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Growth of Form in Thin Elastic Structures

Salem Al Mosleh!, Ajay Gopinathan?* and Christian Santangelo®
Department of Physics, University of Massachusetts Amherst, Amherst, MA 01003, USA' and
Department of Physics, University of California Merced, Merced, CA 95843, USA>

Heterogeneous growth plays an important role in the shape and pattern formation of thin elastic
structures ranging from the petals of blooming lilies to the cell walls of growing bacteria. Here
we address the stability and regulation of such growth, which we modeled as a quasi-static time
evolution of a metric, with fast elastic relaxation of the shape. We consider regulation via coupling
of the growth law, defined by the time derivative of the target metric, to purely local properties of
the shape, such as the local curvature and stress. For cylindrical shells, motivated by rod-like E.
coli, we show that coupling to curvature alone is generically linearly unstable to small wavelength
fluctuations and that additionally coupling to stress can stabilize these modes. Interesting, within
this framework, the longest wavelength fluctuations can only be stabilized with the mean curvature
flow. Our approach can readily be extended to gain insights into the general classes of stable growth

laws for different target geometries.

I. INTRODUCTION

How physical processes establish the growth and form
of biological structures was considered by D’Arcy Thom-
son almost a century ago [1]. Since then, there has been
much progress explaining the different growth driven
morphologies that appear in the natural world. These
include understanding that the rippled edges of leaves
[2], the ruffled petals of blooming lilies and other flowers
[3, 4], and even the convolutions of the brain cortex may
be driven by differences in growth rate between spatially
distinct regions [5]. It is well known that heterogeneous
insertion and deletion of material can lead to geometric
frustration and shape change in (synthetic) tissues [6-9].
Yet one hundred years after D’Arcy Thomson’s seminal
work, there are still challenges and open problems. One
such challenge is that of determining the connection be-
tween the dynamical growth law —where a tissue chooses
to grow —and both the shape and stability of those tis-
sues.

This raises the question of how growth laws are regu-
lated in nature to ensure stable growth. Feedback is a
commonly used mechanism in biology for ensuring sta-
bility, but it is not clear to what or how the growth laws
need to be coupled, to ensure the robust growth of a sta-
ble structure. A particular example of this issue is the
question of shape regulation in rod-like E. coli, which is
still an open problem [10, 11]. Though the components of
the molecular machinery responsible for cell wall growth
and regulation have been identified [12], precisely how
the nm-scale components within this network interact to
produce a robust shape at the pm-scale is not completely
understood. Feedback between cell wall insertion rate
and curvature, which was shown to be present in E. coli
[13], can in principle lead to stable cylindrical shapes.
However, as demonstrated in Refs. [14] and [15], stress
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also affects cell wall insertion rate and can lead to growth
which is different from what would be expected from a
purely geometric coupling.

Coupling growth to stress and geometry has been con-
sidered in other biological contexts as well. In the context
of the fruit fly Drosophila melanogaster, Ref. [16] ex-
plored a mechanism for regulating growth through stress
feedback. In plant growth, the Ricci flow [25] has in been
studied in Ref. [17].

In this paper, we step back from the microscopic details
of the growth process and consider a general framework
for describing the growth of thin elastic structures that
allows us to study stability. We assume that throughout
the growth process, the material retains uniform thick-
ness and Young’s modulus. That is to say, it is still made
of the same stuff, there is just more of it in some places
and less in others. Mathematically, this growth process
can be described as a change in the target metric of the
shell or, alternatively, as the change in the local equilib-
rium lengths between points along the surface [7]. There
are, of course, many ways that the target metric could
change in time.

Here we consider regulating the growth by coupling the
growth laws to purely local properties of the shape, such
as the local curvature and stress. It is then possible to
use considerations of symmetry and locality to make a
curvature expansion and reduce the growth laws to only
a few effective parameters. Our approach thus allows us
to study the relationship between geometry and stress in
determining the morphological stability of growing struc-
tures. Partially motivated by E. coli and partially for
concreteness, we use our formalism to address the linear
stability of elongating, cylindrical shapes as an example.
Nevertheless, we develop principles that can be applied
to morphology selection and stability in biological sys-
tems more generally.

This paper is organized as follows. In Sec. (II), we
give a short overview of the required differential geome-
try. The purpose of this section is to give notation and
definitions used in the other sections. In Sec. (III) we
consider the energetics of thin elastic shells. In section
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FIG. 1: (Color Online) u' and u? are the (arbitrary) coordi-
nates chosen to parametrize the surface. Curves with constant
coordinate values are shown. The vector dX is the displace-
ment vector between the points parametrized by u and u+du.
The displacement vector satisfies |dX|?> = d¢?, which leads to
the definition in Eq. (1). The unit vector N is normal to
the surface at every point. We also show here the principal
curvatures k1 and k2 defined roughly as the eigenvalues of the
curvature tensor.

(IV) we describe the growth process, and show how sym-
metry can help us organize the different possible growth
laws. This section provides the expression for the growth
law, which is the first main contribution of this paper
and will be used for the analysis of later sections.. Sec.
(V) studies the stability of elongating cylindrical shapes.
After showing that purely geometric coupling alone is
generically linearly unstable to small wavelength fluctu-
ations, we add the effect of coupling growth to stress and
show that stability requires a combination of coupling
to both curvature and stress. This represents the other
main contribution of the paper. Finally, we conclude in
Sec. (VI).

II. NOTATION AND DEFINITIONS

To establish notation and definitions, we give a brief
overview of the differential geometry of surfaces in three
dimensions. For a more detailed exposition, see [18, 19].

