to rod string-fluid transition at lower 𝑇∗ 

than pure rods, but not as low as for the equal area mixture. The 

equal number fluid to rod string-fluid transition occurs at higher 

𝑇∗ as area fraction increases, following a linear trend like that 

seen for dipolar rods. From this we conclude that a significant 

number of discs need to be added to dipolar rods to have a 

marked impact on rod polymerization. 

Rod-Disc Polymerization 

    The rod-disc extent of polymerization for both mixtures 

displays much more complex behavior than seen in either the 

rod-rod or disc-disc extents of polymerization. See for example 

the comparison of the 𝛷𝑅−𝐷(𝑇
∗), 𝛷𝐷−𝑅(𝑇

∗), 𝛷𝐶(𝑇
∗) and 

𝛷𝐷−𝐷(𝑇
∗) versus 𝑇∗ curves in Figure (a) for the equal number 

mixture. At high 𝑇∗ the rod-disc extent of polymerization is 

greater than the disc-disc extent of polymerization. The rod-disc 

extent of polymerization increases at 𝑇∗ decreases until it 

reaches a local maximum value, which occurs when 

𝛷𝑅−𝐷(𝑇
∗) ≅ 𝛷𝐷−𝐷(𝑇

∗). Thereafter, 𝛷𝐷−𝐷(𝑇
∗) rises rapidly as 

𝑇∗ decreases, while 𝛷𝑅−𝐷(𝑇
∗) decreases until it reaches a local 

minimum which occurs at approximately the same temperature 

as the inflection point in the disc-disc extent of polymerization. 

After this, 𝛷𝑅−𝐷(𝑇
∗) again grows as 𝑇∗ is lowered until the end 

of the simulated annealing procedure. In the equal number 

mixture, the values of 𝛷𝐷−𝑅(𝑇
∗) and 𝛷𝐶(𝑇

∗) closely match 

those of 𝛷𝑅−𝐷(𝑇
∗). 

The behavior of the rod-disc extent of polymerization in the 

equal number mixture can be explained by examining snapshots 

of simulations as temperature is reduced. The snapshot in 

Figure (b) depicts an equal number mixture at the temperature 

Figure 4: Transition from fluid to string-fluid as 𝑇∗ decreases for dipolar rods (red) 

and dipolar discs (blue) for simulations of an equal number of rods and discs 

(squares), an equal area of rods and discs (diamonds), only discs (triangles) or only 

rods (circles). The inset shows the curve fitted to extent of rod-rod polymerization 

versus temperature data (black squares) for an equal number mixture at 𝜙 = 0.20; 

this curve is characteristic of all the rod-rod and disc-disc extents of polymerization 

seen in the mixtures. The inflection point of the fitted curve is marked (red circle).

Page 6 of 12Soft Matter



Journal Name  ARTICLE 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 7  

Please do not adjust margins 

Please do not adjust margins 

at which 𝛷𝑅−𝐷(𝑇
∗) is a maximum. In this figure, we see a loose 

network of chains of dipolar rods that are aligned head-to-tail. 

Most rod-disc polymerized pairs observed at this temperature 

have the rods and discs at a distance that corresponds to the 

third energy well, indicating that the discs have polymerized at 

the junctions between two head-to-tail aligned rods. Below this 

temperature, as shown in Figure (c), the clustering between rod 

and discs is reduced in favor of coarse strands of rods that come 

together through side-by-side interactions. The formation of 

coarse chains of head-to-tail aligned rods limits the number of 

sites available for forming head-to-tail aligned rod-disc pairs, 

even though this interaction is stronger than head-to-tail 

aligned discs. At this temperature, the beginning of the 

formation of a disc-disc string-fluid phase in the voids between 

the chains of rods is also apparent. As the temperature is 

reduced to that at which 𝛷𝑅−𝐷(𝑇
∗) is a minimum, Figure (d), 

just below the formation of the disc-string-fluid, we can see a 

large number of short disc-disc chains with a few of these disc 

strings tethered to a network primarily formed by rods. 

