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Microscopic Details of a Fluid/Thin Film Triple Line†

Timothy Twohig,a Sylvio Maya and Andrew B. Croll,∗a

In recent years, there has been a considerable interest in the mechanics of soft objects meeting
fluid interfaces (elasto-capillary interactions). In this work we experimentally examine the case
of a fluid resting on a thin film of rigid material which, in turn, is resting on a fluid substrate. To
simplify complexity, we adapt the experiment to a one-dimensional contact geometry and examine
the behaviour of polystyrene and polycarbonate films directly with confocal microscopy. We find
that the fluid meets the film in a manner consistent with the Young-Dupré equation when the film
is thick, but transitions to what appears similar to a Neumann-like balance when the thickness is
decreased. However, on closer investigation we find that the true contact angle is always given by
the Young construction. The apparent paradox is a result of macroscopically measured angles not
being directly related to true microscopic contact angles when curvature is present. We model
the effect with an Euler-Bernoulli beam on a Winkler foundation as well as with an equivalent
energy-based capillary model. Notably, the models highlight several important lengthscales and
the complex interplay of tension, gravity, and bending in the problem.

1 Introduction
The interplay between capillary interactions and deformable ma-
terials has recently drawn great interest from the soft matter com-
munity. The focus partly stems from the perceived utility of cap-
illary forces in guiding the assembly of microstructures1 or even
in guiding the folding of origami inspired devices.2,3 Interest has
also grown from the identification of novel phenomena which oc-
cur simply because capillary forces are applied to solids compliant
enough to be locally distorted.4–16 A simple example can be seen
when a fluid drop is placed on a flat elastic half-space. If the mod-
ulus of the elastic substrate is large, the drop adopts the familiar
spherical cap shape with a contact angle θY , determined by a bal-
ance of surface energies in the horizontal direction. However, if
the modulus of the substrate is decreased, the substrate is pulled
by the vertical component of the contact line into a cusp shape,
reminiscent of the Neumann construction.7–9

Decreasing Young’s modulus is not the only way to increase de-
formability; a slender material will also be easily deformed as its
thickness is reduced. For example, a drop added to a thin film
may lead to bending on the scale of the sheet,2,3,17 interesting
pattern formation,18–21 or even complete droplet wrapping22,23.
The critical difference between slender and soft deformations lies
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in the fact that slender, high-modulus films strongly resist in plane
stretching. The significant resistance to creation of Gaussian cur-
vature in a thin rigid sheet, creates new complexity in understand-
ing how the curved fluid-solid triple line of a droplet meets a
sheet which is curved along an orthogonal axis. In this work, we
examine the interaction of a fluid with a thin rigid sheet on the
microscopic level. We work in one dimension in order to avoid
in plane stretching, buckling, and localization.21 We find that the
apparent contact triple line changes continuously from solid-like
(Young-Dupré) to fluid-like (Neumann) as the film’s thickness is
reduced. However, we note that true contact is always Young-like,
and force balance arguments constructed from macroscopically
observed angles are not always correct. Importantly, we show
how film bending, gravity of the fluid substrate, and external ten-
sion contribute to the deformation shape and apparent contact
angles.

Fluid drops on thin, solid substrates have been studied macro-
scopically by several researchers, though little effort has been
made to reconcile macrocsopic models with the microscale. Rus-
sell and co-workers were the first to explore the effect of a fluid
drop resting on a film floating on a water bath.18 The capillary
action of a droplet draws the film in towards the droplet, creat-
ing a compressive hoop stress which quickly leads to the buckling
of the film. The buckling can be modeled through the applica-
tion of the Föppl-von Kármán equations in a limit where bend-
ing is ignored.19,24 The buckling, while useful in determining the
film’s modulus, significantly complicates any effort to observe the
film/fluid triple-line where film bending is important. This is es-
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pecially true if the film is pushed to localization (e.g. if the wrin-
kles collapse into sharp out of plane folds).21