Throughout this paper we assume Einstein’s summa-
tion convention, where repeated indices are summed un-
less otherwise stated. A surface embedded in 3D Eu-
clidean space can be represented as a vector function of
two variables, X(u',u?) = X(u), as in Fig. (1). In-
formation about the shape of the surface is encoded in
the length and curvature of curves u(f) on the surface,
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parametrized by their arc length ¢. The length of any
curve can be determined from the metric tensor, g;;,
through the relation

de* = (9;X - 9;X) du'dw’ = g, du'du? (1)

where 0; is the partial derivative with respect to the coor-
dinate u’. Likewise the curvature tensor, b;j, determines
the curvature of curves in the direction normal to the
surface through the relation (Fig. 1)

du® du?

~du® du!
o 2
Yode de (2)

The definition of the Gaussian, K, and mean, H, cur-
vatures can be given by

det(bij )

2H = ¢¥ b, d K=
ARG det(gi;)’

3)

where g% is the matrix inverse of the metric gij, imply-
ing g"g;,, = 6°,. Finally, note that by considering the
matrix b§- = ¢'*by;, we can define two principle curva-
tures, k1 and kg, as the eigenvalues of b;'- along with their
associated principle directions. These principle curva-
tures represent maximal and minimal normal curvatures
of curves passing through a point and, thus, they are
coordinate invariants. They are related to the Gaussian
and mean curvatures through the relations K = kiko
and 2H = K1 + ka.

It is well known that, if g;; and b;; satisfy compati-
bility conditions expressed through the Gauss-Codazzi-
Mainardi equations, then they are sufficient to uniquely
determine the surface up to rigid transformations. In
that sense, we have a complete characterization of any
surface in three dimensions from g;; and b;; alone.

Finally, we will give definitions of the metric and curva-
ture strains which are relevant for elasticity. In addition
to the metric we defined, which gives the actual lengths of
curves on the surface, we can define what is called a tar-
get metric, g;;, which represents the “preferred” lengths
of curves on a surface. In other words, when g;; = g;; all
curves are unstretched. We can define the difference be-
tween these metric, which gives a measure of the amount
of stretching, as the strain tensor, €;; = (g;; — gi5)/2. In
a similar fashion we can define the curvature strain as
1ij = (bij — bij)/2.

The next section discusses the energy cost when the
strains are non-zero.

III. ACCOUNTING FOR DYNAMICS

It is well known that the elastic energy of thin shells
is composed of a stretching part, which is proportional
to the effective elastic thickness, 7, and a bending part,
which is proportional to 73 [20-22]. Unlike stretching,
bending deformations do not stretch the mid-surface of
the shell. A quick experiment with paper will convince
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you that it costs much less energy to bend a thin sheet
than it does to stretch it. Bending energy has also been
shown to be negligible in E. coli using atomic force mi-
croscopy (AFM) studies [23, 24], at least for curvatures
much smaller than 77'. Specifically, we take the elastic
energy to be

T 7’3

3 €ij€ke + oq MM | - (4)

B, = /dQu\/ﬁ FULL {
‘We introduced the isotropic elasticity tensor AWk =
AG gkt + 2% §7¢, where A and 2y are the Lamé con-
stants, which can be expressed in terms of Young’s mod-
ulus Y and Poisson’s ratio v as
Yv

=— 2 =
A= Aoy

1+v’ (5)

Due to the 73 dependence in the bending energy, the
energy cost of deformations with curvature satisfying
ni; < 771 will be subdominant. These will correspond
to modes with wavelengths larger than 7 in Sec. (V).

In these expressions, the growth is implicit: g(¢) and
b(t) are assumed to be a slowly-varying function of time.
Due to the separation of growth and elastic time scales,
we assume the elastic energy is minimized at each instant,
with a quasi-static background metric and curvature ten-
SOTS.

In this paper we give an explicit growth law determin-
ing 0;g in terms of geometry and stress. We could pro-
ceed in the same fashion and give a growth law for b(t).
However, bending energy will be negligible for small cur-
vatures. Furthermore, the exact form of b(¢) will not be
important for curvatures on the order of K ~ 771 since
for these modes Eij < b;;. Therefore, motivated by sim-
plicity we assume

b(u',u?t) =k g(u',u?t) = H g(u',u?t).  (6)

In other words, we assume that the two principle curva-
tures are the same and are constant in space and time.
This assumption avoids introducing model parameters
that do not affect the growth of the small curvature
modes. However, it is not essential and the analysis
of Sec. (V) should go through unchanged if a different
growth law is assumed.

In the next section, we will account for the coupling
between the target metric and the shape of the shell.

IV. ACCOUNTING FOR GROWTH

In order to have a complete description of a growth
process we need to specify how the background metric
Gij(t) changes with time. A generic class of growth laws
can be described by giving the rate of change of the met-
ric as a function of the shape, 0,g;;(t) = G;;[X]. We
will assume that G;;[X] is a local function of the shape,
expressed in terms of the geometrical invariants already
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introduced. This is consistent with the notion that mate-
rial insertion is determined from local information only.

There are of course, many possible growth laws con-
sistent with this form; in this section we derive the most
general growth law consistent with symmetries. Stated
simply, locality is the assumption that the instantaneous
change in the metric at a certain position depends only
on quantities defined on the surface at that point. Coor-
dinate invariance implies that the instantaneous change
in the metric should be a rank-2 tensor on the surface.
We assume that this tensor only depends on the local
shape (principle of shape dependence) and an applied
stress (strain) tensor, which severely restricts the form
of the growth law. The constraints on the form of the
growth law are coordinate invariance, locality and time
homogeneity (absence of explicit time dependence).

We start by describing the geometry dependent terms
in the growth law, then we turn to stress-coupled growth.

A. Geometric Coupling

Deriving the geometric growth terms, in the vicinity
of some arbitrary point with coordinates u, is most con-
veniently done by transforming into a coordinate system
where the metric at t = 0 is given by the identity matrix
Gij = 04j. More precisely, we can write the metric in the
vicinity of a point in Riemann normal coordinates as

ds* = (du')? + (du®)? + K (u*du® — v?du')® + O(Jul®) (7)

This requirement however still does not fix the coordi-
nate system. if the principle curvatures satisfy xi # ko,
then the coordinate axes are fixed by requiring the cur-
vature tensor to have the form

bt = ("0 G )+ Ol ©

By locality, we mean that the mechanism responsible for
generating the growth only has access to local shape in-
formation. To leading order in the vicinity of a point, the
shape of the surface is defined by the two principle cur-
vatures®, and their directions. The principle directions
can be taken without loss of generality to be in the u!
and u? directions.

