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Carbon nanotube (CNT) fibers are a promising material for wearable electronics and biomedical
applications due to their combined flexibility and electrical conductivity. To engineer the bending
properties for such applications requires understanding how the bending stiffness of CNT fibers
scales with CNT length and fiber diameter. We measure bending stiffness with a cantilever setup
interpreted within Euler’s elastica theory. We find that the bending stiffness scales with a power
law of 1.9 for the fiber diameter and 1.6 for the CNT length. The diameter scaling exponent for fiber
diameter agrees with results from earlier experiments and theory for microscopic CNT bundles.
We develop a simple model which predicts the experimentally observed scaling exponents within
statistical significance.

1 Introduction
Carbon nanotubes (CNTs) have exceptional physical properties,
e.g., high tensile strength and electrical and thermal conductivi-
ties, at lower density and higher flexibility than classical materi-
als.1 Due to their flexibility, CNT fibers, threads, and yarns appear
to be promising for applications in wearable electronics with in-
trinsic functionality, such as health monitoring, flexible antennas
for wireless communications, flexible batteries, supercapacitors
and photodetectors.2–6 In addition, flexibility is critical for poten-
tial biomedical applications of single filament CNT fibers (diame-
ter of the order of 10 µm) such as neural electrodes for deep brain
stimulation for the treatment of neural diseases, replacement of
damaged discrete neural bundles, or electrically-conductive car-
diac sutures for the treatment of cardiac arrhythmia.7–11 There-
fore, it is important to understand the bending response of CNT
fibers as a function of the characteristic parameters so that fibers
can be tuned for these applications.

In order to understand prior work, it is useful to recall the clas-
sical theories used to describe the deformation of rods (or beams)
under bending. The Euler Elastica (EE) can account for arbitrarily
large displacements (such as in clock springs). It constitutively as-
sumes that the bending moment depends linearly upon the local
curvature via the bending stiffness κ, and that this is the only type
of deformation. A simplification is Euler-Bernoulli Theory (EBT),
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which approximates the curvature by the second derivative of the
transversal displacement of the rod - a hypothesis that holds only
for small rotations (linear deformation). When the material is an
elastic homogeneous isotropic monolith, κ = EI, where E is the
Young’s modulus, and I the moment of inertia of the cross section
around the bending axis (the principal axis of inertia). Therefore,
the bending stiffness scales with the fourth power of the beam’s
diameter. Both EE and EBT assume “pure bending states”, i.e.,
they exclude the effects of shear deformations. The Timoshenko
beam theory (TBT) distinguishes shear from bending deforma-
tions. With the same hypothesis of geometric linearity, the TBT
tends to the EBT for high aspect ratio (L/D), where L is the length
of the beam and D the diameter of its cross section. Moreover,
TBT predicts that the bending stiffness of a beam scales essen-
tially with the second power of diameter only when the beam has
low aspect ratio, and the shear modulus is much lower than the
elastic modulus.

While no prior work specifically considers the bending stiffness
of macroscopic CNT fibers, the bending stiffness of microscopic
bundles of CNTs has been extensively studied both theoretically
and experimentally.12–18 Salvetat et al.12 performed experiments
on the deflection of microscopic CNT bundles with varying length
and diameter. These deflections were analyzed with TBT to cor-
relate the measured displacements to the beam stiffness; experi-
ments showed that the CNT bundle bending stiffness scaled with
bundle diameter with a power law lower than four, even though
the experiments were conducted in the regime of slender beams,
where TBT should approach EBT. Salvetat et al. attributed this
unusual scaling it to an unusually low, nonphysical value of the
shear modulus, and later corroborated this interpretation with ex-
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periments on partially crosslinked fibers.14–16 Moreover, Salvetat
et al. introduced a diameter-dependent shear modulus, but this
is not consistent with the classical TBT model.

