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Role of Stefan-Maxwell fluxes in the dynamics of con-
centrated electrolytes

Bhavya Balu and Aditya Khair

This theoretical analysis quantifies the effect of coupled ionic fluxes on the charging dynamics of
an electrochemical cell. We consider a model cell consisting of a concentrated, binary electrolyte
between parallel, blocking electrodes, under a suddenly applied DC voltage. It is assumed that
the magnitude of the applied voltage is small compared to the thermal voltage scale, RT/F , where
R is the universal gas constant, T is the temperature and F is the Faraday’s constant. We employ
the Stefan-Maxwell equations to describe the hydrodynamic coupling of ionic fluxes that arise in
concentrated electrolytes. These equations inherently account for asymmetry in the mobilities of
the ions in the electrolyte. A modified set of Poisson-Nernst-Planck equations, obtained by incor-
porating Stefan-Maxwell fluxes into the species balances, are formulated and solved in the limit
of weak applied voltages. A long-time asymptotic analysis reveals that the electrolyte dynamics
occur on two distinct time scales. The first is a faster “RC” time, τRC = κ−1L/DE , where κ−1 is the
Debye length, L is the length of the half-cell, and DE is an effective diffusivity, which characterizes
the evolution of charge density at the electrode. The effective diffusivity, DE , is a function of the
ambi-polar diffusivity of the salt, Da, as well as a cross-diffusivity, D+−, of the ions. This time scale
also dictates the initial exponential decay of current in the external circuit. At times longer than
τRC, the external current again decays exponentially on a slower, diffusive time scale, τD ∼ L2/Da,
where Da is the ambi-polar diffusivity of the salt. This diffusive time scale is due to the unequal ion
mobilities that result in a non-uniform bulk concentration of the salt during the charging process.
Finally, we propose an approach by which our theory may be used to measure the cross-diffusivity
in concentrated electrolytes.

1 Introduction
Electrolytes are prototypical soft matter; thermal fluctuations
of ions generate potential differences on the scale of the "ther-
mal voltage," RT/F , where R is the universal gas constant, T
is the temperature and F is Faraday’s constant. For instance,
RT/F ≈ 25mV at T = 298K. Consequently, the linear response
of ion transport in electrolytes can be probed by exposing these
materials to applied voltages on the order of RT/F . Indeed, ion
transport in electrolytes has been a subject of interest for many
decades.1–7 Practically, the capacitive nature of the electric dou-
ble layer1, formed when a charged surface is placed in contact
with an electrolyte, is critical in energy storage technologies such
as supercapacitors and rechargable batteries.8–13 Therefore, it is
important to quantify the dynamics of double layer charging in
electrochemical systems. Characterizing the dynamics of concen-
trated electrolytes is important in the light of recent studies that
have found that concentrated solutions in lithium ion batteries
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can increase the overall life of the cell.14,15 There is also inter-
est in using solvent-free electrolytes (e.g., ionic liquids), which
are naturally maximally concentrated, in energy storage appli-
cations.16–18 Theoretical predictions that exist for dilute elec-
trolytes need to be modified to predict the behavior of concen-
trated systems.19

A simple, yet instructive, system to study the diffuse charge
dynamics that underlie double layer formation is an electrochem-
ical cell containing a binary, initially electro-neutral electrolyte
between parallel, blocking, initially uncharged electrodes. The
dynamic response of such a model cell to suddenly applied static
and alternating voltages has been studied in detail for dilute
electrolytes.2–4,6 When a voltage is suddenly applied across the
cell, there is an initial current in the circuit that instantaneously
charges the electrodes, thus creating an electric field between
them. Microscopically, the ions in the electrolyte, on account of
being charged species, gradually migrate in this electric field to
oppositely charged electrodes. They form a diffuse layer of charge
near the electrodes, which effectively screens the applied poten-
tial and causes the initial current to decay. The system reaches a
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steady state when the entire applied potential is screened by the
ions, and the cell is then said to be charged. Macroscopically, this
corresponds to the current in the circuit decaying to zero.