The behavior of the rod-disc polymerization in the equal 

area mixture, shown in Figure (a), mirrors that of the rod-disc 

polymerization in the equal number mixture with the notable 

exception that significantly more of the rods are polymerized 

with at least one disc. The snapshots in Figure 6: (a) Comparison 

between disc-disc (blue), rod-disc (brown), disc-rod (green), and 

combined (purple) extent of polymerization for an equal area 

mixture at φ = 0.30. DMD simulation snapshots at (b) 𝑇∗ = 0.17, 

the maximum in 𝛷𝑅−𝐷, (c) 𝑇∗ = 0.12, the inflection point in 𝛷𝐷−𝐷, 

and (d) 𝑇∗ = 0.11, thin minimum in 𝛷𝑅−𝐷. Dipolar rods are 

shown in green and dipolar discs are shown in purple. show that 

as the equal area system cools, the dipolar rods exhibit chain 

formation and coarsening behavior that is similar to that seen 

in the equal number system, but to a lesser extent. This leaves 

many sites available for the formation of head-to-tail aligned 

rod-disc pairs. The sum of the number of rod-to-disc and disc-

to-rod polymerizations, 𝛷𝐶(𝑇
∗), remains low due to the large 

number of discs in the system. 

The complex behavior exhibited by 𝛷𝑅−𝐷(𝑇
∗) makes it 

difficult to define when the mixtures exhibit rod-disc 

polymerization as we did for rod-rod and disc-disc 

polymerization where we looked for inflections points in 

𝛷𝑅−𝑅(𝑇
∗) and 𝛷𝐷−𝐷(𝑇

∗). There is no clear string-fluid phase 

where the strings are composed of small chains of rods and 

discs bonded to each other. Instead we use 𝛷𝐶(𝑇
∗) to gain 

information about the structure of the percolated networks. 

We define the transition from a percolated network made 

primarily of rods to a percolated network that consists of large 

numbers of rods and discs. The temperature at which this 

transition occurs is found by finding the inflection point in a 

curve fit to 𝛷𝐶(𝑇
∗) in the region between 𝑇∗ = 0.1 and the local 

minimum. 

“Gel” Phases and Percolation 

We compare area fraction vs. percolation temperature 

curves of the two mixtures to those of the two single-

component references in Figure (a). All four systems follow the 

general trend that at low area fraction the systems percolate at 

low 𝑇∗, and as area fraction increases, the percolation 

temperature also increases. For low area fractions, 𝜙 < 0.4, 

𝑇𝑝𝑒𝑟𝑐(pure rods) > 𝑇𝑝𝑒𝑟𝑐(EN) > 𝑇𝑝𝑒𝑟𝑐(EA) >

𝑇𝑝𝑒𝑟𝑐(pure discs). Additionally, each system has a 

characteristic area fraction above which it is not possible to 

calculate a percolation phase transition (𝜙𝑚𝑎𝑥) because the 

system percolates even at high temperatures. This point occurs 

at 𝜙𝑚𝑎𝑥 = 0.45 for the pure dipolar discs, 𝜙𝑚𝑎𝑥 = 0.50 for the 

Figure 5: (a) Comparison between disc-disc (blue), rod-disc (brown), disc-rod 

(green), and combined (purple) extent of polymerization for an equal number 

mixture at φ = 0.30. DMD simulation snapshots at (b) 𝑇∗ = 0.19, the maximum in 

𝛷𝑅−𝐷, (c) 𝑇∗ = 0.13, the inflection point in 𝛷𝐷−𝐷, and (d) 𝑇∗ = 0.11, thin 

minimum in 𝛷𝑅−𝐷. Dipolar rods are shown in green and dipolar discs are shown in 

purple.

Figure 6: (a) Comparison between disc-disc (blue), rod-disc (brown), disc-rod 

(green), and combined (purple) extent of polymerization for an equal area mixture 

at φ = 0.30. DMD simulation snapshots at (b) 𝑇∗ = 0.17, the maximum in 𝛷𝑅−𝐷, (c) 

𝑇∗ = 0.12, the inflection point in 𝛷𝐷−𝐷, and (d) 𝑇∗ = 0.11, thin minimum in 𝛷𝑅−𝐷. 