On the other hand, if a droplet is placed on a thin film which
has its boundaries fixed no buckling will occur on microscopic
scales.25–29 In this case a drop deforms the film underneath it into
a parabolic shape (macroscopically), which can be modeled again
with a simplified Föppl-von Kármán equation neglecting bending
and any stretching in excess of what is created by the clamped
boundaries.26 Macroscopically this view is quite successful, lead-
ing to direct measurements of local strain variation25,28 and
strain dependent surface energies in polymer glasses27 among
other results. However, there is no clear picture of what happens
in the film at small lengthscales where stretching and bending
may again be important.

In this paper we describe a simple, one-dimensional experiment
which significantly reduces complexity and allows a direct obser-
vation of the local shape of a thin film in contact with a fluid. In
short, a glassy polymer film (polystyrene, PS, or polycarbonate,
PC) floating on a fluid surface is placed under a droplet of a sec-
ond fluid which is deformed into a long straight contact line by
a capping glass slide (see Fig. 1). The film’s surfaces are located
in three dimensions through laser scanning confocal microscopy
and contact angles are determined on a microscopic scale. Vary-
ing the thickness of the film reveals that the deformation persists
even in films on the order of 10’s of microns in thickness (Föppl-
von Kármán number σ ∼ L2/t2 ∼ 104, where L is the lateral size
of the film and t is the film thickness). As the film thickness drops
below ∼ 1 micron we find the contact becomes altered, reminis-
cent of the Neumann construction typical of fluid/fluid contact
problems. However, quantitatively the Neumann result does not
appear to be valid in the range of thicknesses we examine.

The contact can be modeled with a composite capil-
lary/bending model, or equivalently via the Euler-Bernoulli beam
coupled to a Winkler foundation. The models aid in the discus-
sion of the experimental results, and offer new insight into related
problems. We find the data to be well represented by these simple
theories, and we find the theory is consistant with a Young-Dupré
force balance occurring at the triple line. This occurs because the
film is locally flat at the point of contact (the maximum of the
film contour). The film rises accounting for the unbalanced verti-
cal component of the liquid-vapour surface tension, but the con-
tact angles are not simply calculated from surface forces alone.
Understanding film shape requires knowledge of the relationship
of bending, fluid weight, and film tension. The models highlight
several important lengthscales which can be used to qualify dom-
inant features in the problem, which we discuss in relation to sev-
eral limiting cases (for example tension free films, zero density
fluid substrates) which are inaccessible to experiments.

2 Experimental

2.1 Film Preparation

Solutions of polystyrene (PS) were created by dissolving bulk PS
(Aldrich, Mw = 192 kg/mol) in toluene. To facilitate imaging,
Nile Red fluorescent dye (MP Biomedicals, LLC) was added to
the solution. The solutions were between 0.1% and 10% PS by
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Fig. 1 Schematic of the experimental setup. a.) Top view of the glycerol
drop on polymer film floating on oil bath. Glycerol edge is straightened
by the glass slide reducing the problem to one-dimension. b.) Side view
of the initial setup of the experiment. c.) Side view of the final state of
the experiment. d.) Profile data of a real film extracted from the three-
dimensional confocal microscope scan of a 4.3 micron thick PC film. Blue
represents the glass surface, green the glycerol surface and black is the
film and oil surfaces (oil is the thicker line on the right). The gap in the
black curve is due to reduced scattering intensity at this resolution. Note
the oscillatory profile is strong evidence that film bending cannot be ig-
nored.

weight, depending on the desired film thickness. Polycarbonate
(PC) films were created in a similar manner by dissolving bulk
PC (Scientific Polymer Products Inc., Mw = 60 kg/mol) in chlo-
roform (Nile Red was also added to these solutions). PC solutions
were made between 0.1% and 10% by weight. Thin films were
created by spin coating or drop casting the PS or PC solutions
onto freshly cleaved mica sheets (Ted Pella, Inc.). Spin coating
was used to create polymer samples of thickness 10 nm-700 nm,
and drop casting was used to create polymer films of thickness
0.700 µm - 10 µm. Samples were annealed at a temperature of
∼ 30 ◦C above their respective glass transition temperatures. We
note, these materials both have high moduli (E = 3.5 GPa and
2.2 GPa for PS and PC respectively) and can be considered almost
inextensible.15