Perhaps the simplest case to consider would be that of a di-
lute, symmetric electrolyte, where the ions have equal diffusivi-
ties, suddenly subject to a DC voltage, V , which is small compared
to the thermal voltage, RT/F . Further, it is assumed that the De-
bye length, κ−1, is much smaller than the length of the half-cell,
L, which is typically the experimentally relevant regime. Under
these circumstances, the cell can be modeled as an equivalent
resistor-capacitor circuit, with the double layers being capacitors
and the bulk electrolyte forming a resistor. Calculating the re-
sistance, R = (κ−1)2L/εrε0D , and the capacitance, C = εrε0/κ−1,
one can estimate the time scale for the charging of this cell as
the as the time constant for the charging of the R-C circuit,
τRC = κ−1L/D .3 Here, D is the common diffusivity of the ions,
εr is the relative permittivity of the medium, and ε0 is the permit-
tivity of free space. One could also obtain the charging time scale
using microscopic transport models to describe the electrolyte dy-
namics;2,4,6 that is, by solving the Poisson-Nernst-Planck (PNP)
equations for the spatio-temporal evolution of the concentration
of the ions. For dilute electrolytes, it is assumed that the ions
are point-sized and do not interact with each other. Therefore,
ion transport can be mathematically described by an equation re-
sembling Fick’s law, j± = m∇µ±, where j± is the flux density, m
is the mobility, and µ± = RT ln(n±)±Fφ is the electrochemical
potential of the ions,20 where n± is the number concentration
of the ions, and φ is the electric potential. Here, ‘+’ represents
the cations and ‘−’ represents the anions. Using this equation
in a species balance, ∂n±/∂ t = −∇ · j±, gives the Nernst-Planck
equations, which can be solved along with the Poisson equation,
∇2φ = −ρ/εrε0, to obtain the concentration profile of the ions,
n±, and the potential distribution, φ . Here, ρ = e(n+ − n−) is
the total space charge density, and e is the fundamental charge.
A detailed historical review and the derivation of the charging
time scale for a symmetric, dilute electrolyte is given by Bazant
et al.6 For concentrated systems, where the interactions between
ions cannot be neglected, this classic PNP model of dilute elec-
trolytes is of questionable validity. Consequently, there is a need
for a more sophisticated description of diffuse charge dynamics in
such systems.

There have been two broad contexts in which concentrated so-
lutions have been modeled previously. One approach is to account
for the steric interactions between finite sized ions by adding
an “excess” term to the electrochemical potential, µ±.21–24 One
could also modify the Poisson equation to account for short-range
electrostatic correlations25,26 In the context of the present prob-
lem, there has been interest in studying the dynamics of double
layer formation in the presence of ion crowding effects in a cell
with a concentrated electrolyte.21 Similar analysis has also been
performed for ionic liquids where there is no solvent.27 In these
analyses, the flux of each species was assumed to depend only on
its own electrochemical potential gradient, and the diffusivities of
the ions were assumed to be equal, for simplicity.

In the second approach to modelling concentrated elec-
trolytes, the general equations for multi-component diffusion,

ji = ∑ j Li j∇µ j, where Li j are phenomenological coefficients that
satisfy Onsager’s reciprocal relations28 and i and j can be ‘+’
(cation) or ‘−’ (anion), have been incorporated into the species
balance equations.20,29 Here, the flux of one species, j±, is de-
pendent on the thermodynamic driving forces, n±∇µ±, of all the
other species in the system. The general equation for multi-
component diffusion can also be written in the form of Stefan-
Maxwell fluxes,30 which balance the thermodynamic driving
force on an ion with the total hydrodynamic drag on it. In this
form, as elaborated in section 2, there is an explicit coupling be-
tween the ions characterized by a cross diffusivity, D+−. Further,
the Stefan-Maxwell fluxes inherently account for the asymmetry
in the mobilities of the ions. In the studies that use this approach,
there is no external electric field. Thus, every point in the so-
lution is electrically neutral; there is no double layer formation.
This theory has largely been used to obtain transport coefficients
like the ambi-polar diffusivity and conductivity of the neutral salt
in a concentrated solution.31,32

There has also been a handful of recent papers on the role of
Stefan-Maxwell fluxes in double layer charging. Pstalis and Far-
rel33–35 have formulated and numerically solved modified PNP
equations similar to those used in the current work that in-
clude Stefan-Maxwell fluxes for binary and ternary electrolyte
salts (corresponding to three and four component systems), us-
ing transport coefficients from an independent molecular dynam-
ics simulation. Gavish et al36 have developed a framework that
includes Stefan-Maxwell coupling as well as short-range steric in-
teractions, which describes different equilibrium structures of the
bulk solution and the diffuse layer for a wide range of concentra-
tions and size asymmetries of the ions in the electrolyte. Their
framework is able to predict the shift in electric potential from a
monotonous decay to decaying oscillations due to over-screening,
and, finally, a spatio-temporal instability characterized by non-
decaying oscillations of the potential in the cell.

Here, we formulate modified PNP equations that account for
coupled ionic fluxes in concentrated electrolytes, through the
Stefan-Maxwell equations for multi-component diffusion. These
modified PNP equations are subsequently linearized to enable an
analytical (as opposed to numerical) solution of the dynamics of
double-layer formation and the charging time scale for our model
cell. Our analytical approach yields significant physical insight
into the impact of Stefan-Maxwell fluxes on double charging.
Specifically, two distinct time scales arise from the solution, which
characterize the evolution of the external current across the cell.
The first is an RC time, κ−1L/DE , where DE is an effective diffu-
sivty which accounts for the effect of the cross fluxes between the
anion and the cation. Additionally, accounting for the difference
in the mobility of ions introduces a slower decay of the current
on the diffusive time scale, L2/Da, where Da is the ambi-polar
diffusivity of the salt. This diffusive time scale exists for dilute
as well as concentrated electrolytes; it arises as the unequal ion
mobilities generate a bulk concentration gradient of neutral salt
across the cell, which relaxes via diffusion. The Stefan-Maxwell
flux equations, the mathematical description of the problem, and
the solution procedure are outlined in section 2. The charging
dynamics are discussed in section 3. A conclusion is offered in
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section 4.