Yakobson and Couchman19 argued that the bending stiffness of
CNT bundles should fall between two limiting cases. On the lower
end, the CNTs act as independent rods, and the bending stiff-
ness is the product of the number of CNTs in the bundle and the
bending stiffness of the individual CNTs. This means the bending
stiffness will scale with the fiber diameter to the second power.
On the upper end, the CNTs form a coherent bundle where the
rods cannot slip past one another, so the bending stiffness scales
as a power law of 4.19 These two limiting cases are well known
and, in the language of laminated-structure mechanics, are usu-
ally referred to as the “layered” and the “monolithic” limit, re-
spectively.20

Pipes et al.17,18 derived a model for the bending behavior
of CNT bundles considered as laminated structures with partial
shear coupling of the constituent layers, i.e., an intermediate con-
dition between the layered and the monolithic limits. In their
model, the CNT bundles are treated as a hexagonal array of dis-
crete rod-like elements forming laminate layers, instead of a ho-
mogeneous cylindrical body. In addition to bending and elongat-
ing, the layers transfer stress via relative shearing, according to an
experimentally determined “shear transfer efficiency parameter”,
which is uncorrelated with the fiber diameter.17,18 This simple
approach has been widely proposed in the past to interpret the
response of laminated structures; its difference with TBT consists
of the fact that the shear interaction among the CNT layers is un-
correlated with the Young’s modulus of the CNTs. However, it
suffers the particular drawback that the “shear transfer efficiency
parameter” should depend upon the length of the fiber and the
type of loading (size- and load-dependence), but this correlation
does not seem to have been sufficiently investigated for the case
of CNTs.21

A more refined model was proposed by Bathe et al.22 who ex-
plicitly considered the micromechanics of sliding rods. In their
model, the bundle is assumed to be composed of rods with
monodisperse length. The bending curvature results in the bend-
ing of the constituent rods, as well as in an internal mismatch (rel-
ative sliding) between the lengths of the contact regions between
adjacent rods. This mismatch gives rise to intramolecular exten-
sion/compression and intermolecular shear that can be explicitly
accounted for provided that the associated energy functional is
known. Negligible coupling between the rods recovers the lay-
ered limit. For perfect shear coupling, the path-length change
results in an extension/compression of the rods and the bending
stiffness behaves according to the monolithic limit. Models of
this kind are classical in the mechanics of layered sandwich struc-
tures.23 Compared to the simple approach by Pipes et al., Bathe et
al. explicitly consider the geometric properties of the constituents
rods, as well as the boundary and loading conditions. However,
in this model, the length of the constituent rods is assumed to be
equal to the length of the fibers.

The experimental data and theoretical models of microscopic
bundles of CNTs differ from other natural and synthetic textile
fibers. The stiffness of CNT bundles does not follow the power law

of four expected by EBT; conversely, short segments of monofil-
ament textile fibers are reasonably described with EBT.24–28 Vi-
latela and Windle have argued that CNT fibers are not charac-
teristically similar to monofilament textile fibers but instead to
multifilament yarns.29,30 Classically, monofilament textile fibers
exhibit a monolithic response to bending, whereas the behavior
of yarns depends on the shear coupling among the individual fil-
aments in the yarn.28,31,32 Therefore, major attention should be
paid to the proper modeling of the compliance associated with in-
termolecular forces that keep together the constituent CNT rods.
Moreover, geometrical nonlinearities are important for flexible,
yarn-like filaments and should be captured appropriately by us-
ing at least the EE model.

An important shortcoming of existing literature models is that
they do not explicitly consider the length of the constituent CNTs,
which is always much smaller than the length of the fiber. Here,
we measure the bending deformation of macroscopic CNT fibers
as a function of fiber diameter and CNT length. We model the de-
formation shapes with EE, as EBT and TBT fail to capture the rel-
evant geometric nonlinearities. We provide an elementary model
for the interpretation of the measured dependence of the bending
stiffness upon fiber diameter and CNT length.

2 Experimental

2.1 Specimen Preparation

2.1.1 CNT Preparation

We used CNTs (EC1.5S synthesized by Meijo Nano Carbon Com-
pany Ltd.) with a diameter of ∼1.5 nm.33 The raw CNTs are a
mixture of single-walled CNTs and double-walled CNTs with im-
purities of amorphous carbon and iron oxide. Removal of the
impurities was carried out by slightly modified literature proto-
cols.34,35 Amorphous carbon was removed via exposure to 80%
N2 and 20% O2 flowing at 100 sccm in a 21/2” tube furnace
(Mellen NACCI™) at 480 ◦C (Table 1). To remove the iron ox-
ide catalyst, the purified CNT samples were washed in 37% HCl
(EMD Millipore) for more than 12 hours. The acid wash step was
repeated until no color change was observed in the acid, which
indicates negligible residual iron dissolution. The purified CNTs
were washed with deionized water until a neutral pH was ob-
tained and subsequently freeze-dried (Millrock Bench Top Mani-
fold Freezer Dryer BT48) for 24 hours to remove the water.

