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Extracting the surface tension of soft gels from elastocapillary wave
behavior

X. Shao1, J.R. Saylor1, and J.B. Bostwick1,∗

July 10, 2018

Mechanically-excited waves appear as surface patterns on soft agarose gels. We experimentally quantify the dispersion relation-
ship for these waves over a range of shear modulus in the transition zone where the surface energy (capillarity) is comparable
to the elastic energy of the solid. Rayleigh waves and capillary-gravity waves are recovered as limiting cases. Gravitational
forces appear as a pre-stress through the self-weight of the gel and are important. We show the experimental data fits well to
a proposed dispersion relationship which differs from that typically used in studies of capillary to elastic wave crossover. We
use this combined theoretical and experimental analysis to develop a new technique for measuring the surface tension of soft
materials, which has been historically difficult to measure directly.

1 Introduction

Capillary instabilities in Newtonian fluids are widely used
in industrial processes such as spray cooling, inkjet print-
ing/rapid prototyping, turbulent mixing, and the float-zone
method of crystal growth. Recent interest in bio-printing
technologies such as cell printing and tissue engineering use
these basic principles but adapted to bioinks1,2, which are
typically hydrogels with complex rheologies characterized by
non-trivial elasticity that are capable of sustaining biological
function. In this paper, we report the experimental observation
of parametrically-excited surface waves on soft agarose gels
and characterize the dispersion relationship over a large range
of shear modulus. We present a new technique for measuring
the surface tension of soft hydrogels.

Traditional surface tension measurement techniques, such
as the Du Nuoy tensiometer or Wilhelmy plate, work well for
liquid interfaces but are difficult to apply to soft hydrogels. Al-
ternative methods measure the solid surface tension as a fitting
parameter that characterizes an observed property of the inter-
face, such as the geometry the wetting ridge3, the shape of the
solid meniscus during indentation4,5, or the statistical distri-
bution of delay times during fracture nucleation6. Notably, a
bridge tensiometer has recently been used to measure the sur-
face tension of yield stress materials, such as Carbonpol gel.
Specifically, the surface tension is extracted from an elasto-
plastic model that delineates elastic from yield stress effects7.
Here we establish a technique which uses the dispersion re-
lationship of mechanically-excited surface waves to measure
the solid surface tension of soft gels. Our technique is distin-
guished by its simplicity, as our experiments use equipment
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that is both common and inexpensive.
Recent work has shown that surface tension forces can dom-

inate the dynamics of soft gels, leading to Rayleigh-Taylor8

and Plateau-Rayleigh9 instabilities. Capillary-gravity waves
travel on a liquid/gas interface endowed with surface ten-
sion10,11and obey the dispersion relationship

ω =

√

gk+
σ
ρ

k3, (1)

whereω is the angular frequency,k is the wavenumber,g
is the gravitational constant,σ is the liquid/gas surface ten-
sion, andρ is the liquid density. Capillary-gravity waves
have been well-studied because they are relevant to numerous
technologies that occur over many length scales; e.g. grav-
ity waves are responsible for momentum exchange between
atmospheric layers12, whereas capillary waves are utilized in
pulmonary drug delivery systems such as nebulizers13 and are
prevalent in wave dissipation (breaking)14 and gas/momentum
exchange15–18 in oceanography.

In contrast to capillary-gravity waves, Rayleigh surface
waves on linear elastic solids are non-dispersive or have con-
stant wave speed19. The dispersion relationship is given by

ω =C

√

µ
ρ

k (2)

whereµ is the shear modulus, and can be used to measure
shear elasticity in solids20,21. The constantC encompasses
properties such as material compressibility and finite-depth ef-
fects. For reference,C = 0.955 for incompressible materials
of semi-infinite extent. The non-dispersive nature of Rayleigh
waves is used in non-destructive material testing to identify
cracks22,23, geotechnical analysis of underwater24 and sub-
surface25 features, and the food science industry for quality
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control and sorting26,27, and in magnetic resonance elastogra-
phy (MRE)28,29.

Waves on soft materials are known to possess properties of
both capillary and elastic waves. The crossover from cap-
illary to elastic waves has been experimentally observed in
electrically-excited traveling waves on agarose gels30–32, and
in ultrasonically-excited soft viscoelastic layers33. Observa-
tions, in general, match a predicted dispersion relationship de-
rived from either an elastic34 or fluid35 based model, both of
which include elastic and surface tension effects. More com-
plex models for capillary waves that account for viscoelastic
substrate effects have also been put forth36–38. A historical
perspective is given in the recent article by Monroy39. For
ultra-soft solids, the self-weight of the gel can become impor-
tant as seen in gravity-driven instabilities40 and the results we
report here.