2.2 Film Transfer
The polymer films were cut into rectangular pieces and floated
onto a pure water surface (MilliQ, Millipore inc). A slide coated
with a high viscosity silicone oil (5100 Cp) and chilled to ap-
proximately -20 ◦C, was gently pressed onto the floating film and
removed from the bath taking the film with it. At this point, the
film is floating on a silicone oil bath. The sample was allowed
to float on the bath overnight in order to relax any stresses that
were still present in the film from the floating and lifting pro-
cess. Film thicknesses were measured by cutting pieces adjacent
to the floated films and placing them on silicon wafers. Atomic
force microscopy (AFM) was used to measure films of thickness
10 nm-1000 nm. Films thicker than this were imaged with a
laser scanning confocal microscope. Reflectance maxima (that
corresponded to the top and bottom surfaces of the film) were
extracted and were used with the index of refraction for the rele-
vant polymer to find the thickness of each film. Alternatively, the
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top surface of a film and the top surface of the substrate could be
used near a sample edge. No differences were noted between the
various techniques.

A solution of glycerol (99.9% Fisher Chemical) and fluorescent
dye (fluorescein sodium, FUL-GLO) was created. A few drops of
glycerol solution were deposited on the top of a film floating on
(now room temperature) silicon oil, about 1 cm away from the
oil-film edge. To create a flat, elongated contact line, a glass slide
with an edge parallel to both the film edge and the glycerol line,
was placed in contact with the glycerol drops. The geometry is
shown in the schematics of Fig. 1a,b. The setup was allowed to
equilibrate over two hours, resulting in the state shown in Fig. 1c.
The system was then scanned in three-dimensions using confocal
microscopy (Olympus FLUOVIEW FV1000), from which the film
and glycerol surfaces could be located (Fig. 1d).

2.3 Data Processing

Intensity data was processed using ImageJ software and an algo-
rithm to extract the peak intensity for each vertical slice in the
three-dimensional scans. Reflectance and fluorescence channels
were separated, allowing discrimination between the glycerol,
glass slide, and polymer film surfaces. The height coordinate of
submerged portions of films was then corrected to account for the
refractive index of glycerol. An example profile with the corrected
film heights is given in Fig. 1d. This profile data was used to find
the height difference between the oil bath (far right of the film
data) and the peak of the deformation.

The relative angles of the glycerol-air interface, film in air, and
film submerged in glycerol were extracted from the slopes of the
data for these surfaces near the triple point. While data sets span
several millimeters, data is often curved on these large scales and
therefore fitting the entire dataset with a linear function would
be extremely error prone. To avoid the curvature, we focus on
a small region starting at the triple line and extending outward
along each interface. Specifically, data from the triple point to a
distance of ∼40 pixels away along the glycerol surface (∼65 µm)
is fit. While a distance from the triple point to∼75 pixel along the
polymer surface (∼120 µm) is used for fitting. We refer to this
length as the observation length for convenience, and denote it
with the symbol xobs, which we show in figure 2 for convenience.
The number of data points was selected in order to minimize dis-
tance from the triple line, while incorporating enough data points
to account for noise in the measurements. Obvious out-lying data
points were removed by hand (caused by intensity fluctuations
for example). Occasionally, the data within xobs of the triple line
was indeterminate when fitting an intensity peak. In this case,
the data nearest to the triple line where an intensity peak could
be reliably fit was used to determine the slope, with the error cal-
culations being adjusted to reflect the shift away from the ideal
measurement location. The slopes of the linear fits to the glycerol
surface and the polymer surface data were used to calculate the
relative angle between the glycerol and polymer surfaces.