At elevated temperatures, thermal oxidation shortens CNTs due
to the higher reactivity of the tube ends.36 To shorten the CNTs,
the purified CNTs were heated to a target temperature in a 2 1/2”
tube furnace under pure N2 flowing at 100 sccm. The CNTs were
exposed to pure O2 for a specific duration and were then cooled to
ambient temperature under pure N2 flowing at 100 sccm. Oxida-
tion temperatures and duration are shown in Table 1. As thermal
oxidation may generate amorphous carbon and functionalize the
CNTs, Raman spectroscopy of the original and shortened CNTs
was measured on a Renishaw Raman microscope. This indicated
negligible functionalization of the CNTs.

The length of the original and shortened CNTs was determined
from the aspect ratio (ratio of the length to diameter). The aspect
ratio was measured from extensional rheometry with the exper-
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Table 1 CNT preparation conditions and resulting aspect ratios. The
data are reported with ± 1 standard deviation.

Purification
Time

Oxidation
Time

Oxidation
Temperature

Aspect Ratio

hrs mins oC L/D
3.5 12 675 1471 ± 90
20 5 525 2780 ± 110
11 0 - 4185 ± 159

imental setup and procedure of Tsentalovich et al.33 The pro-
cedure was slightly altered with a stretching speed of 10 mm/s
instead of 25 mm/s. The aspect ratio measurements were per-
formed in triplicate.

2.1.2 Fiber Preparation

CNT fibers were prepared via the solution spinning process of Be-
habtu et al.37 In this process, CNTs were dissolved into chlorosul-
fonic acid (Sigma Aldrich 99%) at a concentration of 2 wt. %. The
solutions were speed-mixed for 60 to 120 minutes at 2350 rpm
in a FlackTex DAC 600 SpeedMixer™. The mixed solutions were
extruded through a spinneret at a linear velocity of approximately
2 m/min into an acetone (Sigma Aldrich 99.9%) coagulant bath
and drawn at the maximum stable draw ratio. Subsequently, the
CNT fibers were washed in water and dried in an oven at 115 ◦C.
Fibers were prepared varying the spinneret diameter (100 µm,
125 µm, and 150 µm) and the CNT lengths (2.21 µm, 4.17 µm,
6.28 µm). The spinneret diameter was varied holding the CNT
length constant at 6.28 µm and the CNT length was varied hold-
ing the spinneret diameter constant at 150 µm.

To remove any deformation history in the CNT fibers, fibers of
approximately 25 cm in length were hung vertically with a mass
of 1.3 g in an oven at 115 ◦C for at least 4 hours. This annealing
under moderate tension allowed the fibers to straighten and relax
any locked-in bending stresses. The fibers were then allowed to
hang under tension for at least 6 hours in a glove box to unwind
any twisting that may have occurred. Afterwards, the straight
fibers were placed on a Teflon block and cut to length with the tip
of a sharp razor blade.

2.1.3 Fiber Characterization

An optical microscope (Zeiss AxioPlan 2) was used to measure
diameters of random sections of a fiber. Numerous measurements
were taken to ensure good representation of the diameter. The
length of the fiber was measured using a millimeter ruler, and an
average of 3 measurements were made to record the mass of the
fiber using a microbalance. Diameters and linear densities are
reported in the ESI.†

High-resolution scanning electron microscopy (Helios NanoLab
G3) was used with a focused gallium ion beam at a current of 65
nA and voltage of 30 kV to cut the fibers and image the fiber cross
section. Representative images are in the ESI.†

The Young’s moduli of the fibers were determined from their
stress-strain responses as measured by ARES G2 rheometer (TA
Instruments). Tensile testing was performed on 3 cm long fibers
at a rate of 0.01 mm/s. The tensile tests were performed in trip-
licate. Tensile test results are reported in the ESI.†

Despite the high degree of CNT axial alignment and packing in
the fibers37,38, the measured Young modulus EM ranged between
66 and 231 GPa, well below the theoretical modulus of CNTs ET ≈
730 GPa,* indicating incomplete coupling between the CNTs in the
fibers.39