Herein we use Faraday waves to investigate the dispersion
relationship of soft hydrogels and to study the transition from
capillary to elastic waves. Faraday waves are formed at an
interface by a parametric instability when the system is vi-
brated in the vertical direction, resulting in a wave having a
frequency half that of the forcing frequency41. For Newtonian
fluids, the literature on Faraday waves is vast (see review in
Miles & Henderson42), whereas that for viscoelastic liquids
is comparatively small43–47. Notably, Kumar48 studied this
system analytically, exploring the relative strengths of elastic
and viscous forces on the onset amplitude and showing the
existence of harmonic forcing (not the expected subharmonic)
when the elastic forces are strong. However, to the best of our
knowledge, Faraday waves have not been used as a means to
investigate the dispersion relationship for soft hydrogels.

We begin this paper by outlining our experimental protocol
for exciting and characterizing surface waves on soft agarose
gels with shear modulii ranging fromµ = 1Pa–260Pa. Our ex-
periments yield a dispersion relationship for each shear mod-
ulus from which we capture the transition from capillarity-
dominated to elasticity-dominated dynamics. We then develop
a theoretical dispersion relationship and show how to extract
the solid surface tension3,49,50 from our experimental data.
This new technique is a relatively simple way to measure the
surface tension of soft hydrogels. We conclude by discussing
the relevance of our experimental technique and analysis to
technologies that concern the dynamics of soft hydrogels.

2 Experimental procedure

We investigate Faraday waves on soft agarose gels using the
experimental setup shown in Figure 1. A 9 cm×9.5 cm plex-
iglass container filled with agarose gel is vertically driven by
a shaker over a range of driving frequenciesfd = 60−200Hz.
The shaker is driven by a function generator/amplifier com-
bination. Surface instabilities with square wave symmetry,

Fig. 1 Schematic of the experimental apparatus with typical surface
wave image with wavelengthλ .

shown in Figure 1, were observed above a threshold forcing
amplitude. Images are captured using a strobe light and digi-
tal camera mounted above the container.

Our hydrogels are prepared by dissolving agarose pow-
der (Sigma Aldrich Type VI-A) in deionized water using the
method of Tokita51; the liquid mixture is kept at 90◦C for
1 hour before being cast into the container and allowed to
cool at room temperature overnight. We choose a gel height
h= 24mm to minimize finite-size depth effects, such that the
solid can be treated as semi-infinite. We investigate concentra-
tions in the rangeφ = 0.06−0.275%w, which is above the gel
transitionφc = 0.013%w at 20◦C and corresponds to a shear
modulusµ = 1−260Pa. The complex modulusG= G′+ iG′′

characterizes the rheology of agarose gels, which are known
to have a loss modulusG′′ that is many orders of magnitude
smaller than the storage modulusG′ over the range of frequen-
cies used in our experiments30,51. This implies that our gels
behave as a linear elastic solid for the purposes of this study.

Surface waves were observed having a frequencyfo where
fo = fd/2, as is expected for Faraday waves41,52. A strobe
light is used to ‘freeze’ the wave surface, allowing us to ob-
tain images at a fixed phase of the wave cycle, by setting the
strobe frequency tofo. Herein, we focus on the dispersion
relationship and will refer to the wave frequency asf ≡ fo.
A fast Fourier Transform (FFT) technique was used to ana-
lyze the spatial structure of the wave pattern, from which we
extract an averaged wavelengthλ . To eliminate edge wave
effects, we crop the image to 0.8 times its original size.

3 Experimental results

Our experimental protocol allows us to extract the dispersion
relationship from our data (f ,λ ), as it depends upon the shear
modulusµ . Herein we present our results in terms of angular
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Fig. 2 (a) Dispersion relationships plotting angular frequencyω
against wavenumberk for a range of shear modulusµ. Symbols are
experimental data and lines are best fit power-laws. (b) Typical
surface waves forω = 377rads−1, andµ = 4,137, and 260Pa.
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Fig. 3 Power law exponentα fitted to experimental data against
shear modulusµ with limiting cases for Rayleighα = 1 and
capillary-gravityα = 1.41 waves annotated. Error bars represent
95% confidence intervals.

frequencyω ≡ 2π f and wavenumberk ≡ 2π/λ to compare
with the dispersion relationships for capillary-gravity (1) and
Rayleigh (2) waves. For our ultra-soft agarose gels, we ex-
pect the dynamics to lie between these two extremes30,31. Our
focus is on the role of the substrate elasticityµ .