3 Results and Discussion
A droplet of glycerol placed on top of a thin film will pull up-
wards and inwards on the film’s surface, deforming the film into
the curved shape shown in Fig. 1d. The tension created by the
glycerol surface is balanced at the triple line by the interplay of
the outward pull of tension in the film, the change in surface en-
ergy of the film as the glycerol spreads, and the weight of the fluid
displaced below the film. These quantities are also intrinsically
linked through bending in the plate as it deforms to accommo-
date the force balance. If the film is thick, bending becomes the
dominant energy, the plate remains flat, and the lift generated at
the triple line is balanced by the weight of the fluid beneath the
entire plate. If the film is very thin, bending is less relevant, and
the amount of fluid lifted is determined by the capillary length
(
√

γ f /ρg, where γ f is the film’s surface energy, ρ is the oil den-
sity, and g the gravitational acceleration). We note that in this
geometry gravity and bending cannot be ignored in the thin film
limit. The main purpose of this paper is to clarify this complex
interaction.

Figure 2 shows the surfaces near the fluid/film contact line
for a typical thick (3.4 µm) and thin (185 nm) PS film. As it is
of macroscopic convenience to discuss contact angles at a triple
point, three angles at the contact line are directly measured, α,
β , and δ . We sub-divide α and β into a portion above, θ , and
below, φ , the horizontal for convenience (Fig. 2a). Because we
are focusing on small distances from the contact line, angle mea-
surement can often be poorly defined because of the non-zero
curvature near the film maxima (note this exact point is made
by Davidovitch and Vella 24). Care must be taken in comparing
an apparent angle with any theoretical predictions. We extract
angles from theory (discussed below) in the same way as we ap-
proach experimental data in order to maintain consistency.

In a thick film (Fig. 2c), the angle β approaches a value of
115◦, which is very close to what we measure independently with
a sessile glycerol droplet on solid PS film (a PS film of ∼ 200 nm
which has been spin-coated on an atomically flat silicon substrate,
see ESI†). Contact with a thick film can be treated exactly as in
the bulk; the contact angle is a result of a horizontal force balance
which is independent of any tension in the film caused by external
means. In short, the film shows the classical balance of the Young-
Dupré law, γsl + γ cos(θY ) = γsv, where γsl and γsv are the surface
energies under the fluid or exposed to air respectively and γ is the
glycerol surface tension.

As the film thins, the bending energy is reduced and the con-
tact line deforms and lifts the film, resulting in the angles α and β

growing (Fig. 2d). To clarify, α is not equal to θY , and the air-film
interface is not horizontal as is often the case with higher ten-
sion free-standing films.25,26,28,29 The glycerol surface, however,
remains at a fairly constant angle with respect to the horizontal
(see Fig. 3). The measured angle is consistent with θY determined
from traditional sessile drop experiments (θ = 71±7◦ for PS and
θ = 69± 9◦ for PC measured in our experiment). This suggests
that the fluid shape is determined by the Young-Dupré balance
on a scale much smaller than the local radius of curvature of the
film; a lengthscale where the thin polymer film is still effectively
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Fig. 2 Surfaces around the triple line. a.) Schematic defining the various angles discussed in the text. b.) The Young-Dupré limit for reference. c.)
Experimental measurement of the triple line in a thick (3.4 µm) PS film. Green represents the glycerol surface, black represents the film surface outside
the fluid, and red represent the film surface below the glycerol. Solid lines are linear fits over the distance xobs used to determine the angles at the triple
line. For comparison, xT for this film is 7.7×10−4 m. d.) Similar measurement with a much thinner film (185 nm). The relative position of the polymer
film has changed, while the fluid surface remains in a similar position. In this case, xT is 9.7×10−6 m.
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Fig. 3 θ as a function of film thickness. Both polystyrene and polycar-
bonate films show relatively constant behaviour. The average angles are
71±7 ◦ and 69±9 ◦ respectively.