Dipolar rods are shown in green and dipolar discs are shown in purple.
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equal area mixture, 𝜙𝑚𝑎𝑥 = 0.60 for the equal number mixture, 

and 𝜙𝑚𝑎𝑥 = 0.70 for the pure dipolar rods. These values 

suggest that a mixture will have a lower value of 𝜙𝑚𝑎𝑥  as the 

area occupied by discs increases relative to the area occupied 

by rods, or, to put it conversely, 𝜙𝑚𝑎𝑥  increases as rods are 

added to a system. 

We gain more insight into the structure of the percolated 

networks formed by the mixtures when we analyze the 

composition of the first percolated chain at each area fraction 

(in each run). We define FR (FD) as the number of rods (number 

of discs) in the first percolated chain divided by the total 

number of colloids in the first percolated chain. We compare 

the percolation temperatures of the pure rod reference to the 

equal number mixture. We see that for 𝜙 < 0.55 the systems 

percolate at similar 𝑇∗, but above 𝜙 = 0.55 the percolation 

temperatures diverge with the mixture percolating at a higher 

𝑇∗ Figure (a). The plot of FR and FD versus area fraction for the 

equal number mixture, Figure (b, top), shows that for 𝜙 ≤ 0.50, 

the first percolated network is primarily composed of rods, but 

above 𝜙 = 0.55, FD > FR. Next, we compare the percolation 

temperatures of the pure disc reference to the equal area 

mixture. We see that for 𝜙 < 0.35 the systems percolate at 

similar 𝑇∗, but above 𝜙 = 0.45 the percolation temperatures 

diverge with the pure discs percolating at a higher 𝑇∗. The plot 

of FR and FD versus area fraction for the equal number mixture, 

Figure (b, bottom), shows that FD > FR for all area fractions.  

From the above observations, we draw two conclusions 

about the percolation behavior of mixtures. The first conclusion 

that we make is that rods play a key role in percolation at low 

area fraction. A mixture in which rods are present in abundance 

(𝜙𝑅 ≫ 𝜙𝐷) will percolate at higher 𝑇∗ then a mixture where 

𝜙𝑅 = 𝜙𝐷. When rods make up the bulk of the occupied area, 

there is a greater chance for pairs of rods to interact, and these 

interactions are more likely to form clusters because of the 

stronger energy of interaction between pairs of rods then 

between rods and discs or pairs of discs. This results in system-

spanning clusters that contain many rods and few discs as seen 

in the equal number mixture. The second conclusion we make 

is that discs play a key role in percolation at high area fractions. 

At high 𝜙 in both mixtures, the first percolated network was 

primary composed of discs. This could be due to the dipolar 

discs having a smaller excluded area than the dipolar rods, 

which makes it easier for the discs to arrange in attractive 

configurations at high area fraction where jamming could occur. 

An analysis of the pore size distribution in the “gel” phases 

below percolation shows that at constant area fraction, the 

probability of finding a given pore size decreases monotonically 

with pore size, with no characteristic pore size. Additionally, as 

𝜙 increases, there is a decreased probability of finding large 

pores. 

Figure 7: (a) Transition from non-percolated network to percolated network as 

temperature is reduced for dipolar rods (red), equal number rods and discs (blue), 

equal area rods and discs (purple) and dipolar discs (black). (b) The fraction of rods 

(red), and the fraction of discs (blue) in the first percolated chain at each area 

fraction for the equal number mixture (top) and the equal area mixture (bottom).

Figure 8: Phase diagram for a mixture of equal number of dipolar rods and discs 

plotted in the area fraction vs. temperature plane. Fluid (I), rod string-fluid with disc 

fluid (II), rod “gel” with disc fluid (III), rod “gel” with disc string-fluid (IV), and rod 

and disc “gel” (V) phases are present. Zoomed-in sections of the full simulation cell 

are shown to highlight the structural differences between the phases. See 

supplemental information for images of the full simulation cell. 