2.2 Measuring Bending Stiffness

2.2.1 Cantilever Setup

A series of cantilever experiments were performed to measure the
bending modulus of CNT fibers using a setup similar to Clapp et
al.40 The free end of the fiber specimen was allowed to hang un-
der self-weight as a cantilever at various lengths while the other
end was clamped. Fibers tend to collapse (by kinking) for long
lengths of cantilever. The typical deformation is shown in Figure
1. The fiber was pulled backwards, thus decreasing the cantilever
length until the deformation was not appreciable: more than 15
snapshots of the cantilever were taken for each fiber as the can-
tilever length decreased. Disturbances from air currents swaying
the fiber were minimized by enclosing the set up within a glove-
box. A point-and-shoot camera mounted on a tripod was used to
take images of the cantilever against a white background contain-
ing scale-bars. To obtain the cantilever profiles, the images were
processed using the algorithm of Brangwynne et al. in Matlab.41

2.2.2 Calculation of Bending Stiffness

Figure 2 shows that the profiles of the CNT fiber cantilevers de-
viate from EBT and TBT indicating either geometric and/or con-
stitutive non-linearities. Assuming the constitutive non-linearities
are negligible, then the geometric non-linearities can be described
with EE, whose governing equation reads

d2ψ

dS2 =−wS
κ

cosψ (1)

where, as represented in Figure 3, ψ(S) is the slope of the can-
tilever, κ is the bending stiffness, w is the weight of the cantilever
per unit-length (supposed uniform), and S is the curvilinear coor-
dinate parametrized by arc length of the cantilever, with the free
end as the origin. The slope of the cantilever is related to the
abscissa x, associated with its horizontal projection, by

x(S) =
∫ S

0
cosψ(ξ )dξ . (2)

Unfortunately, Equation (1) cannot be solved analytically for
a horizontal cantilever with a uniform vertical force for all con-
ditions. For a restricted parameter space, Scarpello showed that
(1) can be expressed in terms of Lauricella hypergeometric func-
tions.43 Approximate solutions have been developed based on
power series42,44–46, series of Chebyshev polynomials47, pertur-
bation methods48, and homotropy analysis method.49 For this
analysis, we use the power series approximation given in Equa-
tion (5.30) from Frisch-Fay42, which provides the function y(S)

* The theoretical modulus of CNTs is typically reported on the basis of the cross-
sectional area of the CNT wall with ET ≈ 1 TPa. The reported value in the text
above is based on the cross-sectional area of a hexagonal bundle of CNTs.
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Fig. 1 Image of cantilever setup with overlay of cantilever profile (pro-
cessed in Matlab) for a representative sample of CNT fiber spun from a
150 µm spinneret.

Fig. 2 TBT and EE fits to a representative cantilever profile for CNT fiber
with CNT length of 6.28 µm.

Fig. 3 Profile of horizontal cantilever bending under a uniform vertical
load of the fiber’s weight. Adapted from Frisch-Fay. 42

associated with the cantilever profile in the form

y =
3

∑
i=0

ci

(w
κ

)i

c0 = S sinα

c1 =−S4 cos2 α

24
(3)

c2 =−S7 sinα cos2 α

360

c3 = S10 cos2
α

(
cos2 α

10368
− 13

129600
sin2

α

)
where α is the bending angle of the cantilever at the free end
(Figure 3). Assuming this model, we can measure the bending
stiffness in Equation (1) by fitting the displacement at the free
end.

Figure 2 shows that EE captures the cantilever profile much
better than TBT. We also note that the best fit for the TBT is as-
sociated with a shear modulus G ' 30 TPa, which is unrealistic.
To verify the assumption of negligible constitutive non-linearities,
the effective bending stiffness κ was determined for each fiber
using different cantilever lengths (2 cm ≤ L ≤ 25 cm), provid-
ing bending moments of different amplitude. As shown in Figure
4, within this range of cantilever lengths, the measured effective
bending stiffness fluctuates around a mean value independent of
the cantilevered length, confirming that EE captures accurately
the fiber behavior (the scatter in the measured data is associated
with variation of fiber diameter and circularity along their length,
as discussed further below). All values of the bending stiffness
recorded hereafter were determined by best fitting the cantilever
deflection with EE.