In an infinitesimal time step dt the metric changes by
an amount given by

% (f1(/<&1,/€2)

G (ri1, wz) = f3(k1, K2)

so that the new metric is g;; = d;; + dt éij. As men-
tioned, in this coordinate system G;; can only be a func-
tion of k1 and ko with no explicit time dependence due to

fs(fﬁa@)) 7 )

fz(fﬁ’fﬂz)

1 In other words, the principal curvatures determine the shape of
the approximating paraboloid which matches the first two spacial
derivatives of the surface.
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the assumption of time homogeneity. To anticipate the
form of this growth law in a general coordinate system
we rewrite it in the form
Gij = F1(k1, k2) 6ij+ao Fa(k1, k2) bij+ F3(k1, k2)oj,
(10)
where 07 is a Pauli matrix and ap is a length scale charac-
terizing the size of the shell. When &, # k2, the matrices
di5, bi; and o;; form a complete basis over the space of
2 x 2 symmetric matrices. In that case, it is possible to
express a general choice of the functions (f1, f2, f3) in
terms of (Fy, F», F3). However, in the case k1 = kg the
curvature tensor will also be proportional to the iden-
tity matrix. To avoid this problem, we might have re-
placed b;; with o7; as a basis matrix. However, as we
will show next, this is not ideal if the growth process de-
pends purely on the local shape.

When x1 = kg, it is not possible to uniquely chose
coordinate axes at that point because in that case, all
directions are equivalent as far as local shape is con-
cerned. Consequently, the growth process cannot favor
any direction in this situation. Thus choosing b;; which
is proportional to the identity matrix when ki = ko is
the proper choice. In addition, since as u! — —ul,
Fs5(k1,k2) — —F3(k1, K2), the term proportional oy is
seen to violate chiral symmetry. Therefore, in the rest of
this paper we will also take F3(k1,k2) = 0.

We emphasize that Eq. (10) is only valid for a specific
(Riemann normal) coordinate system. We can write it
in a general coordinate system by making an arbitrary
coordinate transformation. In general, we will have

01gij = F1(H, K) gij + ao F2(H, K) by;. (11)

Note that we wrote k1 and ko in terms of H and K.

We may simplify the growth law by assuming that
there is a small length scale A controlling growth and
sensing curvature. In the case of E. coli, this length
scale is the nanometer scale of proteins as opposed to
the a9 ~ pwm scale of the bacteria. Compared to the
length scale A, the curvatures can be considered small,
which motivates a curvature expansion of the functions

Faoy(H,K) ~ a2 + Baz AM(H — Hy) —
Ya.2)A? (K — Ko) + 61,9 (H — Ho)?, (12)

where we neglected terms of order A3. Note that terms
of the form |k; — k2| = 2/ H? — K are possible, but we
neglect them due to their non-analyticity. For example,
if Xg describes a sphere, then the rate of growth of a
nearby surface Xg + € 60X will scale as drg ~ O(\/€).
Assuming an analytic expansion in the pair (H, K) is
equivalent to the pair (k1, ko), unless H? = K.

Note that we have chosen to expand Eq. (12) to sec-
ond order in curvature. The reason for this choice, as we
will see in Sec. (V), is that the mean curvature and Ricci
flow terms are necessary for stability of long wavelength
modes. See also Sec. (IV C) for an intuitive explanation
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of this.

With that in mind, Egs. (12) and (11) represents
the most general geometrically-coupled, purely shape-
dependent local growth law expanded up to second order
in curvature. Symmetry guarantees that spherical and
cylindrical shapes will be fixed points of the evolution as
we will show in Sec. V. However, instabilities may lead
to spontaneous symmetry breaking and non-symmetric
fixed points.

Next we will consider general growth laws in the pres-
ence of externally applied disturbances, such as the strain
(stress) tensor.

B. Incorporating Stress Coupling

In this section, we seek growth laws that incorporate
the role of the strain tensor, defined as €;; = (g:; — gij)/2-

We can write all the possible scalars and tensors that
are consistent with our criteria. Raising and lowering are
done only with g;; and € = g% €;5. The different scalars
that we can construct are

H, € b7e;j, bij b, b} b7ejp, ViV, -+ (13)
The tensors are
€ijs Gijs bijs €F brj, b b, ViVje, VFViey - (14)

where V and V are the covariant derivatives associated
with the metrics g;; and g;;. Terms containing the co-
variant derivatives will be dropped since they are of order
O(e \?).

We can now construct the most general growth law ne-
glecting terms of order O(\?), O(e?) and O(A\? €). Con-
cretely, we have

Ogij = a1 gij + a2 by + 1 H gij + B2 H by
-1 K gij + 01 H? gij + 01 €5 + 02 € g;j + 03 Hejj +
o4 H € gij + 05 € bij + 0g kaer 9ij + 07 6? bkj. (15)

In what follows we will neglect terms of order O(A €),
which is a reasonable approximation if HA > e. This will
reduce the number of parameters we have to deal with
and will not change our main conclusions (that stress cou-
pling is required to stabilize short wavelength modes and
geometric coupling is required for establishing a length
scale and stability of the lowest order modes). This ap-
proximation leaves only the two leading order stress cou-
pled terms, and removes stress-curvature terms. Further-
more, for linear stability, the §; term will not contribute?.

Note also that two more terms, coupling growth to the
curvature strain 7;; and it’s trace, are conceivable. How-
ever, these terms will scale as curvature coupling terms,

2 More precisely, the term &1 (H — Hp)? will not contribute to the
linearized evolution equations
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nij ~ O(X €). Therefore, as described in the previous
paragraphs, we will not include these terms in the sub-
sequent analysis.