flat and horizontal.
If the hypothesis that θ is always equal to θY (or any con-

stant) is correct, creating a force balance with observed angles
and surface energies becomes problematic. Consider the result
of a horizontal force balance, γ cos(θY )+ (T + γsl + γso)cos(φ1) =

(T +γsv +γso)cos(φ2), where γso refers to the surface tension of an
oil/film interface, T to the tension acting on the ends of the plate,
and the other variables remain as defined above. The relationship
between the two angles φ1 and φ2 is further constrained by the
vertical force balance, γ sin(θY ) = (T +γsl +γso)sin(φ1)+(T +γsv+

γso)sin(φ2), ultimately permitting a single solution (the Neumann
solution). How then can the measured angles φ1 and φ2, which
clearly vary with film thickness (see fig 2) be explained? Either
we do not observe the true angles (φ1 and φ2), the measured con-
stant value of θ is somehow incorrect (and θ is not θY ), or there
are more than just surface forces acting at the triple point.

To proceed, we focus on the directly measured angle β , which
is plotted as a function of film thickness in Fig. 4. The data shows
a smooth monotonic increase in β as films thickness decreases for
both PS and PC films. The good overlap of both materials is con-
sistent with their similar surface energies and material properties,
and is also a sign that films are undamaged during processing and
over the course of the experiment. There are two independent
physical limits for β . First, β must approach θ̄Y = π−θY at large
thicknesses where the film does not bend. Second, in the absence
of bending energy and external tension acting on the free end of
the film, the film will come into self contact and β = π/2+ θ̄Y .
Measurements seem to indicate that this second limit is never
reached experimentally. As discussed above, a simple force bal-
ance is insufficient to describe how β relates to surface forces,
bending, and applied tension because a force balance does not
include a moment balance around the triple line. The failure of
simple force arguments is clear in the experimental variation of β

with film thickness; no external forces or surface energies are re-
lated to thickness changes - only the bending moment relates to
thickness. A comprehensive approach which correctly accounts
for bending moments, external tension and substrate density is
required to correctly describe observed contact angles.

Assuming the horizontal force balance occurs to set the contact
angle locally, we treat the glycerol surface as a vertical line force
of magnitude γ sinθY and model the system as a Euler-Bernoulli
beam on a Winkler foundation.30 The foundation stiffness is de-
termined by the density of the oil bath, ρ and an external tension
is supplied to the plate by the surface tension of the oil, T , pulling
on the free end of the film. The result is the fourth order differ-
ential equation:

EIh′′′′(x) = γδ (x)+T h′′(x)−ρgh(x), (1)

where h(x) represents the position of the film, E is the Young’s
modulus of the plate, and I = t3/12(1−ν2) is the second moment
of inertia per unit width. Film thickness and Poisson’s ratio are
denoted by t and ν , respectively.
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Fig. 4 The external angle β as a function of film thickness. Data for
PS films (blue squares) and PC (black circles) are shown along with the
output of the numerical model (red curves). The self-contact limit (solid
black line) and the solid film (Young) limit (dashed black line) are also
shown.

Scaling analysis of Eqn. 1 reveals two important lengthscales.
If the tension term is much larger than the gravitational term,
we find the problem to be scaled by a length of xT ∼

√
Et3/T

(as has been pointed out for free-standing films).25,29 In the op-
posite limit, we find a gravitational length of xG ∼ (Et3/ρg)1/4

to dominate the problem.31 Comparison of the two lengthscales
defines a cross-over thickness, tc ∼ (T 2/Eρg)1/3, where the be-
haviour changes from gravity to tension dominated. Using the
plane strain modulus of polystyrene E = 3.9× 109 Pa, the den-
sity and surface tension of the oil (1110 kg/m and 22 mN/m re-
spectively) we predict a transition thickness of tc ∼ 2.2µm, which
matches the thickness at which β deviates from the solid film limit
observed experimentally.