Figure 2(a) is a plot of the dispersion relationship,ω against
k, for the range of shear moduliµ explored here. Typical
surface wave patterns are shown in Figure 2(b) for fixed fre-
quencyω and three values of modulusµ . The dispersion
curves show the frequencyω is monotonic with wavenumber
k, whereas the curves are non-monotonic with shear modu-
lus µ . This can be seen by ordering the curves byµ as the
graph is traversed from left to right; note especially that the
experimental data forµ = 1Pa lies to the left of theµ = 4Pa
curve. This observation highlights the interplay between elas-
ticity and capillarity, as well as the prominent role of surface
tension in gels with smallµ .

We fit the raw experimental data to a power-law having
the form ω = Ckα , to gain insight into the transition from
capillary-dominated to elasticity-dominated regimes. These
curves are overlayed on the experimental data in Figure 2(a).
Figure 3 is a plot of the power-law exponentα against shear
modulusµ with vertical bars equal to the 95% confidence
interval for each data point. For reference, capillary-gravity
waves have a power-law exponentα = 1.41 and Rayleigh
wavesα = 1 over this range of frequencies. As seen in Fig-
ure 3, the majority of data lies within these bounding curves
implying that both surface tension and elasticity are impor-
tant to understand the dynamics. Note that gravity, which
manifests itself through the self-weight of the gel, is an im-
portant factor in the dispersion relationship—pure capillary
waves would haveα = 1.5. In the limit µ → 0 Pa, the waves
behave as capillary-gravity waves, whereas forµ > 85 Pa, the
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Fig. 4 Rayleigh wave scaling (Eq. 2): angular frequencyω against
k
√

µ/ρ shows a collapse of experimental data for shear modulus
µ > 85Pa. A best fit line forµ > 85Pa is plotted to guide the eye.

u ∝ ei (kx-�t)

z

x

g

z  ∞

Fig. 5 Definition sketch. A linear elastic solid occupies a
semi-infinite half-space in the presence of a gravitational fieldg and
has an interfacez= 0 endowed with surface tensionσ that is
perturbed by a wave ei(kx−ωt).

exponentα = 1 within the 95% confidence interval (with the
exception of one outlier) indicating Rayleigh wave behavior.
In Figure 4, we rescale the experimental data with respect to
the form of the Rayleigh wave dispersion relationship (2) and
show a collapse of the data forµ > 85 Pa, implying that sur-
face tension forces do not affect the dynamics in this “high”µ
regime.

So, while surface tension forces seem to become unimpor-
tant with sufficiently largeµ , the converse cannot be said for
elasticity effects which are important even for smallµ . For
example, as shown in Figure 3, it is not untilµ = 1Pa thatα
approaches 1.41.

4 Theoretical model

We are interested in developing a closed-form dispersion re-
lationship to compare with our experiments, because existing

theories of elastocapillary waves34,35 involve the solution of a
complex nonlinear characteristic equation. We briefly sketch
the details of our model, which builds upon the work of On-
odera and Choi34.

Consider a linear elastic solid that occupies a semi-infinite
half-space and deforms due to its self-weight (gravitational
constantg). The gel surface is endowed with surface tension
σ and perturbed by a wave of the form ei(kx−ωt), as shown in
Figure 5. The displacement fieldu(x,z, t) ≡ (u,w) obeys the
elastodynamic Navier equations,

ρ
∂ 2u

∂ t2 = (λ + µ)∇(∇ ·u)+ µ∇2u (3)

whereλ ,µ are the Lamé parameters. Continuity of stressτ is
enforced at the free surfacez= 0;

τxz= 0, τzz=−σ
∂ 2w
∂x2 +ρgw. (4)

The first equation ensures the interface is free of shear stress,
while the second is the Young-Laplace equation which relates
the normal stress to the linearized mean curvature. Theρgw
term is the disturbance to the pre-stress due to the gravitational
body force or self-weight. Lastly, we require our solution to
be bounded|u| → 0 asz→ ∞.