This leaves seven terms in the growth law, two of which
can be fixed by matching to the experimental radius and
rate of growth, leaving 5 undetermined constants. Next
we will try to gain intuition for the various terms in this
growth law.

C. Gaining Intuition For The Growth Law

It is difficult to gain intuition for the terms in the
growth law.

The best way to gain intuition is to consider the effect
of the various terms on the evolution of special surfaces.
Inspired by rod-like E. coli, in this paper we focus mainly
on elongating cylindrical shapes. However, we will point
out how our analysis could be applied to different shapes
such as spherical and flat shapes, which are relevant for
other interesting growth process as in blooming lilies and
rippling leaves [2, 3, 17].

We start with the simplest term, a;g;;. For very thin
surfaces and in the absence of stretching, we can assume
that g;; = g¢i;. Therefore, with time, the metric will
evolve as ¢;;(t) = e*'g;;(0). Therefore the metric is
expanding or contracting exponentially regardless of the
initial shape. Furthermore, the linear dimensions of the
shell grow exponentially at the rate R = /2.

The next term to consider is ag as b;;. This term

comes from a simple equation of motion 0;X = —axy N ,
which is easy to check with the relation d,g;; = 0;0;X -
0;X + 0;X - 0;0;X. This evolution is volume minimizing
when «s is positive. In the case of cylindrical growth,
this term will tend to shrink the radius. In the absence
of growth at the end caps, which appears to be approxi-
mately true for E. coli [13], the length will not be affected
by this growth term.

Together, these first two terms give us a way to fix the
radius during exponential elongation. Specifically, if we
combine these first two terms and set a; = as we get an
exponentially elongating cylinder with fixed radius ag.
The radius of the cylinder that emerges is the one that
balances these two terms exactly.

In the case of a growing sphere, setting a; = as would
just stop the growth. On the other hand, the metric of a
flat shell would not be affected by this term at all.

Next we consider the term 5y (H — Hy) g;j, where
we’ve subtracted Hy = —1/(2ag) by changing the defini-
tion of 1. This term couples mean curvature to the rate
of growth. It depends on the actual shape and not just
on the value of the metric. There is no simple interpreta-
tion for 9;X in this case. As we will show, this term with
positive 81 tends to destabilize the radius of the cylinder,
as can be seen by solving the equation for a cylinder with
radius a(t) = ag + da(t). However, we will show in Sec.
(V) that this term, with 5 > 0, contributes cruicially to
the stability of short wavelength modes, particularly in
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the azimuthal direction.

Intuitively, this can be understood roughly, by looking
at the sinusoidal deformations in the azimuthal direction,
a = ag + dag sin(me¢), where m > 1. The mean curva-
ture will be negative in the peaks of this deformation and
positive in the troughs, which leads to shrinking of the
parts with @ > a¢ and growth of the parts having a < ay,
which in turn leads to a flattening of the pattern.

The as and (31 terms are dependent on the global ori-
entation of the normal vector N, which follows from the
definition of the curvature tensor. This will not be a
problem for the invariance of the growth law if we as-
sume the growth process can distinguish between the in-
side and the outside of the shell. This is not hard to
accept for closed surfaces, as in the case of E. coli for
example. However, for a growing leaf or flower, it might
not be possible to distinguish in from out. Therefore,
depending on the details of the process, for growing open
shells such as leaves, the terms asb;; and B Hg;; might
be absent due to symmetry considerations.

The term Sy (H — Hy) b;; is related to the mean cur-
vature flow. It would result from the motion 9;X =
—p2 (H — Hp) N and tends to minimize the area when
B2 > 0. The stabilizing effect of this term is clear. For
a cylinder (or a sphere) with radius a(t), we would get
a=0.5a2 B2 (1/a—1/ag). The solution to this equation
approaches ag as t — oo, behaving like a ~ e~ P2t As
we will show, stability of long wavelength modes requires
B2 > 1 > 0 to overcome the destabilizing effect of the
(1 on these modes.

The last geometric growth term we will consider is re-
lated to the well known and well studied Ricci flow [25—
27]. Namely 0,g;; = —v1Kgi;. It is a function of the
metric only and we do not need to find the correspond-
ing shape to solve this equation. In order to understand
the effect of this term, let’s switch to a coordinate sys-
tem such that the metric can be written in the form
gij = € 0;5, this form will be preserved under evolution
since the equation can now be expressed as

Y e’

2
5 Vep. (16)

s — L p (o2 s
pe—Qe(eVp):>p—
Notice the resemblance of this equation to the diffusion
equation. Indeed, in the vicinity of a cylinder we have
p ~ 0, then to leading order this equation becomes ex-
actly the diffusion equation, which tends to wash out the
deformations over time, returning the metric back to the
constant flat metric. However, note that this equation
does not lead to a natural length scale and a cylinder
with any radius can be a fixed point of the evolution.
Finally we consider the two stress coupling terms. The
term o1 €;; will tend to make the target metric g;; evolve
towards g;; when o1 > 0. In other words, it makes the
surface comply with the applied forces, as in the case of
E. coli [10].
The term o35 € couples the areal strain to the growth
rate, ignoring the shear strain. Coupling to areal strain
has been studied in [15] for E. coli, and was shown to
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lead to stability against bending modes.
Next, we explore how all these terms interact to gen-
erate a linearly stable elongating cylinder.

V. LINEAR STABILITY OF ELONGATING
CYLINDERS

We now analyze the linear stability of elongating cylin-
drical shells under the growth law in Eq. (15). As ex-
plained below Eq. (15), neglecting the strain curvature
terms (o; = 0,4 > 2) will not change the main conclu-
sions of this section.