If bending is ignored in Eqn. 1, a capillary length, xC ∼
√

T/ρg,
emerges from a similar scaling analysis. Remarkably, the capillary
length is equal to the gravitational and the tension lengths at tc,
highlighting the interdependence of externally applied tension,
film bending, and gravity in the problem. Nevertheless, the con-
tact angles are determined by the smallest observable lengthscale,
which in this case is xT when t < tc. Bending cannot be ignored at
experimentally relevant thicknesses (xT is still greater than a mi-
cron for a 50 nm thick film). Even if the film were free of external
tension, bending cannot be ignored because xC > xG hence xG is
dominant at the contact line.

To gain further insight, we solve Eqn. 1 as a boundary value
problem, and compare the numerical result with the experiment
in several different ways. In Fig. 4 we overlay the previously dis-
cussed experimentally measured β values with the model pre-
dictions as a function of film thickness. Again, the angle was
“measured” from numerically calculated shape profiles, which we
show in figure 5. Here the model is compared to a typical thin and
thick film (figure 5 a,b and c,d respectively). Finally, the last ob-
servable of note is the maximum height of the film which we show
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Fig. 5 Height as a function of position for ∼ 100 nm (a,b) or ∼ 1 µm (c,d)
films. Figures a. and c. show a linear-log plot in which height has been
normalized by its maximum value, in order for all curves to be visible.
Figures b. and d. show the same data but with the height unnormalized
and a log-log axis, again to facilitate viewing of all curves. a. and b. show
data from a 200 nm PS film (black squares), and c. and d. show data
from a 1.5 µm film (black squares again). Data shows good agreement
even though none are ‘fit’ by the model.

in figure 6 as a function of film thickness alongside experimental
measurements. We numerically calculated four different curves,
each motivated by different physical scenarios which we discuss
in detail below. We note that the glycerol weight does shift the
negative infinity plate boundary downwards, which can influence
the apparent value of α, but has little baring on the overall peak
height or the exterior angle β . Hence, we elect to use symmetric
boundary conditions throughout (e.g.h(∞) = h(−∞)) in order to
keep the analysis simple and focused on the contact point.

First, we calculate the zero gravity limit which eases compar-
ison with existing free-standing film experiments (ρ = 0). The
gravity free curve, assuming the external tension is still supplied
by the oil phase surface tension, does fit the angular data. How-
ever, it is clearly not physically related to our experiment as can
be seen in its profile (Fig. 5) or peak height (Fig. 6). The angular
data smoothly changes from solid like (nearly constant) to a sec-
ond limiting value as film thickness decreases. The transition at
the lower thickness occurs because xobs becomes greater than xT ,
meaning the observation is not of high enough resolution to be
influenced by xT . It is now determined by a second lengthscale
(in this case, the plate size L). The shape taken on by the film in
the absence of a fluid substrate is nearly triangular; flat with an
upward slope far from the contact line, curving only at a length-
scale comparable to xT . The peak height is quite high (especially
for thin films), and is strongly related to overall film length and
the applied tension. The discrepancy between the measured and
simulated peak heights is a clear sign that gravity plays a role in
our experiment, whether films are thick or thin, and a zero gravity
approximation is not applicable.

Next we consider the contact line in the absence of an exter-
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Fig. 6 Maximum height of the triple line as a function of film thickness for
PS (blue squares) and PC (black circles) films. Numerical model results
are shown for zero gravity, zero tension, and two other possible external
tensions. Analytic model results are shown as X’s.

nal tension (often the limit in which surface energies are mea-
sured25,28,29). Here we find β is considerably overestimated in
comparison with the data, especially in the thin film limit where
the film has come into self contact. In this case, as thickness
decreases and xobs falls below xT , the film shape is governed
by the gravitational lengthscale, xG. The result is an increased
drive to narrow the peak width. At larger thicknesses the an-
gle approaches θ̄Y as is expected. The height of the lifted re-
gion of film (Fig. 6) follows a single power law, again deviat-
ing from the data considerably in the thin film limit. The power
law can easily be explained by using the scaling length derived
above, xG, in combination with Eqn. 1 to derive a natural height
hG ∼ γ(ρg)−3/4(EI)−1/4. The agreement with the scaling clari-
fies how gravity plays a critical role over the entire range of film
thicknesses in the zero tension limit.