2 Problem formulation
2.1 Stefan-Maxwell fluxes
The Stefan-Maxwell equations relate the thermodynamic forces
driving the transport of a particular species to the hydrodynamic
drag caused by its motion relative to all the other species in the
solution. This approach allows us to explain the effect of cou-
pled ionic fluxes in concentrated solutions while also accounting
for the differences in diffusivities of the ions. Here, we have a
ternary system containing a binary, monovalent electrolyte with
cations (+) and anions (−), and a neutral solvent (0). The Stefan-
Maxwell equations for a ternary system are30

n+∇µ+ =
RT
nT

[
n0n+
D0+

(v0−v+)+
n+n−
D+−

(v−−v+)
]
, (1)

n−∇µ− =
RT
nT

[
n0n−
D0−

(v0−v−)+
n+n−
D+−

(v+−v−)
]
. (2)

As a first step, the ions are treated as point charges, therefore,
their electrochemical potential resembles that of an ideal mixture.
Hence, n±∇µ± = RT ∇n± ± n±F∇φ , represents the net thermody-
namic driving force as the sum of the driving forces for diffusion
and electro-migration; v± is the average local species velocity of
the ions; nT = n++n−+n0 is the total concentration of the three
species and Di j is the diffusivity of species i with respect to species
j (i and j can be ‘+’, ‘−’ or ‘0’).

Equations (1) and (2) are thus linear in the species velocity and
hence its flux, j± = n±v±, and can be solved to give an explicit ex-
pression for the flux in terms of the driving forces. This process
of rearranging the Stefan-Maxwell equations into the form of the
general equations for multi-component diffusion is largely sim-
plified for a ternary system. Equations (1) and (2) are solved
assuming that the solvent velocity v0 is zero. This is a simplify-
ing assumption that is made to enable an analytic solution. The
validity of this assumption is discussed further in section 3. The
fluxes thus obtained from the Stefan-Maxwell equations are

j+ =
−nT D0+

n0RT (n−D0++n+D0−+n0D+−){
n+D0−RT (∇n++∇n−)

+n+F∇φD0− (n+−n−)

+n0D+− (RT ∇n++n+F∇φ)
}
,

(3)

and

j− =
−nT D0−

n0RT (n−D0++n+D0−+n0D+−){
n−D0+RT (∇n++∇n−)

+n−F∇φD0+ (n+−n−)

+n0D+− (RT ∇n−−n−F∇φ)
}
.

(4)

Cathode Anode

Fig. 1 Schematic of the microscopic response of a model
electrochemical cell (of length 2L) to a suddenly applied voltage of 2V at
time, t = 0. Flow of electrons in the external circuit gives rise to an initial
current and charges the electrodes. Consequently, ions in the solution
form a diffuse layer of charge near the electrodes of width, O(κ−1). The
bulk solution is electrically neutral.

We now use these fluxes in the species balance equations to solve
for the concentration of the ions in the system as a function of
space and time. Note that equations (3) and (4) reduce to the
fluxes given by Fick’s law in the dilute limit, where the ion concen-
trations n+ and n− → 0, and the solvent concentration n0 → nT .
Further, observe that (3) and (4) introduce an explicit coupling of
the flux of one ion to the gradient of the concentration of another.
In dilute solutions, this coupling between the concentrations of
the anion and cation is implicit through the Poisson equation.

2.2 A model electrochemical cell

We consider a concentrated, binary, monovalent, initially electro-
neutral electrolyte between parallel, blocking, initially uncharged
electrodes, subject to a potential difference of 2V imposed at time
t = 0 (figure 1). The species balance equations (5), relate the
rate of change of the concentration of an ion, n±, to the diver-
gence of its total flux, j±. The Poisson equation for electrostatics
(6), which is the differential form of Gauss’ Law, relates the space
charge density in the solution, ρ = e(n+−n−), to the electric po-
tential, φ . Further, the flux of each ion at the (blocking) electrodes
is zero and the magnitude of the potential on the electrodes is
fixed at V for t > 0. When the gap between the electrodes, 2L,
is much smaller than the other dimensions of the cell, the ion
transport can be assumed to be one-dimensional, in the direction
perpendicular to the surface of the electrodes (here, x). Hence,
the governing equations are

∂n±
∂ t

=−∂ j±
∂x

, (5)

and
∂ 2φ

∂x2 =− ρ

εrε0
; (6)

subject to the boundary conditions (for t > 0)

φ(x =±L, t) =±V and j±(x =±L, t) = 0, (7)
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and the initial conditions

j±(x, t = 0) = 0. (8)

Initially, there is no applied potential and the concentrations of
the ions are uniform. The fluxes, j±, are obtained from (3)
and (4) by replacing the gradient, ∇ f , with a partial derivative,
∂ f/∂x, where f represents µ±, n± or φ . Mathematically, this re-
sults in a system of partial differential equations for the concen-
tration of the ions and the electric potential within the cell as a
function of position and time.