Spherical, planar, and cylindrical symmetries will be
preserved under time evolution. Therefore surfaces with
these symmetries form a kind of generalized fixed point.
We say generalized because they may still be evolving,
as in the case of the elongating cylinder. However, in-
stabilities may cause spontaneous symmetry breaking to
non-symmetrical shapes. Using linear stability analysis
we can determine the parameter values for which a given
symmetry is linearly stable.

First, we will establish the importance of coupling to
stress by studying the unavoidable instabilities in the
purely geometric case. We then show how coupling to
stress leads to stability of small wavelength modes and,
finally, studying the pure stress coupling case with inter-
nal pressure.

A. Purely Geometric Coupling

As mentioned in Sec. IV A, we will ignore terms which
have dimensions of inverse length, since these terms will
be multiplied by a small length scale A\. The growth law
in the purely geometric case is

OhGi; = 0a gij + a2 ag by + B1 ao (H — Hy) g5 +
ag B2 (H — Hy) bij — af 11 (K — Ko) gi.  (17)

Here the parameters Hy and Ky represent some time-
independent curvatures, and their definition can be ab-
sorbed into a(;2). We will take them to be the mean
and Gaussian curvatures of the fixed point solution. For
a sphere with initial radius ag, we will have HZ = K, =
1/a?. Naturally for a flat fixed point we would chose
Ko = Hyp = 0. Finally, for an elongating cylinder with
radius ag we will chose Ky = 0 and Hy = —1/2ag. We've
neglected a term proportional to (H — Hg)? since it will
not be important for linear stability.

We start by seeking elongating cylindrical solutions
of the form

XCyl =a §(¢) +z L(t) 2
Gij = (Loot) 02) ; (18)

where §, Z and q@ are the cylindrical basis vectors (see
Fig. 2). Here z € [0,1] and L(t) is the time dependent

6

FIG. 2: (Color Online) A coordinate system describing an
elongating cylinder. The coordinate z, along the Z direction,
is normalized such that z € (0, 1).

target length of the shell. The definition of z is conve-
nient because it allows us to consider a boundary value
problem on the domain z € [0, 1] instead of a time de-
pendent domain [0, Lo(t)]. Furthermore, note that z and
¢ are thought of as material coordinates. In other words,
if a given point on the shell was properly tagged and fol-
lowed, its trajectory would be given by X(z, ¢,t), where
(2, ¢) are the coordinates on the initial cylinder at time
t=0.

In order to study the stability of the solution in Eq.
(18), we need to first verify that it is a solution of the
growth and elastic equilibrium equations in the absence
of stress coupling. We assume, for simplicity, H = Hy,
which implies that, for the fixed point solution only (Eq.
18), the perimeter preferred by stretching energy is com-
patible with the preferred curvature tensor. This as-
sumption is not crucial and can be easily modified, lead-
ing to a shifted fixed point radius as in Sec. (V C).

By plugging Eq. (18) into the elastic energy and min-
imizing with respect to a and L we find, as expected,
a = ap and L = Ly. Of course, if H # Hy or we had
nonzero pressure p # 0, then there will be small correc-
tions to this answer. To find the time dependence of the
length, we plug the ansatz Eq. (18) into the geometric
growth law Eq. (17). Concretely, we get the conditions

as =a1, a3 =2R, and Ly(t) =4y effot, (19)

The first condition results from the requirement of fixed
radius. As explained in Sec. (IVC), a fixed radius
emerges due to a balancing between isotropic expansion
and inward volume contracting growth terms. In other
words, if the coefficients of the first and second funda-
mental forms in the growth law are positive, then the
length of the rod that emerges is the length that makes
the two terms balance each other. Unlike the cylindrical
case, a sphere has two nonzero curved directions, which
implies that this balancing would lead to a halting of
growth in all direction.

At this point we introduce a perturbation to the elon-
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gating cylinder, which has the form

X(z,0,t) =al[l+ p(z,¢,t)] §+
L(t) [z + h(z, 6, 1) £ + a P(z, ¢, 1),

_ (Lo(t)* + G..(z,0,1) Gop(2,0,t)
9ig = ( ’ Gz¢(zv¢7t) a2+g¢¢(zv¢at)> ' (20)

Note that the target metric and target curvature tensors
are, in general, no longer compatible after introducing a
perturbation to the fixed point solution. Plugging Eq.
(20) into the growth equations (17) and assuming the
conditions (19) gives us a set of three coupled partial dif-
ferential equations, which are second order in spacial co-
ordinates and first order in time. However, since we have
six unknown function in Eq. (20), we need to use the
three elastic equilibrium equations. This is more easily
done in Fourier space, which is possible since the equa-
tions are linear and the target solution has cylindrical
symmetry. Specifically, we have

d o
p(Z,¢, t) = 2/47732 pmq(t) eime igz (21)

J

Soft Matter

And similarly for other functions. Periodic boundary
conditions in the ¢ direction are implied in this expan-
sion. A more realistic basis in the z direction would be
sin(nmz), width n = 1,2,---. However, the expression
for the growth rate of perturbations will not depend on
this choice as long as we keep in mind that g, ~ 1/7.

We will solve the equations in two steps. First, we solve
the elastic equilibrium equations for the components of
Gij, then we use the growth equations to find the growth
rate of radial perturbations R,(m,q) = pmq/Pmq. The
elongating cylinder will be stable if &, < 0 for all ex-
citable modes. Since the resulting algebra is too long to
show here, we will only show the results in the vanishing
thickness (7 — 0) limit. However the finite thickness re-
sults will be plotted and discussed.