Finally, in solid blue we show a curve generated using exter-
nally measured values for γ, T and ρ. This curve fits both the mea-
sured β (Fig. 4) and also fits the height data quite well (Fig. 6),
with no additional free parameters. While not inconsistent with a
low thickness β plateau, the data does not show a clear transition
to ‘thin’. This is likely due to the low brightness levels and tiny
peak widths increasing error in our experiments coupled with the
fragile nature of extremely thin films (fewer experiments survive
processing). The height data is much more reliable in the thin
film limit, but shows some deviation in the thick film limit (where
β shows good agreement with the model). This is due to a combi-
nation of experimental effects, including plate lengths being com-
parable to the contact region width, and the weight of the fluid
resting on the film altering the boundary conditions (we use sym-
metric hinge boundaries and large plates in the model). We ad-
ditionally show model predictions for a film with a slightly larger
tension to highlight the sensitivity of the experiment. In this case
the low thickness β plateau occurs at a lower angle which is in-
consistent with the data.

The beam model of Eqn. 1 can be supplemented by calculating
similar height profiles from a free-energy based capillary model
(see Appendix A). This method has the advantage of producing
simple, analytic results for various measured properties and re-
moves some of the complexity of a full continuum theory. For the
sake of clarity, we only focus on the maximum height of the de-
formation and contact angle (β) in this work. Assuming a zero
derivative boundary at the deformation peak (consistent with our
interpretation of the true contact point), we find the peak height
as a function of thickness to be:

h0 = xC
γ

2γS

1√
1+2(x2

G/x2
C)

. (2)

where γs is the surface energy associated with moving the plate
upwards and increasing the surface length. Because the plate’s
extension is tiny, we ignore any change in plate length and asso-
ciate γs with T the surface tension of the oil bath. Eqn. 2 is plotted
in Fig. 6 alongside earlier numerical results, and the agreement
is near perfect. This shows that there is no difference between
energy-based or force-based models, and again highlights the in-
terdependence of gravity, tension, and bending in our experiment.

The contact angle in this model is simply θY by construction
(e.g. the zero derivative boundary condition at the deformation
peak). However, as experimental angles are measured a distance
away from the true contact line (xobs), the true contact angle is
is not observed directly. Again, as with the numerical model, we
can derive an apparent angle from the predicted curve shape. In
this case, we can proceed analytically by using the derivative of
the film shape (shown in the appendix) calculated at xobs. Fig. 7
shows the resulting β plotted alongside the PC and PS data with
the numerical ‘fit’ to ease comparison. The analytic result is in
good agreement with the numerical model and what is observed
in the experiment. The two results do not prove that the true
contact angle is always θY , but do show that the experiments are
at least consistent with this hypothesis.

4 Conclusions

We have examined the microscopic details of a fluid/thin-film
contact line using confocal microscopy. We find that gravity, ex-
ternal tension, and bending are all important in the region of film
thicknesses examined (∼ 1× 10−8 to ∼ 1× 10−5 m). The exper-
imentally measured angles, film shapes and peak heights show
good agreement with with a Euler-Bernoulli beam or an equiv-
alent, analytic, capillary model. Our results show that a ten-
sion only force balance, as in the Neumann construction, is not
possible over most of the range of our experiments. Films with
thicknesses above 100 nm have too much bending to consistently
satisfy such a model, largely because the concept of a contact an-
gle is ill defined. We suggest that, a Young-Dupré force balance
always takes place on an extremely local scale (though a scale
larger than molecular sizes). The contact may not be observable
if the radius of curvature of the film falls below optically observ-
able lengthscales. As film thicknesses increase, so does the ra-
dius of curvature, which leads to imprecise contact angles which
are not useful in determining a force balance. Eventually, bend-
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Fig. 7 The external angle β as a function of film thickness reproduced
to clarify demonstration of the analytic theory discussed in the text. Data
for PS films (blue squares) and PC (black circles) are shown along with
the output of the optimal numerical model (blue curve). Analytic theory
calculated with a 5µm observation length is shown by the dash-dotted
green curve.