We now non-dimensionalize the governing equations. The
scales for concentration, potential, distance, and time are the to-
tal concentration, nT , the thermal voltage, RT/F , length of the
half cell, L, and an as yet undefined constant, τ, respectively. The
appropriate value of τ will emerge from the subsequent analysis.
The dimensionless concentration, potential, distance and time are
represented by ñ±, φ̃ , x̃ and t̃, respectively. Note that since the
concentration of each species is scaled with the total concentra-
tion, the dimensionless concentration is the mole fraction of the
species. The non-dimensional equations are non-linear and can
not be solved analytically; however, in the limit of weak applied
voltages, they can be linearized and hence solved. The voltage
that is applied is assumed to be small relative to the thermal volt-
age. Therefore, it is treated as a perturbation from an equilib-
rium where there is no applied potential. The ratio of this weak
applied voltage and the thermal voltage is taken as the perturba-
tion parameter, ε =V F/RT , where ε � 1. We pose the following
perturbation expansions,

ñ± = χ̃eq + ε χ̃± (x̃, t̃)+O(ε2), (9)

φ̃ = εϕ̃ (x̃, t̃)+O(ε2). (10)

Before the voltage is applied, the mole fractions of the positive
and negative ions are equal at all points within the cell to satisfy
electro-neutrality; this mole fraction is represented by χ̃eq. The
O(ε) change in the mole fraction of the (uncharged) solvent un-
der a weak applied potential is assumed to be negligible and thus
the mole fraction of the solvent remains at its equilibrium value,
χ̃0. The linearized governing equations and corresponding ini-
tial and boundary conditions for the O(ε) variables, χ̃± and ϕ̃,
obtained using equations (3) to (8) are

L2

τ

∂ χ̃+

∂ t̃
=

D0+

χ̃0

[
χ̃eqD0−

D

(
∂ 2χ̃+

∂ x̃2 +
∂ 2χ̃−
∂ x̃2

)

+
χ̃0D+−

D

(
∂ 2χ̃+

∂ x̃2 + χ̃eq
∂ 2ϕ̃

∂ x̃2

)]
,

(11)

L2

τ

∂ χ̃−
∂ t̃

=
D0−
χ̃0

[
χ̃eqD0+

D

(
∂ 2χ̃+

∂ x̃2 +
∂ 2χ̃−
∂ x̃2

)

+
χ̃0D+−

D

(
∂ 2χ̃−
∂ x̃2 − χ̃eq

∂ 2ϕ̃

∂ x̃2

)]
,

(12)

and
∂ 2ϕ̃

∂ x̃2 =−κ2L2

2χ̃eq
(χ̃+− χ̃−). (13)

At x̃ =±1 and t̃ > 0,

(D0−+D+−)
∂ χ̃+

∂ x̃
+D0−

∂ χ̃−
∂ x̃

+ χ̃eqD+−
∂ ϕ̃

∂ x̃
= 0, (14)

(D0++D+−)
∂ χ̃−
∂ x̃

+D0+
∂ χ̃+

∂ x̃
− χ̃eqD+−

∂ ϕ̃

∂ x̃
= 0, (15)

and
ϕ̃ =±1; (16)

and at t̃ = 0
χ̃± = 0. (17)

Here, D = (χ̃eqD0++ χ̃eqD0−+ χ̃0D+−) is defined for brevity and
can be viewed as a mole-fraction weighted diffusion coefficent.
The Debye length is κ−1 =

√
εrε0RT/2nT χ̃eqeF . In the limit of a

dilute solution, the mole fraction of the ions χ̃eq → 0, and that
of the solvent χ̃0 → 1, thereby eliminating the cross fluxes from
the species balance equations and recovering the linearized PNP
equations for dilute electrolytes.2,4,6

The potential, ϕ̃, is eliminated from equations (11) and (12)
using (16). The resulting equations are transformed into Laplace
space (thus eliminating time) using the definition, G̃(x̃,s) =∫

∞

0 g̃(x̃, t̃)e−st̃dt̃, where s is the Laplace variable and g̃(x̃, t̃) is a
shorthand for χ̃+, χ̃−, or ϕ̃, whose corresponding representations
in the Laplace space are, X̃+, X̃−, and Φ̃. The result is a set of
coupled, second order, homogeneous ordinary differential equa-
tions (ODEs) for the mole fractions, X̃+ and X̃−. These equations
are linear, and therefore, can be expressed as a matrix equation,
w̃′′ = Aw̃, where, w̃ is a column vector containing the (Laplace
transformed) mole fractions of the species, w̃′′ represents the sec-
ond derivative of this vector and A is a symmetric coefficient ma-
trix for the system. That is,

w̃ =

X̃+

X̃−

 and w̃′′ =


d2X̃+

dx̃2

d2X̃−
dx̃2

 . (18)

The elements of A are,

A11 = s
L2 (χ̃eqD0++ χ̃0D+−

)
τD+−D0+

+
κ2L2

2
,

A12 = A21 = −s
L2χ̃eq

τD+−
− κ2L2

2
,

A22 = s
L2 (χ̃eqD0−+ χ̃0D+−

)
τD+−D0−

+
κ2L2

2
.