We first need to find the elastic equilibrium equations.
To leading order, the elastic energy can be written as

dz dp A2 1 omve ier o)
Eel = Z/ TG( ! 2)® € (a1-2) qu[qu,hmqﬂZqu] = Z/dq qu[pmqa hmqa¢mq]7 (22)

where m = {mq,m2} and q = {q1,¢2}. We can find the
equilibrium equations by taking the derivatives of the
energy with respect to the independent variable. Specif-
ically

0Bmg _ 8By _ 5Emq. (23

Pmgq - hmq ¢mq

for vanishing thickness (7 — 0), the solution to Eq. (23)
is given by

m? G.y —2mq Gy +q* Geo
Pmq = b

2 ag ¢?
) GZZ
hgm = — ‘ 5 and
2qLj
m G, —2qGLy
'(/}mq =1 2 a% q2 ) (24)

which is an isometry of the metric given in Eq. (20). The
analogous expression in the finite thickness case (7 < 1)
is too long and uninformative to show here.

We can invert Eq. (24) to eliminate the components
of g;; from the growth equations. After plugging the
resulting answer in the growth law, we obtain three first
order ODEs for the functions pimg(t), hmq(t) and g (t).
For the zero thickness case, 7 — 0, the growth equations

(

become

Drn, 1 m2(m2 — )T
u:,, <F1+q%F2+m2F3+(2)4>,
Pmgq 4 dp

ilnzq(t) = —% <F5 + (Tn2;1231)r4> qu(t) and
. !
a0 == (0o P 0 @9)

were we introduced the physical wavenumber as ¢p =
ag q/Lo(t). With this definition, the instantaneous wave-
length of the deformation is Ap = ag(27/qp). It is inter-
esting to note that even though ¢ is time independent, ¢p
is not. This is due to the stretching of the wavelengths
during elongation. We have also introduced the (¢p,m)
independent rates I';, which are given by

I'y = B2 — B1 — 4Ry, T's =2y + 31 — fo,
I3=2vy+2p1—pF, 4= B
and F5:2’}/1+51—4R0. (26)

Note that hy,, and 1, satisfy the same equation and
they both approach a constant value when p,,q — 0.

It turns out, this last fact is true for any coordinate
invariant growth law. This is easy to see by considering
Eq. (20) with p, v, h — 0, for which the surface becomes
X =ag §+ L(t)(z + ho(z,9)). It can be shown that this
surface is a cylinder for an arbitrary function hg(z, ¢). In
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other words, this deformation is equivalent to a coordi-
nate transformation. Since the growth law is coordinate
independent, a deformation with arbitrary ho(z,¢) is a
fixed point solution, which, just as Eq. (18), describes
an elongating cylinder. This explains why hmq = 0 when
Pmq = 0. A similar argument can be given for 1,4 in the
linear regime.

Thus, a sufficient and necessary condition for linear
stability is pmq(t — 0) = 0, or that R, = pmg/pmq < 0
for all permissible wavenumbers ¢p and m. However,
there is a subtlety associated with this stability condi-
tion.

As mentioned above, ¢p is time dependent and as the
wavelength of a solution is stretched, its rate of growth
will also change. In particular, it is conceivable that
R, > 0 for a given gp, but the solution is still stable. This
is because the solution only experiences this instability
for a short period of time before the physical wavelength
gp changes to a value where R, < 0. Keep in mind how-
ever, that this only happens if R, > 0 for a small range
of gp, at the onset of an instability. In addition, some
long wavelength instabilities might not be realized until
the shell length Lg(¢) reaches a certain value.

Keeping all of that in mind, we derive the necessary
condition for stability of all modes as t — oo, which im-
plies R, < 0 for all ¢p and m up to a high cutoff.

From Eq. (25) we find the rate of growth to be

20,2
R, — -1 (n + ¢ Ty +m? F3+m(m21)F4> . (27)
4 qap

A more complicated expression also exists in the finite
thickness regime which, interestingly, also depends only
on the combinations I';. Apart from the growth law pa-
rameters, R, depends only on the physical wavelengths
in units of ag. The wavenumber m can in principle be
any integer, however there will be a high cutoff value cor-
responding to a small length scale. gp on the other hand
will have a lower bound as well, corresponding to the
finite size Lo(t). Interestingly, this lower bound is time
dependent, decreasing with time. To zeroth order, we will
require stability for all m and all gp without bounds.

We first find the stability region in parameter space
for the zero thickness case. Then we will see how finite
thickness changes the situation. It is clear from Eq. (27)
that we must have I'1,I'5, '3,y > 0. This leads to the
conditions

B1>0, Ba>4Rg+ 1, 271 > B2 — B

We've already anticipated these relations in Sec.
(IVC). Recall that the By (mean curvature flow) term
stabilizes long wavelengths and 1 and ~; contribute to
stability of shorter wavelengths, thus explaining these re-
lations. It is one of the main conclusions of this paper
that the mean curvature flow is important for the stabil-
ity of the longest wavelength modes.

The relations in Eq. (28) define three planes that
bound the stability region in parameter space. Fig. (3)
shows a cross section of this region along with modes

(28)

8

B2 H by

7 K gij
s

B2 =m+ B

Stable

16

4 p1 H gij

f1

FIG. 3: (Color Ounline) This figure shows the stability re-
gion in the (f1,52) plane with 41 = 15 and stress coupling
01 = 02 = 20. Here and in all plots Ro =1, a0 =1,v =1/3,
nB = 0.01% and ns = 0.01. We also show the nature of the in-
stabilities when crossing the different boundaries. The nature
of these instabilities depends on o1, 02,7 > 0, however the
region itself would look the same in the case o1,02,n18 = 0.

of instability when oy, 09,7 > 0, which will be discussed
shortly. In fact, this is also the region of stability for the
finite thickness and stress coupling cases.

Now we turn to the interesting question of what hap-
pens near the three boundary surfaces of the stability re-
gion. Consider approaching the boundary I'y = 0, while
Ty, T'3,T4 > 0. It is easy in this case, to see that the rate
is maximized when m = 0 and gp — 0. This is illus-
trated in Fig. (4). As we saw in Sec. (IVC), the 51 >0
term destabilizes the long wavelength modes if (5 is not
large enough.