Page 8 of 12Soft Matter



Journal Name  ARTICLE 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 9  

Please do not adjust margins 

Please do not adjust margins 

Phase Diagram: Equal Number Case 

 The phase transitions for the equal number mixture are 

summarized in a phase diagram in the area fraction versus 

temperature plane, Figure . As the system is slowly cooled 

starting from a reduced temperature of 6.0, the first transition 

that occurs is from a fluid (labeled “I” in Figure ) to a rod string-

fluid (II) which is characterized by small clusters of dipolar rods, 

arranged primarily in head-to-tail orientations. There are very 

few clusters of discs with other discs, or of rods and discs. Next 

the rod-string fluid transitions to a rod “gel,” (III) a percolated 

network that is primarily composed of dipolar rods clustered to 

each other in a head-to-tail orientation. As discussed in the 

section on rod-disc polymerization there are some discs 

incorporated into the percolated network, primarily serving as 

junctions between clusters of rods or as the terminating colloid 

in a chain of rods. As the system is further cooled, the rod “gel” 

begins to coarsen through side-by-side chain interactions, and 

the discs that were clustered with rods begin to break away 

from the rod “gel” and form their own clusters; a disc string-

fluid (IV). The final transition occurs when the disc string-fluid 

gets incorporated into the rod “gel” to form a rod and disc “gel” 

(V). When this rod and disc “gel” initially forms it is 

characterized by short chains of dipolar discs attached to a 

large, coarse network of dipolar rods. Upon further cooling the 

dipolar short chains of dipolar discs condense into clusters of 

discs with hexagonal order.  

Phase Diagram: Equal Area Case 

 The phase transitions for the equal area mixture are 

summarized in a phase diagram in the area fraction versus 

temperature plane, Figure 9. Note that there are ~4.5 times as 

many discs as rods in this system. Most of the phases seen in 

this mixture are similar to those in the equal number mixture, 

although there are noticeable differences. The rod “gel” that 

forms in regions III and IV of the equal area phase diagram 

contains a significantly greater number of dipolar discs than in 

the corresponding regions for the equal number mixture. The 

rod and disc “gel” (V) that forms at very low temperature 

consists of discrete clusters of rods connected to each other 

through clusters of discs instead of the large, system-spanning 

rod cluster in the equal number mixture. Finally, the equal area 

mixture has an additional phase (VI) that occurs at low area 

fractions and consists of both a rod string-fluid and a disc string-

fluid, with few of the strings containing both rods and discs.  

Discussion and conclusions 

We have calculated phase diagrams for equal-area and 

equal-number mixtures of dipolar colloidal rods and dipolar 

colloidal discs using discontinuous molecular dynamics 

simulations where the charge-charge discontinuous potential 

approximates the Yukawa potential. The structures displayed by 

these mixtures included fluid, string-fluid, and “gel” phases. 

Additionally, we see separation between the two species: rods 

preferring to polymerize with other rods, discs polymerizing 

with other discs, but significantly fewer instances of rods 

polymerizing with discs. This gives rise to states where dipolar 

rods exist primarily in one structure and dipolar discs in a 

second structure, for instance state III in Figure  and Figure 9 

where the rods form a “gel” while the discs remain interspersed 

as a fluid. We compare the transitions of the two mixtures to 

those found for pure dipolar rods and pure dipolar discs. 

Through this comparison we see that the addition of a small 

number of dipolar rods to pure dipolar discs suppresses dipolar 

disc polymerization, however the addition of a small number of 

dipolar discs to pure dipolar rods does not significantly impact 

dipolar rod polymerization. Dipolar rod polymerization is 

suppressed only when a large number of dipolar discs are added 

to the pure rod system. 

 Our results reveal complex phase behavior that arises in 

mixtures of mutually attractive colloidal particles.  We have 

focused on the case where the rods and discs are of similar size 

so that structure formation is driven by dipolar interactions and 

not entropic effects. We find that mixtures of dipolar rods and 

discs follow a general assembly pathway that begins with the 

formation of energetically favorable head-to-tail chains of rods. 