To construct a solution to the field equations (3)–(4), we use
the Helmholtz decomposition theorem to write the displace-
ment field

u= ∇φ +∇×ψ (5)

in terms of the scalar potentialφ and vector potentialψ = ψ ĵ .
Equivalently,u = (u,w) = (φx−ψz,φz+ψx) in component
form. Sometimesφ andψ are referred to as the compressional
and shear wave potentials, respectively. Substituting (5) into
(3) delivers a set of uncoupled equations,

∂ 2φ
∂ t2 = α2∇2φ ,

∂ 2ψ
∂ t2 = β 2∇2ψ , (6)

whereα ≡
√

(λ +2µ)/ρ and β ≡
√

µ/ρ. Normal modes
ei(kx−ωt) taking the form of steady waves propagating in the x-
direction are assumed withk the wavenumber andω the wave
frequency. The solution of (6) is then given by

φ = Ae−γzei(kx−ωt), ψ = Be−δzei(kx−ωt), (7)

whereγ ≡
√

k2−ω2/α2 andδ ≡
√

k2−ω2/β 2 and(A,B)
are unknown coefficients to be determined from the stress
boundary conditions (4). Substituting (7) into the displace-
ment form of the stress boundary conditions (4),

µ
(

∂u
∂z

+
∂w
∂x

)

= 0, λ
∂u
∂x

+(λ +2µ)
∂w
∂z

=−σ
∂ 2w
∂z2 +ρgw,

(8)
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gives a set of linear equation for the constantsA,B,





i2kγ 2k2− ω2

β 2

2k2− ω2

β 2 +
γ

β 2

(

σk2

ρ +g
)

−i2kδ − i k
β 2

(

σk2

ρ +g
)





[

A
B

]

=

[

0
0

]

.

(9)
The resulting characteristic equation

4

√

1−
1−2ν

2(1+ν)
c2
√

1− c2− (2− c2)2

+c2

√

1−
1−2ν

2(1+ν)
c2

(

Lek+
1

Lgk

)

= 0.

(10)

is written with respect to the scaled Rayleigh wave speed
c≡

√

ρ/µ(ω/k), Poisson ratioν, elastocapillary lengthLe =
σ/µ and elastogravity lengthLg = µ/ρg.

The agarose gels we use in our experiments can be con-
sidered incompressibleν = 1/2 which allows the following
simplification of the characteristic equation (10),

4
√

1− c2− (2− c2)2+ c2
(

Lek+
1

Lgk

)

= 0. (11)

Note that (11) is a nonlinear equation for the wave speedc
that depends upon the wavenumberk, elastocapillary length
Le and elastogravity lengthLg. Assuming our agarose gels
have solid surface tension close to that of waterσ = 72mN/m,
we estimateLe∼ 10−2−10−4m in our experiments. Similarly,
Lg ∼ 10−2−10−4m but with the opposite trend ofLe imply-
ing there is range of shear moduli whereLg ∼ Le. Equating
Lg = Le yields the critical shear modulusµ ≈ 26Pa, which
is clearly in the transition zone between capillary-gravity and
Rayleigh waves shown in Figure 3. A simple scale analysis
between the surface wavelength 1/k and the elastocapillary
lengthLe gives capillarity-dominatedLe≫ 1/k and elasticity-
dominated 1/k ≫ Le regimes. In terms of our data set, the
observed wavelengths forµ = 1Pa are all an order of mag-
nitude smaller thanLe and are capillary waves, whereas for
µ > 85Pa the observed wavelengths are an order of magni-
tude larger thanLe and are Rayleigh waves (cf. Figure 2).
These scaling arguments are consistent with the transition
zone 1< µ < 85Pa shown in Figure 3. In the transition zone,
both capillarity and elasticity affect the dynamics in a way that
cannot be predicted a priori from scale analysis.

The disadvantage of (11) is that it is nonlinear and the dis-
persion relationship must be computed numerically. We seek
to develop an approximate solution to more simply compare
and analyze our experiments. We do this by series expanding
Eq. (11) aboutµ = ∞, keeping the lowest order terms, and
solving the resulting equation to deliver the dispersion rela-

tionship

ω =

√

2
3

gk+
2
3

σ
ρ

k3+
4
3

µ
ρ

k2, (12)

We note that Figure 4 shows the experimental data collapses
upon scaling with the Rayleigh wave dispersion, Eq. (2), for
large µ > 85Pa and the slope of that line is approximately
1.17, which is close to our predicted coefficient

√

4/3≈ 1.15,
thus validating Eq. (12). For all our experimental data with
the exception ofµ = 1Pa,Lek≤ O(1) and we expect Eq. (12)
to be faithful. Forµ = 1Pa, however,Lek≈ 10 and we might
expect Eq. (12) to breakdown at thisLek ≫ 1 limit. This is
confirmed by the fact that Eq. (12) does not recover theµ → 0
limit, Eq. (1). The advantage of Eq. (12) is a readily available
closed-form solution for use in interpreting our experiments.