(19)

To solve this system of ODEs, we first decouple the equations by
diagonalizing the matrix A using an eigenvalue decomposition,
A = PDP−1, where D is a diagonal matrix whose elements are
the eigenvalues of A, and P is a matrix whose columns are the
corresponding eigenvectors. The two eigenvalues, λi, are given
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by

λi =
Tr(A)±

√
(Tr(A))2−4(Det(A))

2
; (20)

and the corresponding eigenvectors, vi, are

vi =


A11−A22±

√
(Tr(A))2−4(Det(A))

2A12

1

 . (21)

Here, i = 1 and 2, correspond to taking the positive and the nega-
tive signs in (20) and (21), respectively. Here, Tr(A) = A11 +A22,
is the trace of the matrix, and Det(A) = A11A22 − A12A21, is its
determinant. Now, we define a transformed vector of mole frac-
tions, ũ = P−1w̃. Since the matrix P−1 is a constant in space,
ũ′′ = P−1w̃′′. The system of ODEs in the transformed variable, ũ,
becomes ũ′′ = Dũ . Since D is a diagonal matrix, the equations
for ũ are decoupled and are hence straightforward to solve. Once
we have a solution for ũ, the original vector of mole fractions, w̃
is simply given by w̃ = Pũ. In this manner, the mole fractions in
Laplace space can be expressed as

X̃+ =v1α1 sinh
(√

λ1x̃
)
+ v2α2 sinh

(√
λ2x̃
)
, (22)

X̃− =α1 sinh
(√

λ1x̃
)
+α2 sinh

(√
λ2x̃
)
. (23)

Here, λ1 and λ2 are the eigenvalues and v1 and v2 are the first
elements of the corresponding eigenvectors of matrix A. Since
the cations and anions have an equal magnitude of charge and the
cathode and anode have the same magnitude of applied potential,
we expect the distribution of charge density in the cell to be anti-
symmetric. We have made use of this property to express the
solutions as hyperbolic sines in (22) and (23). The coefficients,
α1 and α2, can be found from the two boundary conditions that
the flux of each species is zero at the electrode. To evaluate the
flux, we also require that the O(ε) value of the potential at the
anode is held constant and equal to unity. Hence, the coefficients
are

α1 =
s−1 sech

√
λ1

Q
, (24)

and

α2 =−
√

λ1 cosh
√

λ1√
λ2 cosh

√
λ2

(
v1 +1
v2 +1

)
α1, (25)

where

Q =
κ2L2

2χ̃eq

[
(v1−1)√

λ1

(
1− tanh

√
λ1√

λ1

)

− (v1 +1)(v2−1)
√

λ1

(v2 +1)λ2

(
1− tanh

√
λ2√

λ2

)]

− 1
χ̃eq

[√
λ1

(
v1− v2

v1 +1
v2 +1

)]
.

Note that the eigenvalues and eigenvectors, and hence the coef-

ficients, αi, are functions of the Laplace variable, s. Transforma-
tion of this solution back into the time domain can be performed
numerically. However, an asymptotic analysis is carried out to
extract the time scale for the long-time behaviour of the solu-
tion. This time scale is representative of how long the cell takes
to charge, that is, for the ions to screen the applied potential com-
pletely. We study the evolution of three quantities in particular:
the charge density at the anode; the salt concentration at the an-
ode; and the total current in the external circuit. Each of these are
expressed as linear combinations of the concentration of the ions.
For a binary, monovalent electrolyte the O(ε) charge density is de-
fined as ρ̃ = χ̃+− χ̃−; and the salt concentration as c̃ = χ̃++ χ̃−.
We define the total external current at any given time as an in-
tegral of the net volumetric flux across the cell (see Kornilovitch
and Jeon37),

Ĩ =
∂Ṽ
∂ t̃

+
∫ 1

−1

(
j̃+− j̃−

)
dx̃, (26)

where Ṽ is the dimensionless external voltage. Since Ṽ is sud-
denly applied, its time derivative contributes to an initial spike in
the current. Thus the long time behaviour of the current is the
integral of the total volumetric flux over the length of the cell.
Using the linearized forms of equations (3) and (4), this integral
is

Ĩ = β
[
D0+χ̃+|x̃=1−D0−χ̃−|x̃=1 +(D0++D0−) χ̃eq

]
. (27)

Here,

β =
−2D+−
DaD

. (28)

We also rewrite the above expression (27) to indicate how the
external current relates to the charge density (ρ̃) and the salt
concentration (c̃) of the electrolyte.