Once the rods form long chains with each other, there are a 

limited number of sites available to form chains of mixed rods 

and discs aligned head-to-tail. Because of this, the next step in 

the assembly pathway is that discs begin to form head-to-tail 

Figure 9: Phase diagram for a mixture of equal area of dipolar rods and discs plotted 

in the area fraction vs. temperature plane. Fluid (I), rod string-fluid with disc fluid 

(II), rod “gel” with disc fluid (III), rod “gel” with disc string-fluid (IV), rod and disc 

“gel,” (V) and rod and disc string-fluid (IV) phases are present. 
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aligned chains with other discs. The final step in the general 

assembly pathway is that chains of rods and discs interact 

through side-by-side and close packed staggered chain 

interactions, which causes branching and coarsening of chains. 

Knowledge of this general pathway helps us to understand how 

the assembly of mixtures is impacted by the mixture 

composition, strength of interaction between species, and the 

temperature. Mixtures that have a large area fraction of rods 

relative to the area fraction of discs could be used to form gels 

that encapsulate the discs, and this could have useful for drug 

delivery applications. Mixtures with an equal area fraction of 

rods and discs could have interesting rheological properties as 

they could contain gels that have separate domains for rod rich 

and disc rich clusters.  

 The phase diagrams calculated in this work can aid 

experimentalists in understanding the complex aggregation 

behavior seen in colloidal mixtures. The phase separation 

induced through different strengths of attractive and repulsive 

interactions exhibited between colloids of different shapes in 

our model could offer a new avenue to control colloidal 

aggregation. Dipolar particles can be created from different 

shapes and materials that, when mixed together, could create 

novel temperature-sensitive surface coatings that take 

advantage of the fact that different particle types form clusters 

at different temperature. In three dimensions these mixtures 

could form networks similar to the bicontinuous gels seen in 

mixtures of dipolar spheres of different sizes,45 however it is 

difficult to predict how head-to-tail aligned chains of dipolar 

rods would form side-by-side interactions with each other. 

Further study in this area would be of interest. 

 Our use of DMD was driven by our desire to quickly explore 

the phase space for these mixtures so as to provide insight to 

experimentalists about the conditions necessary to form phases 

that may be of interest. The advantage of DMD is that we can 

simulate many systems with modest computational resources 

compared to the traditional techniques such as molecular 

dynamics used with a continuous potential. Our choice of a 

short-range potential was driven by our focus on replicating the 

environment found in high salt concentrations where charge-

charge interactions are screened by electrolytes. Simulation 

results using similar short-range discontinuous potentials have 

shown good qualitative agreement with both experimental 

results for dipolar spheres and results from simulations on 

dipolar spheres that account for true dipolar interactions more 

rigorously. An additional benefit of the short-range 

discontinuous potential is that accounting for long-range 

interactions is often the most time-consuming part of a 

simulation involving a continuous potential. Several other sets 

of discontinuous potentials designed and used in simulations to 

verify the results obtained using the potentials summarized by 

Equations (2)-(4). These potentials varied from the one reported 

in this paper by changing the number of steps in the potential, 

the location of boundaries between steps, and the energy 

values of each step. The phase diagrams calculated based on 

these other potentials largely agree with the above results. 

There were, however, some differences in the local structures 

formed by these other potentials. If the first well (representing 

the strongest interaction energy) was broad, the colloids would 

form more “Y-shaped” junctions and fewer head-to-tail chains, 

resulting in the dipolar rods forming a structure similar to that 

of a triangular truss instead of the structures depicted in Figure 

Figure 9. If additional steps were included beyond 1.1σ, the 

colloids formed “staggered chains,” such as those found in 

magnetic Janus particles, where adjacent beads on the same 

side of the chain do not touch.61  
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We calculate phase diagrams for dipolar rod and disc mixtures and compare mixture phases to those of 

single component systems.  
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