ing completely dominates, the film remains globally flat, and a
Young-Dupré horizontal force balance is macroscopically observ-
able.
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A The Capillary Model

A capillary model can be constructed to describe the free energy
of a fluid resting on a thin film in one dimension. Minimizing the
difference in free-energy per unit width before and after the film
is deformed allows analytic solutions to be developed in several
useful situations. From this point of view, each surface contributes
a term to the free energy which is proportional to its surface en-
ergy, and its surface area, A. For example, the fluid resting on
top of the film has a free energy,

∫
γdA which can be reduced if

the film is lifted and decreases the fluid/air interfacial area. The
fluid bath beneath the film is lifted if the film is deformed above
the horizontal plane and thus contributes a term proportional to
the height of the deformation and the density, ρ, of the fluid bath
(ρg

∫
dx
∫

h(x)dh). The bending of the film as it is lifted also adds
energy per unit width of film, UB =B/2

∫
κ2dx where κ is the film’s

curvature, B = EI = Et3/12(1−ν2) is the bending modulus with
film thickness t and Poisson ratio ν . Assuming, for simplicity, the
problem is symmetric about the origin x = 0 and all deformations
are small, the total change in free energy per unit width can be

written:

∆F =−γh0 +
γS

2

∞∫
−∞

h′2dx+
ρg
2

∞∫
−∞

h2dx+
B
2

∞∫
−∞

h′′2dx, (3)

where h0 is the film height at the origin (we assume a purely
vertical fluid surface lifting the film), γ is the surface tension of
the top fluid, and γS is the net surface energy change of the film
and oil interface. Using the capillary length, xC =

√
γS/ρg and the

gravitational length xG = (EI/ρg)1/4, Eqn. 3 can be simplified to:

∆F =−γh0 +
ρg
2

∞∫
−∞

[
x2

Ch′2 +h2 + x4
Gh′′2

]
dx. (4)

Eqn. 4 is minimized when the differential equation,

h− x2
Ch′′+ x4

Gh′′′′ = 0, (5)

is satisfied. Subject to the symmetry requirement h(x) = h(−x)
and the boundary conditions h(0) = h0, h′(0) = 0, h(x → ∞) =

h′(x→ ∞) = 0 the solution for x≥ 0 is given by

h(x) =
h0

w1−w2

(
w1e−w2x−w2e−w1x

)
, (6)

where the inverse lengths w1 and w2 are related to the two rival
lengthscales xC anbd xG through w2

1w2
2 = 1/x4

G and 1/w2
1 +1/w2

2 =

x2
C. Inserting the solution back into ∆F and minimizing with re-

spect to h0 yields for the optimal height at the origin

h0 = xC
γ

2γS

1√
1+2(x2

G/x2
C)

. (7)

A second useful expression, the slope of the curve, allows a deter-
mination of any apparent contact angle of interest. The slope of
Eqn. 6 is simply its derivative, given by

h′(x) =
h0

w1−w2
w1w2

(
− e−w2x + e−w1x

)
. (8)

For example, we use Eqn. 8 to calculate a contact angle for films
of thickness ranging from 3 µm to 10 nm at a point x = 5 µm,
which is shown in figure 7.
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Fig. 8 A microscopic study of slender but rigid polymer film deformed by a liquid droplet contact line
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