Ĩ =
β

2
[
(D0+−D0−) c̃|x̃=1− (D0++D0−) ρ̃|x̃=1 +(D0++D0−)2χ̃eq

]
.

(29)
We examine the behaviour of the O(ε) ion concentrations at the
anode, X̃+ and X̃−, at long times, t � τD, where τD is a diffusive
time scale defined as τD = L2/Da. In Laplace space, this corre-
sponds to the non-dimensional Laplace variable s� τDa/L2. This
analysis yields

lim
s→0

X̃+(x̃ = 1)∼
−χ̃eq

s
(

1+ s
κ−1LcothκL

τDE

)

−
χ̃eqχ̃0κ−1L(D0+−D0−)cothκL

2τD0+D0−

(
1+ s

L2χ̃0

3τDa

) ,

(30)

and

lim
s→0

X̃−(x̃ = 1)∼
χ̃eq

s
(

1+ s
κ−1LcothκL

τDE

)

−
χ̃eqχ̃0κ−1L(D0+−D0−)cothκL

2τD0+D0−

(
1+ s

L2χ̃0

3τDa

) .

(31)
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Here, DE is an “effective” diffusivity that arises naturally from
the solution, details of which are elaborated in the next section.
The expressions (30) and (31) represent the Laplace transform of
the sum of two exponential functions and can be expressed as,

X̃+(x̃ = 1)∼−
χ̃eq

s(1+ sτ̃RC)
− γ

κL
χ̃eq

1+ sτ̃D
(32)

and

X̃−(x̃ = 1)∼
χ̃eq

s(1+ sτ̃RC)
− γ

κL
χ̃eq

1+ sτ̃D
(33)

Inverting this solution gives the ion concentrations at the anode
in terms of the dimensionless time, t̃, as

χ̃+(x̃ = 1)∼−χ̃eq

[
1− exp(−t̃/τ̃RC)+

γ

κL
exp(−t̃/τ̃D)

]
, (34)

and

χ̃−(x̃ = 1)∼ χ̃eq

[
1− exp(−t̃/τ̃RC)−

γ

κL
exp(−t̃/τ̃D)

]
. (35)

Here,

τ̃RC =
κ−1LcothκL

τDE
, (36)

τ̃D =
L2χ̃0

3Daτ
, (37)

γ =
3Da (D0+−D0−)cothκL

2D0+D0−
. (38)

The long time behaviour of the charge density, the salt concentra-
tion and the external current can thus be obtained from equations
(34) and (35) as follows. The charge density

ρ̃(x̃ = 1) = χ̃+− χ̃− ∼−2χ̃eq (1− exp(−t̃/τ̃RC)) ; (39)

the salt concentration

c̃(x̃ = 1) = χ̃++ χ̃− ∼−2χ̃eq
γ

κL
exp(−t̃/τ̃D); (40)

and the external current

Ĩ =β
(
D0+χ̃+−D0−χ̃−+(D0++D0−) χ̃eq

)
∼β χ̃eq

[
(D0++D0−)exp(−t̃/τ̃RC)

− γ

κL
(D0+−D0−)exp(−t̃/τ̃D)

]
.

(41)

The minus sign of the charge density in (39) indicates an accu-
mulation of negative charge at the anode. The minus sign of the
salt concentration in (40) would indicate a depletion of salt at the
anode when γ > 0 and an accumulation of salt at the anode when
γ < 0. The asymptotic solutions predict that the charge density
evolves with an RC time scale, the salt concentration decays with
a diffusive time scale; whereas both the RC time and the diffusive
time appear in the long time behaviour of the external current.

3 Results and Discussion
From the asymptotic expressions (39), (40) and (41), we see that
two different time scales emerge. The first is an RC time, τ̃RC,

10
-4

10
-2

10
0

t/τRC

10
-2
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-1

10
0

|ρ̃
/
2
χ̃
eq
|

t/τRC = 1

κL =10

κL =100

κL =1000

Fig. 2 (a) The evolution of the magnitude of normalized O(ε) charge
density at the surface of the anode with time for different values of κL.
The charge density varies on the RC time, represented by the vertical
dashed line. The equilibrium mole fraction of the salt, 2χ̃eq = 0.2, and we
take the ratio D+−/Da = 3.75.

that characterizes the evolution of the charge density as well as
the initial decay of the current. The dimensional RC time τRC is
obtained by factoring out τ from the dimensionless time constant,
τ̃RC. Hence,

τRC = τ̃RCτ =
κ−1L
DE

cothκL, (42)