2.2.3 Statistical Analysis

Because the fiber cross section is not perfectly round and uniform
along the fiber length and there are inherent experimental errors
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Fig. 4 Bending stiffness from EE varying the cantilever length for repre-
sentative fiber segments for CNT fibers spun from spinneret diameter of
150 µm and with CNT length of 2.21 µm (blue), 4.17 µm (green), 6.28
µm (red).

in the measurements of fiber cantilevered length and deflection,
together with uncertainties in the measurement of CNT length,
we performed a statistical analysis of our measurements as to as-
sess their statistical meaningfulness. The statistical distribution
of the power law exponents was determined by bootstrap analy-
sis50, except that we assumed a Gaussian CNT length distribution
because of the small number of length measurement experiments
(n=3 for each CNT sample).

The power law for bending stiffness with fiber diameter was
determined by case resampling and least squares regression. The
regression was performed on sample sets of the bending stiffness
data sampled with replacement and connected to an estimate of
the average fiber diameter from the different spinneret sizes. The
estimate for the average fiber diameter was taken as the average
of a sample set of the fiber diameter data sampled with replace-
ment at each spinneret size. The power law for CNT length was
determined by case resampling and least squares regression on
sample sets of bending stiffness sampled with replacement; each
set was then connected to an estimate of the CNT length.

3 Results and Discussion
3.1 Experimental Results
Bending stiffness of CNT fibers as a function of fiber diameter and
CNT length were determined with the method outlined above.
The bending stiffness κ from EE determined by varying CNT
length is given in Table 2 and by varying fiber diameter is given in
Table 3. For the sake of comparison, in the same tables the mea-
sured values of bending stiffness are compared with the quantity
(ET I), i.e., the product of the theoretical Young’s tensile modulus
ET ≈ 730 GPa and the cross-sectional moment of inertia.

Although the assumption (underlying EBT and TBT) that the
fiber is made of a monolithic isotropic elastic material does not
hold for CNT fibers, the framework is commonly used for natu-
ral and polymeric fibers24–28 and has been applied to bundles of
CNTs.12,14–16 As such, these theories provide a reference point

Table 2 Measured bending stiffness κ for CNT fibers varying CNT length
at a constant spinneret diameter of 150 µm. Comparison with the product
(ET I) of the theoretical Young’s tensile modulus and the cross-sectional
moment of inertia. The data are reported with ± 1 standard deviation.

CNT Length
〈λ 〉

Fiber
Diameter

Bending
Stiffness

κ

ET I

µm µm mN·mm2 mN·mm2

2.21 ± 0.24 22.4 ± 0.8 0.22 ± 0.09 8.98 ± 0.34
4.17 ± 0.17 22.1 ± 0.6 0.74 ± 0.14 8.49 ± 0.21
6.28 ± 0.14 22.0 ± 1.8 1.08 ± 0.18 8.31 ± 0.70

Table 3 Measured bending stiffness κ for CNT fibers varying fiber diam-
eter at a constant CNT length of 6.28 µm. Comparison with the product
(ET I) of the theoretical Young’s tensile modulus and the cross-sectional
moment of inertia. The data are reported with ± 1 standard deviation.

CNT Length
〈λ 〉

Fiber
Diameter

Bending
Stiffness

κ

ET I

µm µm mN·mm2 mN·mm2

6.28 ± 0.24 12.4 ± 0.7 0.33 ± 0.06 0.86 ± 0.05
6.28 ± 0.24 17.7 ± 2.9 0.79 ± 0.15 3.53 ± 0.57
6.28 ± 0.24 22.0 ± 1.8 1.08 ± 0.17 8.31 ± 0.70

for comparison. Implicitly, these theories assume that the bend-
ing stiffness is independent of CNT length and should scale with
the fourth power of the fiber diameter. Figure 5 shows that the
bending stiffness calculated from EE analysis scales with the 1.57
power with CNT length and the scaling exponent of 1.94 with
fiber diameter. The uncertainty in the scaling exponents is shown
in Figure 5(b) and 5(d). The nonzero scaling exponent for CNT
length and the weak scaling exponent for fiber diameter indicate
that the CNT fiber does not behave as a monolithic isotropic ma-
terial, i.e., there is a relative elastic sliding deformation between
the CNTs that reduces the bending stiffness, and that such sliding
is reduced for longer CNTs—consistent with the observation that
the measured tensile modulus EM is much lower than the theo-
retical one ET and increases with CNT length. Notably, the weak
power-law exponent cannot be attributed to the potential effects
of shearing in a monolith because the TBT model does not predict
accurately the cantilever profile (Figure 2).