We fit the experimental data to (12) treating surface ten-
sionσ as a parameter. Figure 6 is a plot of the resulting sur-
face tensionσ versus shear modulusµ . The experimental data
completely collapses in this case, as shown in Figure 7, which
validates the use of our proposed dispersion relationship (12)
in determining the surface tension of soft gels. The average
value over the entire range ofµ producesσ = 45.6mN/m
(cf. Figure 6). For reference, we show how the experimental
data scales with the dispersion relationship (12) for this fixed
surface tension value in the Appendix (Figure 8). Figure 6
shows the predictedσ values tend to become more scattered
for µ > 137Pa, which is firmly in the Rayleigh wave regime
(cf. Figs 3,4) where the particular value ofσ is largely irrel-
evant because of the dominant elastic forces. Other potential
sources of scatter may include edge effects associated with
large wavelength patterns in this regime and uncertainty in the
shear modulus of our stiffest gel (µ = 260Pa) which we have
extrapolated from the data of Tokita and Hikichi51. Finally,
we note the relatively large surface tensionσ = 83.2mN/m
predicted for our softest gelµ = 1Pa, which we attribute to
the range of validity of Eq. (12) mentioned above. We con-
clude that (12) does a good job of predicting our experimental
observations allowing us to extract the surface tension of soft
gels, and may serve as a useful tool to other workers in this
field.

5 Discussion

We have conducted experiments on mechanically-excited sur-
face waves on soft agarose gels and characterized the disper-
sion relationship over a large range of shear moduli. Capillar-
ity can dominate the dynamics for soft materials and our re-
sults capture the transition from capillary-gravity to Rayleigh
waves as it depends upon the shear modulus. In addition, we
have developed a new technique to measure the surface ten-
sion of soft hydrogels by using a theoretical dispersion rela-
tionship for elastocapillary waves. We expect this new mea-
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Fig. 7 Elastocapillary wave scaling: angular frequencyω against
proposed dispersion relationshipωthy, Eq. 12, shows a collapse of
experimental data for all shear modulus explored here.

surement technique, as well as our analysis of the dynamics of
soft materials, to be highly relevant to a number of other tech-
nologies and to be useful to researchers working in the area of
soft hydrogels.

Capillary instabilities in Newtonian fluids are widely used
in industrial processes such as spray cooling, inkjet print-
ing/rapid prototyping, turbulent mixing, and the float-zone
method of crystal growth, all of which operate using the basic
physical principles of the respective instabilities. For example,
the formation of aerosols using vibrating transducers delivers
drops with size related to the capillary frequency. Recent in-
terest in technologies such as cell printing and tissue engineer-
ing use these basic principles but adapted to viscoelastic ma-
terials, such as bioinks1,2, which are typically hydrogels with
complex rheologies (i.e. both liquid and solid properties)53.
The agarose gels we use in our experiments are also used in
cell printing, making our results potentially applicable to the
dynamics of pinch-off in single cell epitaxy53.

Surface tension forces are important for gels with shear
modulusµ < 137Pa in our experiments, whereas elasticity af-
fects the dispersion relationship for even our softest gels. In
contrast, solid capillarity54 can affect elastocapillary or soft
wetting phenomena in much stiffer substrates; e.g. droplet
spreading on silicone gel substrates withµ ∼ 3kPa can ex-
hibit rich behaviors, such as stick-slip and stick-breaking mo-
tions, which are linked to the formation of a wetting ridge at
the three-phase contact-line55. Viscoelastic effects can be ex-
pected to further complicate the dynamics of pattern forma-
tion in our experiments when the gel has a complex rheology.
Future experiments could investigate the ability to control a
dominant mode in viscoelastic gels for precise, robust and re-
peatable cell printing.
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A Comparison to experimental data for aver-
age surface tension value

In Figure 7 we showed how the proposed dispersion relation-
ship (12) collapsed our entire data set when treating the sur-
face tension as an unknown parameter. The average value of
surface tension over the entire data set was computed to be
45.6mN/m. Figure 8 plots the experimental dataω against the
dispersion relationshipωthy (12) using this value of surface
tension, i.e. no fitting parameter. As shown, the comparison
is worse than Figure 7, where we compute surface tension for

6 | 1–7

Page 6 of 7Soft Matter



each data set, but still does a reasonable job of reproducing the
experimental results. The only significant exceptions are the
limiting cases ofµ = 1Pa and 260Pa, where the predicted sur-
face tension is furthest from that average value (cf. Figure 6).
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Fig. 8 Angular frequencyω against proposed dispersion
relationshipωthy, Eq. 12, using the average surface tension value
σ = 45.6mN/m for allµ.
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