The RC time scale is similar to that obtained for the charging dy-
namics for dilute, symmetric solutions.6 This can be explained by
the fact that capacitive double layers are assumed to be formed at
equilibrium in both dilute and concentrated systems. The capaci-
tance of the diffuse layer, which depends on its thickness, O(κ−1),
is an equilibrium property that does not depend on the dynamics
of its formation. However, accounting for coupled ionic fluxes
in the system through Stefan-Maxwell equations alters the resis-
tance in the bulk solution and hence the value of τRC. This impact
is captured in the effective diffusivity, DE , defined by

1
DE

=
(
1−2χ̃eq

)( 1
Da

+
1

D0+
− 1

D0−

)
+2χ̃eq

1
D+−

. (43)

Here, Da is the ambi-polar diffusivity, defined as Da =

2D0+D0−/(D0++D0−), and D+− is the cross-diffusivity between
the ions. It is also a function of the equilibrium mole fraction of
the salt, 2χ̃eq. For a dilute, symmetric electrolyte, where 2χ̃eq→ 0,
and Da =D0+ =D0−, the effective diffusivity reduces to the com-
mon diffusivity of the ions.

The second time scale, τ̃D, represents the long time decay of
the salt concentration and the external current. The dimensional
diffusive time is

τD = τ̃Dτ =
L2χ̃0

3Da
. (44)

The ratio of the two time scales, τD/τRC, is proportional to κL.
For thin Debye layers, κL� 1, we have τD � τRC. The longer,
diffusive time scale arises due to the difference in diffusivities of
the ions and can be viewed as a residual effect of the charging
process. The positive and negative ions experience the same elec-
tric field and they move towards oppositely charged electrodes.
Since they have different mobilities, one type of ions migrates
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Fig. 3 The evolution of the magnitude of normalized O(ε) salt
concentration at the anode for different values of κL at (a) times
comparable to a diffusive time; and (b) times comparable to RC time .
The figures indicate that the initial dynamics of the salt concentration
occur on the RC time and the long time decay is on the diffusive time.
Here, 2χ̃eq = 0.2, D+−/Da = 3.75, and γ/coth(κL) =−1.

faster than the other towards their corresponding electrodes. This
causes the salt concentration, defined as the sum of the ion con-
centrations, to vary in the bulk. Once the charging is complete,
the ions are in a concentration gradient without an electric field.
This concentration gradient driven ion transport is due to diffu-
sion and thus occurs on a diffusive time scale. This residual vari-
ation in the bulk concentration is also reflected in the long-time
decay of the external current.

Mathematically, this residual effect is captured by the factor
γ/κL. Here, γ (38) is an O(1) number proportional to the dif-
ference in the diffusivities of the ions with respect to the solvent,
D0+−D0−, and thus the diffusive exponential decay is identically
zero for symmetric electrolytes and there is no bulk concentration
gradient. Further, in the practically prevalent limit of thin Debye
layers, γ/κL� 1; therefore, the dynamics are initially dominated
by the RC decay. At longer times (t � τRC), the first exponen-
tial function in (41) becomes vanishingly small and the current
evolution is dominated by the second exponential decay with a
diffusive time scale.

To verify that the evolution of the O(ε) ion dynamics are on the
order of the predicted time scales, the expressions (39), (40) and
(41) were compared to a numerical solution. Equations (11),
(12) and (16) were solved in MATLAB using an in-built PDE
solver, pdepe. The results of the calculation have been plotted
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Fig. 4 Evolution of the magnitude of O(ε) current in the external circuit
for different κL, scaled with (a) the slow diffusive time and (b) the faster
RC time. The figure shows the current initially decays on the RC time
followed by a decay on the diffusive time. Here, 2χ̃eq = 0.2,
D+−/Da = 3.75, and γ/coth(κL) =−1.

for different values of κL, in figures 2, 3 and 4. The magnitude of
charge density at the anode increases monotonically and reaches
its steady state value on a time scale of order τRC, as predicted
by the asymptotic solution (39); this is demonstrated in figure
2. The steady state value of the charge density depends only on
the equilibrium salt mole fraction; it is independent of the ra-
tio κL. Hence, changing the length of the electrolytic cell with-
out changing the concentration of the electrolyte will not affect
the equilibrium charge density at the electrodes. The dynamics
of the salt concentration are shown in figure 3 (a) and (b). We
see a long time exponential decay on the diffusive time scale τ̃D

(figure 3(a)); in agreement with the asymptotic prediction (40).
Note that the O(ε) perturbation of the salt concentration would
be identically zero at all times for an electrolyte in which ions
have equal diffusivities.6 Even though the charge density and the
salt concentration at the electrode are useful in gaining an un-
derstanding of the microscopic charging dynamics, the current
in the external circuit is the experimentally measurable quantity.
The long time asymptote (41) suggests that the current is a sum
of two distinct exponential decays. This can be observed in the
numerical solution in figures 4 (a) and (b). In figure 4 (a), the
current is plotted against time that has been scaled by the diffu-
sive time, τD. The straight lines with slopes independent of the
ratio κL indicate the long time exponential decay is on the diffu-
sive time. Similarly, figure 4 (b) is a plot of the current against
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time that is scaled with the RC time, τRC. The initial RC decay is
clearly shown by the parallel straight lines at short times.
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Fig. 5 The evolution of the magnitude of normalized O(ε) (a) charge
density, (b) salt concentration and (c) potential across the anodic half of
the cell at various times t/τRC (as indicated by the different symbols) for
κL = 100. This plot demonstrates the charge density and potential have
attained equilibrium on the RC time, τRC, whereas the bulk salt
concentration varies on the slower, diffusive time scale, τD ∼ κLτRC.