3.2 An Elementary Model
Following the approach of Bathe et al., an elementary model is
now presented that takes into account the aspect ratio of the con-
stituent CNTs.22

Suppose that in the undistorted state, the fiber is straight and
composed of a set of parallel CNTs. As shown in Figure 6a, we
introduce a reference system (x,y,z) with the y axis parallel to the
fiber length and centroidal with respect to the fiber cross section.
Then, the fiber is bent in the y− z plane such that the centroidal
fibers, z = 0, form a constant radius of curvature ρ, considered
positive if the center of curvature is directed towards the posi-
tive direction of z. Neglecting the transversal strain, the radius
of curvature for a given CNT is approximately constant and de-
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Fig. 5 Power law fits for ET I and the bending stiffness κ from EE: (a) dependence on CNT length; (b) PDF and CDF of the scaling exponent between
CNT length and bending stiffness; (c) dependence on fiber diameter; (d) PDF and CDF of the scaling exponent between fiber diameter and bending
stiffness. The ranges in (a) and (c) are the 68% confidence interval, which is 1 standard deviation for a Gaussian distribution.
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Fig. 6 (a) Local coordinate system for CNT fiber. (b) Undeformed and
deformed conformation of a pair of CNTs before and after bending as
shown in the YZ plane of the fiber. (c) Conceptual representation of the
polycrystalline structure and the orientation angle θ , for a pair of CNTs
shown in the XZ plane cross section of the fiber. The colors (red, green,
and blue) indicate different crystalline domains within the fiber.

pends upon its z coordinate. We assume that each CNT has a
proper bending stiffness associated with the parameter κb, so that
its bending energy can be expressed in the form

εb =
1
2

κbλ

(ρ− z)2 (4)

where λ is its length and (ρ− z) is its radius of curvature, which
depends upon the position z. Due to the high density of solution
spun fibers, the density of CNTs can be reasonably approximated
as being uniform in a considered segment of fiber.37 If N is the
total number of CNTs in a segment of fiber of volume V , averaging
over both the length distribution and the cross section gives an
expression for the average bending energy of the single CNT 〈εb〉
of

〈εb〉=
1
N

∫∫
A

1
2

κb 〈λ 〉
(ρ− z)2 dx dz

∫ L

0
dy

N
V

. (5)

In general, the radius of curvature of the bent fiber is of the order
of a few centimeters, whereas the diameter of the fiber is of few
tenths of a millimeter. Therefore, since ρ� z, one has that ρ−z'
ρ, so that the bending free energy per volume is approximately
given by

Θb

V
' N

V
1
2

κb 〈λ 〉
ρ2 . (6)

We also assume that there is a certain degree of connection of
the constituent CNTs along their lateral surface, which constrains
their relative sliding, due to inter-CNT shear forces. The inter-
molecular shear energies depend upon the mismatch between the
lengths of the contact regions of adjacent CNTs induced by their

relative sliding. Due to the high degree of alignment of CNTs
along the fiber axis, the CNTs can be assumed to be approximately
parallel.37 As such, let l denote the overlap length of the CNTs in
the undeformed configuration (Figure 6b). Consider two adjacent
CNTs (denoted by the labels 1 and 2) and let the corresponding
radii of curvature be ρ1 and ρ2 respectively. The difference in ra-
dius of curvature is related to the angle of the rods relative to the
bending plane and, with the notation shown in Figure 6c, reads

ρ2−ρ1 = d sinθ (7)

where θ is the polar angle between the line passing through the
centroid of the CNTs in lateral contact and the x axis, while d is
the diameter of the CNT.

For the deformation of two parallel overlapping CNTs, the dom-
inate energy scale is a function of the length of the rods due to
the competition between the Young’s modulus of CNTs and the
shear modulus between rods. At short lengths, there is a mild
connection among the fibers, so that the CNTs cannot undergo
noteworthy axial strain (they behave as being inextensible): the
shear energy scale dominates, and the rods slide under a defor-
mation. At long lengths, the resultant of the shear contact forces
is sufficient to equilibrate the shear induced by bending, so that
the rods behave as if they do not slide past one another. Thus,
the tensile energy dominates, and the rods stretch under a defor-
mation.51 Based on tensile strength tests for a variety of fibers,
CNTs with lengths on the order of 1 to 10 µm are still in the
short rod regime where shear energy dominates.38 As a first ap-
proximation, the shear energy can be estimated by a pair of over-
lapping and neighboring CNTs and the number of neighboring
pairs of CNTs. The intermolecular interactions drop rapidly so
non-neighboring CNTs should have minimal contribution to the
energy of the system.