It can also be seen readily from Eq. (27) that cross-
ing the boundary 5; = 0 results in modes with high
m ~ Meutors and small gp ~ agm/Lo dominating the
shape. Which confirms out intuition that 8, Hg;; stabi-
lizes large m modes (Sec. IV C). Here meyiors is the
mode number at which our long wavelength approxima-
tion fails. In fact, finite thickness regularizes this behav-
ior. As can be seen from Fig. (5) the instability in the
finite thickness case happens at m = 2 and gp ~ 0.2.

We may also get an instability that favors modes of
high gp ~ qeutoyy by setting I'y < 0. Unfortunately in
this case, the bending energy does not regularize the be-
havior at large q, and in fact, seems to make these modes
more unstable. In particular, in the finite thickness case
we have

lim Ry = lim Ryp=— lim Ryp=4R, (29)

qp—0
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Rate

FIG. 4: (Color Online) This figure shows the growth rate as
function of gp for different values of m when B2 < 81 + 4Ro.
Note that the maximum rate happens at m = 0 and g ~ 0.

Rate
0 qp
m =0
m=1
m=2
=50 m—3
m=4
-100

FIG. 5: (Color Online) This figure shows the growth rate as
function of gp for different values of m when (1 < 0. Note
that the maximum rate happens at m = 2.

where the index B in R,p is added to emphasize that
bending energy is considered. We see from Eq. (29) that
the effect of bending energy is to make the high m modes
always stable, while high ¢gp modes are unstable for all
parameter values (see Fig. 6). This non-intuitive result
is one of the main contributions of this paper.

The reason this is counter intuitive is because bend-
ing is expected to suppress modes of small wavelength
rather than enhance them, which is true in the static set-
ting. In a growing shell, to suppress the small wavelength
fluctuations, their growth in the target metric must be
suppressed. In the absence of bending, this suppression
happens through the I's term in Eq. (27). As we show
in the appendix, bending suppresses this term indirectly
by inhibiting high curvature modes. Amazingly, by sup-
pressing high curvature modes, you allow them to grow
further in the target metric (see appendix).

Regardless of the source of these instabilities, a grow-
ing shell — such as E. coli — must find a way to avoid these
instabilities. One possibility is that the small wavelength
cutoff, A, is on the order of the thickness of the shell. This

Soft Matter
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20 30 40
_5\ —_— m=0
—_ m=1
-10 it
—m =3
_15 — m=10

FIG. 6: (Color Online) This figure shows that all modes are
unstable in the absence of stress coupling for high values of
gp > ao/T. Here we set 1733’ =np = 0.3%, B1 = 5, B2 = 14,
71 =9, 01,2 = 0 and v = 1/3. Fig. 8 shows how stress
coupling modifies and stabilizes this behavior.

is a reasonable possibility since the expansion of the en-
ergy in powers of thickness breaks down. For wavelengths
that are close to the thickness, the rate behaves as

ao

I's — Ry (1 — 12

1—v2

(30)

Therefore, in the absence of stress coupling we must re-
quire that Ty > Ry (1 — v?) and gp S 7 to achieve
stability. The appearance of the material parameter v
(Poisson’s ratio) in this expression is due to its effect on
the response of the shape to the bending force, which in
turn affects the growth rate.

Another, more robust way to stabilize small wave-
length fluctuations is accomplished by coupling growth
to stress, which we turn to next.

B. Stress Coupling To The Rescue

As we have seen in Sec. (IV C), the term oy ¢;; with
o1 > 0 tends to make the target metric grow to comply
with the applied force. So if the applied force is bending,
then we may expect that adding stress coupling can lead
to suppression of the modes ¢p 2 7. After ignoring terms
of order O(\ €) as described before, we step through the
calculation in a similar manner to that described above.
We eventually get

qli>IgoRpB :4R0—% (0’1+ 11 2:0'2> . (31)
In other words, if the stress coupling is strong enough,
then small wavelength modes are always stable no mat-
ter what parameters you use. It can also be shown, for
small enough thickness, that the stability region in this
case is the same as before (Figs. 3 and 7). In addition,
the 81 < 0 and B2 < B+ 4 R instabilities still look the
same (see Figs. 4 and 5). However, as Fig. (8) shows,
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o2/2

4
0'1/2

FIG. 7: (Color Online) This figure shows the stability region
in the (o1, 02) plane with v1 = 15, 81 = 6 and 2 = 16. Here
and in all plots Ry = 1, ap = 1, v = 1/3 , s = 0.01® and
ns = 0.01.

Rate

qp
35

m=2
—_ m=3

— m = 2 (no stress coupling)

FIG. 8: (Color Online) This figure shows the growth rate as
function of gp for different values of m when I'; < Ry (1— 1/2)
and 01,02 > 8R. Note that the maximum rate happens at
m = 2 and at a finite value of gp ~ O(10). For comparison,
we have also included a plot of the rate in the absence of stress
coupling.

when we cross the I'y = Ry (1 —v?) plane, the instability
will not start at the highest ¢p modes as before. In fact,
it will happen typically for m = 2 and ¢p ~ O(10).
Thus, stress coupling enhances the stability against
small wavelength deformations. And so, having both ge-
ometric and stress couplings can lead to stability of an
elongating cylinder against all modes for a broad range
of parameters.
Next, we turn to the possibility of stability with stress
coupling alone.

10
C. (Almost) Purely Stress Coupling

As we have seen, coupling to stress has a stabilizing ef-
fect on short wavelength modes. Therefore, it is natural
to consider a class of growth laws that only couples to
stress. Such growth can happen, for example, if the rate
of insertion is affected by the size of the exposed pores
on a surface (see the appendix for an example).

The first thing we note is that the stress-coupled
growth terms in Eq. (15), a1,01 and o2 do not lead
to a natural length scale as in the case of curvature cou-
pling. Furthermore, a cylinder elongating in only one
direction implies an asymmetry in the material proper-
ties. In other words, there must be a template to guide
the growth to achieve an elongating cylindrical solution.