The variation of the magnitude of the O(ε) charge density, salt
concentration, and potential across the anodic half of the cell
with time are plotted in figures 5 (a), (b) and (c) respectively.
For this calculation, we solve equations (11), (12) and (16) in
Laplace space and numerically invert the solution into the time
domain.38 Figure 5 (a) shows that after t > O(τRC), there is neg-
ligible variation in the charge density distribution within the half
cell. This reiterates that the charge density indeed reaches its
equilibrium value on the RC time. Similarly, figure 5 (c) shows
that the potential across the half cell, which is initially linearly

varying along the length of the cell, reaches its equilibrium distri-
bution at t ∼O(τRC). Conversely, figure 5 (b) suggests that the salt
concentration increases initially followed by a slow decay on the
diffusive time scale τD� τRC. Thus the salt concentration contin-
ues to evolve after the charge density and the potential across the
cell have essentially reached equilibrium. Notably, the salt con-
centration gradient is transient, since the initial and final states
of the cell have zero salt concentration gradients in the bulk elec-
trolyte outside the Debye layers.

The predicted time scales should be valid beyond the spe-
cific situation of a suddenly applied voltage that is considered
here. For instance, the inverse of the time scales would be the
characteristic frequencies of double layer charging under an ac
voltage, as employed in electrochemical impedance spectroscopy
(EIS).39,40 In particular, the long time diffusive decay of the
current would correspond to the low frequency behavior of the
impedance. However, this is distinct from the more familiar War-
burg impedance due to bulk concentration gradients arising from
chemical reactions at the electrodes, since in our system, the elec-
trodes are blocking and there is no salt gradient at steady state.

We now return to the assumption of zero solvent velocity in
equations (3) and (4). We do not expect the relaxation of this
assumption to essentially alter the charging dynamics we predict,
for the following reason. Following the arguments of Psaltis and
Farrel35, a zero solvent velocity would mean that electric body
force on a fluid element (equal to product of local electric field
and net ionic charge density) is balanced by a pressure gradient
to maintain mechanical equilibrium. This pressure gradient could
generate additional ionic fluxes for a non-ideal system where vol-
ume changes due to mixing are taken into account.33,35 However,
these pressure-driven fluxes would only arise in regions contain-
ing a net charge density. In the thin-double-layer limit, such re-
gions are confined to very close to the electrode surface, whereas
the bulk of the electrolyte is electro-neutral. Hence, the pressure-
driven fluxes do not affect the ion transport across the electro-
neutral majority of the cell; it is this cell-scale transport that de-
termines the charging time-scales we derive. This assumption of
zero solvent velocity would be questionable for systems where
the thickness of the Debye layer is comparable to the length of
the cell, and also for large applied potentials.

Our analysis suggests a method by which to infer the cross dif-
fusivity D+− from the current evolution under a suddenly applied
voltage. Specifically, the short time and long time exponential de-
cay of the current allow one to infer the RC time scale, τRC, and
the diffusive time scale, τD, respectively. From the expression for
the diffusive time scale (44), it is then possible to infer the am-
bipolar diffusivity, Da of the salt. Further, given the diffusivity of
the ions with respect to the solvent, D0+ and D0−, using the ex-
pressions for the RC time scale (42) and the effective diffusivity
(43), it would be possible to infer the cross diffusivity of the ions.

4 Conclusion
We developed modified PNP equations that account for coupled
ionic fluxes in concentrated electrolytes, using which, we derive
the time scales for the charging of a model electrochemical cell.
The electrolyte dynamics evolve on two distinct time scales: an
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RC time that dictates the evolution of the charge density, and a
diffusive time, which arises due to an asymmetry in the mobilities
of the ions. The effect of coupled ionic fluxes, characterized by
the cross-diffusivity, D+−, is apparent only in the shorter RC time
whereas the longer diffusive time solely depends on the ambi-
polar diffusivity of the salt. A natural extension would be apply
the modified PNP equations accounting for Stefan-Maxwell fluxes
to electrochemical processes in more than one spatial dimension.
However, in these cases, the assumption of stationary solvent be-
comes questionable and care must be taken when coupling the
PNP equations to those governing fluid flow. Finally, our modifi-
cation of the PNP equations could also be used as a complement
to previously developed modifications19 that account for steric
effects and electrostatic correlations in concentrated systems.
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