To estimate this contribution in the deformed configuration,
let α1 and α2 denote the angle spanned by the length l for the
radius of curvature ρ1 and ρ2, respectively (Figure 6b). Due to the
assumed axial inextensibility of the rods, one has α1ρ1 =α2ρ2 = l.
Thus, the curvature-induced mismatch, δ l, between the lengths of
the contact regions reads

δ l = α1

(
ρ1 +

1
2

d sinθ

)
−α2

(
ρ2−

1
2

d sinθ

)

=
1
2

(
1
ρ1

+
1
ρ2

)
l d sinθ

' l
d sinθ

ρ

(8)

where we have made the approximation ρ1 ' ρ2 ' ρ.

For the shear energy, we assume a linear elastic potential in the
limit of small deformations. Such linear relationship is a first or-
der approximation of the periodic corrugation energy predicted
by full atom simulations of CNTs in the quasi-static limit interact-
ing via van der Waals forces.52 Thus, the associated energy from
shear between two CNTs is given by
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εs =
ksl(δ l)2

2
=

ksd2 sin2
θ l3

2ρ2 . (9)

where ks is a spring constant for the shear overlap. This constant
collapses all sources of shear interaction among the constituent
CNTs into a single parameter model. As the fiber can be thought
of as a polycrystalline structure with the a priori assumption of
uniform angular distribution, the ensemble average of the shear
energy over the orientation and lengths is

〈εs〉=
ksd2〈l3〉

4ρ2 . (10)

For the hexagonal arrangement as shown in Figure 6c, this cal-
culation can be easily verified because for each rod there are 6
neighbors to take into account, 2 of which with θ = 0 and the
remaining 4 with sin2

θ = 3/4 (θ =±π/3).
Assuming a symmetric and narrow overlap length distribution,

the overlap distribution function should be symmetric. Thus, the
third moment of the overlap length can be related to the first
moment through a relationship of the form

〈l3〉
〈l〉3

= 1−η
σ2

〈l〉2
(11)

where σ is the standard deviation of the overlap length distribu-
tion and η is a constant that depends upon the type of statistical
distribution. For long CNTs, the latter term is negligible, and the
ratio is approximately 1. The first moment of the overlap length
is roughly proportional to half the average length of the CNTs.
Therefore, the average shear energy per pair of CNTs is

〈εs〉 '
ksd2〈λ 〉3

32ρ2 . (12)

As stated earlier, the total energy from shear of CNTs in a seg-
ment of fiber is approximately the product of the number of near-
est neighboring rods and the average shear energy per pair of
overlapping rods. Hence,

Θs '
m
2

N〈εs〉 (13)

where m is the number of nearest neighbors and the factor 1/2 is
included to prevent double counting of nearest neighbor pairs.

The number of nearest neighbors is highly dependent on the
fiber structure. A hexagonal lattice is the maximum dense packing
structure for parallel rods. In this structure, the number of nearest
neighbors is 12. As a comparison point for a square lattice, the
number of nearest neighbors is 8. For lower density structures
(e.g. hexatic phase), the number of nearest neighbors has a wide
range, but the ensemble average number of nearest neighbors
should decrease with decreasing fiber density. In addition, edge
effects will decrease the number of nearest neighbors. However,
for a fiber with a high volume to surface area ratio such as a
circular fiber with a fiber diameter much larger than the diameter
of the rod, edge effects should be negligible.

While the number of rods in a fiber segment is a function of
the structure, it can just be incorporated in the volume fraction of
rods, φ . Thus, the number of rods is

N = φ
4V

πd2〈λ 〉
. (14)

Combining Equations (6), (12), (13) and (14), the total energy
per volume of fiber is

Θ

V
' φ

16πρ2

(
mks〈λ 〉2 +32

κb

d2

)
. (15)

From this expression, one finds that the effective the bending stiff-
ness is

κe '
Aφ

8π

(
mks〈λ 〉2 +32

κb

d2

)
(16)

where A is the cross-sectional area of the fiber.