For these reasons, we retain the leading order curva-
ture term agb;;. In other words, growth can distinguish
the two principal directions. Another manifestation of
these issues is that stress coupled growth will have diffi-
culties in stabilizing the largest wavelength modes.

To make this discussion more interesting, and perhaps
to be more relevant to the problem of rod-like E. coli,
we will include a pressure like force Fp = pyN. We say
pressure like since this force acts on the surface of the
cylinder and not the end caps. Since we are interested in
the long wavelength behavior, we will neglect the bend-
ing forces. In addition, we will assume Poisson’s ratio to
be zero, v = 03.

We can now follow the analysis starting with Eq. (18).
Unlike previously, a # ag due to pressure. In fact, we
will have, for the fixed point solution, that

§a ~ 2020 (32)

a = ag(1l+ da), ¥

For example, E. coli, will have da ~ O(0.05).

Next, we can follow the strategy outlined previously
to obtain the rate of growth, R, of various modes gp
and m to leading order in da (linear elasticity). We show
here the results for the longest wavelength modes since
we expect them to be the problematic modes in the case
of stress coupling. Specifically, as gp — 0, we get

R,(m=0) = R+ (3R + 01+ 02) O(da)
(6R+ 01 + 02) O(da)

R,(m=1) =~ 2B
1 1
Rin-t ~ -QOEREIO0
dp

These modes cannot be stabilized simultaneously. We
have already seen that for small wavelength modes, we
need o1 + 0o > 8R > 0 for stability. Therefore in the
stress coupled case the long wavelength modes are harder
to stabilize. Out of the terms we considered, only the

3 These assumptions are to simplify the discussion and can be
modified depending on the application
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mean curvature flow term, B2(H — Hp)gsj, can stabilize
the (m = 0,¢ — 0) mode. This might be a reason why
both stress coupling and geometric coupling have been
observed in E. coli [13-15, 32].

VI. CONCLUSION

Growing elastic shells appear in a wide variety of con-
texts ranging from synthetic and natural shape changing
materials that can be activated by spatially controlled
swelling [7-9] all the way to the growth of biomaterial
sheets and planar tissues by the addition of material and
proliferation of cells respectively [3, 4, 11]. In this pa-
per, we have addressed for the first time, the dynamics
of such growing sheets and the consequences for their sta-
bility. We have assumed that a growing shell, to which
material is being added and removed, can be described
with a slowly changing target metric. This is because, as
a shell’s structure rearranges, the natural distances be-
tween points in the shell change. Within this setup there
are many ways that the metric can change with time.
It can change in a prescribed shape-independent way, as
done in experiments like [7, 9], it can be coupled to an
externally applied field like a stress tensor or an ordered
template [14] or it can be dependent purely on shape as
in Eq. (11).

Regulation of such growth to yield a desired struc-
ture typically requires a control mechanism. Such con-
trol mechanisms could couple the processes driving the
growth to global properties of the shape, or to local prop-
erties of the shape, allowing the material to act locally
and think globally. Therefore, in this paper we explored
the coupling of the change in the metric to local prop-
erties of the sheet - the local shape, and a stress tensor.
Symmetry and locality arguments help reduce the space
of possible metric changes down to the form given in Eq.
(15).

After constructing this general growth law, as a first
step, we analyzed the linear stability of an elongating
cylinder under purely geometric coupling (Sec. V A).
Surprisingly, we found that for any choice of model pa-
rameters, modes with wavelengths on the order of the
thickness (gp ~ 1/7) cannot be stabilized (see Figs. 6,7).
This unexpected result means that a growth law that is
only shape-dependent cannot lead to an elongating cylin-
der that is linearly stable to small wavelength fluctua-
tions.

Since biological systems appear to be able to solve this
problem, we consider two possibilities. First, there might
be a cutoff beyond which the assumptions under which
our growth law is derived will not be valid. One could
imagine, for example, that nonlinearities might result in
the suppression of instabilities. However, even in such
cases, one might expect to see the vestiges of the onset of
the instability. This raises the intriguing possibility that
such arrested instabilities could be used to create small
scale patterns.
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To more robustly stabilize the growth, we consider
a second mechanism, stress coupling, discussed in Sec.
(VB). In particular when the effects of stress coupling
are included we find that these small wavelength modes
become universally stable, as shown in Figs. (8 and 7).
This is because the stress coupling terms tend to make
the target metric grow in a viscoelastic-like way to con-
form with the applied forces as discussed in Sec. IV C. In
this situation, the applied forces are the bending forces
(in E. coli, turgor pressure contributes as well), and since
small wavelength modes contribute a lot of bending en-
ergy they will be suppressed. Note that both the applied
force and the stress coupling contribute to this result.

Interestingly, it was shown in [15] that coupling to
areal strain alone can result in straightening of a bent
rod. However, under this growth law a shell might still
be unstable with respect to different modes of deforma-
tion. Experiments involving controlled perturbations of
the growth laws can yield a significant amount of infor-
mation on the exact nature of the couplings. To this end,
we are currently working on fitting the parameters of the
model to experiments where bacteria are subjected to
bending forces and oscillatory osmotic shocks resulting
in perturbations in localization and dynamics of growth
[14, 28]. One could also imagine directly probing the in-
stabilities by growing E. coli in confining geometries with
shapes of a specific wavelength in the z and ¢ directions.
The exact form of R, could then be compared to the re-
sults of the experiment.

Finally, it is also conceivable that a certain shape can-
not be stabilized at all, just as we’ve seen that, with
purely geometric coupling, an elongating cylindrical shell
would always be unstable to small wavelength fluctua-
tions. While flat, cylindrical and spherical shapes are
fixed points of the growth law due to symmetry, an in-
teresting project would be a characterization of all the
possible stable shapes within this framework and relat-
ing them to the kinds of patterns observed in nature.
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Stability of a growing cylinder under geometric and mechanical feedback mechanisms. Feedback
mechanisms are constrained by symmetry and locality.
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