When the shear bonding of the fiber is strong, the fiber is rea-
sonably approximated by a monolith, for which the TBT or the
EBT represent reasonable models. However, in this case, the ten-
sion/compression energy of the individual CNTs cannot be ne-
glected as assumed for the elementary model. In other words,
the expression (16) is valid only in a short CNT length regime
where shear sliding among the fibers is high enough that the ax-
ial elongation of the constituent CNTs can be considered a second
order effect. Moreover, as shown in Figure 6(b), the model as-
sumes that the centers of two overlapping lengths, l, do not slide
relative to one another. This implies that the shear contact stress
is antisymmetric with respect to the center itself. In a more so-
phisticated approach, one might take into account a more general
kinematics, but at the expenses of the simplicity of the model.

The bending stiffness is experimentally observed to scale to the
fiber diameter with a power law exponent of 1.94, which agrees
with this model despite its simplicity. As the moment of inertia is
proportional to the fiber diameter to the power of 4, the measured
stiffness would be equal to EI only provided that E decreased
with a power law of −2 of the fiber diameter. However, this does
not agree with experimental observations on tensile tests. As for
the CNT length, the bending stiffness experimentally scales with
a power law exponent of 1.57. This power law may be inter-
preted with Equation (16); the part associated with shear energy
scales with CNT length to a power law of 2, while the bending
energy of individual CNTs is independent of CNT length (power
law with exponent 0). For very short CNT lengths, the bending
energy of the individual CNTs is dominant and bending stiffness is
independent of CNT length. For short CNT lengths, the energetic
contribution from shear sliding increases and the power law expo-
nent will approach 2. For an intermediate range of CNTs lengths,
these energies will be on comparable scales and the power law
exponent will take a value between 0 and 2. While not addressed
in our simplified model, the fiber bending stiffness should become
independent of CNT length in the limit of long CNT length. This
implies another transitional regime (not captured by the simpli-
fied model) where the scaling exponent will transition from a
power law of 2 to a power law of 0. The scaling exponent of
1.57 indicates that, in our fibers, the CNTs may be in a length
range corresponding to a transition between scaling regimes.

The elementary model is based on an idealization of a real CNT
fiber. Of course, imperfections in the fiber such as poor packing
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and misalignment might alter the bending deformation mecha-
nisms. However, fibers produced by the solution spinning tech-
nique have high alignment based on typical FWHM by XRD37,38

and are well packed with small voids on the range of 100 nm as
shown in the ESI.†Because of the dense packing, high alignment,
and the good agreement of the model to experimental data, we
believe that alternative deformation mechanisms do not play a
dominant role in the bending stiffness of the CNT fiber.

4 Conclusions
A simple cantilever testing setup has been proposed for indirectly
measuring the bending stiffness of macroscopic CNT fibers, with-
out introducing mechanical kinking. To account for geometric
non-linearities, the profiles were interpreted with EE. The bend-
ing stiffness was experimentally determined to scale with a power
law of 1.57 for the length of the constituent CNTs and a power
law of 1.94 for the fiber diameter. This is quite different from the
expectation from monolithic elastic materials, where the bending
stiffness should depend upon the moment of inertia of the fiber
cross section. The diameter dependence is consistent with earlier
experiments on microscopic CNT bundles as well as earlier mod-
els based on lateral friction.19,53 While the fiber diameter scaling
law may agree with the prediction from TBT in the limit of small
shear modulus, this model fails to represent the measured defor-
mation profile of the fiber cantilever.

An elementary model has been proposed to describe the bend-
ing response of the fiber as a laminate structure, which accounts
for the longitudinal sliding of the constituent CNTs. This predicts
a scaling exponent of the bending stiffness between 0 and 2 for
CNT length and a scaling exponent of 2 for fiber diameter. This is
in good agreement with the experimental finding, taking into ac-
count the simplicity of the model. Finally, this study suggests that
the bending stiffness of CNT fibers is essentially governed by the
relative sliding of the constituent CNTs along the bending axis. As
the elementary model does not explicitly depend on the chemical
structure of the CNT, the bending stiffness behavior of CNT fibers
should be analogous to other highly aligned polymeric fibers such
as aramid or graphene fibers.54–56 This would be an interesting
area for additional study.
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