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Abstract

Molecular Dynamics simulations are used to understand the underpinning basis of the transport
of gas-like solutes in deeply quenched polymeric glasses. As found in previous work, small
solutes, with sizes smaller than 0.15 times of the chain monomer size, move as might be
expected in a medium with large pores. In contrast, the motion of larger solutes is activated and
is strongly facilitated by matrix motion. In particular, solute motion is coupled to the local elastic
fluctuations of the matrix as characterized the Debye-Waller factor. While similar ideas have
been previously proposed for the viscosity of supercooled liquids above their glass transition, to
our knowledge, this is the first illustration of this concept in the context of solute mass transport

in deeply quenched polymer glasses.
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The growing demand for clean energy creates a need for more efficient and commercially viable
technologies. Many of these emergent technologies, such as CO, capture and natural gas
purification, rely on the selective and efficient transport of gases. Polymeric membranes present
an efficient solution to these separation needs, while being lightweight and low-cost."® There
have been many advances in this field, but most of these have been performed empirically —
consequently, a quantitative understanding of the molecular principles that control the separation
ability of these membrane materials is still under development. For example, the most widely
used quantity to understand separation is the venerable concept of free-volume, originally a
statically defined metric.”'* An overwhelming body of experimental and theoretical work has
established that this concept does not fully explain gas diffusion, and that the local dynamics of

7,15-21

the matrix play a critical role. Pioneering work by Gusev,''” based on a solid-like

2223
model,

implies that solute motion is driven by the local elastic thermal motion of dense
polymers, which is separate from the structural relaxation of the chains. We are motivated here
to probe this conjecture and thus to (i) see if indeed matrix motions facilitate solute transport and

if so (ii) to define the matrix motions that are relevant in this case.

In the solution diffusion model applicable to these situations, gas permeability is defined as the
product of solubility and diffusivity.* It is now well accepted that differences in diffusion
coefficients underpin the ability of glassy polymer membranes to separate gas mixtures.” In this
short communication, we use Molecular Dynamics simulations to show that solute diffusion is
decoupled from the long-range structural dynamics of the polymer (which are frozen in a glassy
matrix). Going well beyond this well-accepted fact, our new finding is that the local, vibrational
dynamics of the glassy polymer, as characterized by the long-time plateau value of the mean-
squared displacement of the frozen matrix (“Debye-Waller factor”),”® defines the appropriate
“dynamic free-volume” metric. Beyond these applications in supercooled liquids®’ and glasses,
the Debye-Waller factor also appears to be a useful metric that leads to universal scaling

behavior of viscosity at higher temperatures.28

In this work, polymer chains are modeled by the Kremer-Grest model,”” namely as a string of
chemically identical monomers, each with a mass m and diameter . All monomers including

bonded monomers interact through the truncated and shifted Lennard-Jones (LJ) potential:
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where ¢ is the well-depth. The cutoff distance 13, = 2.50 ensures that the potential includes
inter-bead attractions. Bonded monomers are connected using the finitely extensible nonlinear
elastic (FENE) potential, with spring constant k = 30c/0? and a maximum bond extent Ry
=1.50¢.>° This gives an average bond length I, = 0.97¢. The penetrants are modeled as LJ

spheres of diameter gy, interacting with polymers through the potential:

ot+ag\ 12 0+US 0+US a+as 6
Uns(r) = {46 [( 2r ) ] 4e [ ZTmS 2rms) )] TS Tins )
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The cutoff distance 7, = Y2(0 + 05)/2 is chosen so that interaction between a penetrant and a
chain monomer is purely repulsive. Interactions among penetrants are turned off since we focus

on the tracer solute limit. All simulations are performed using the LAMMPS package.’'

Initially, 20 penetrant particles are randomly placed inside a simulation cell under the constraint
of no overlap between any two solutes. Then a total of n = 144 matrix polymer chains, each of
length N=10 are created inside the box using the method of Auhl et al.** In all cases no overlap is
allowed between the monomers and the penetrants. Overlapping monomers in the initial states
are pushed off each other using a soft potential until they are far enough apart for the LJ

interaction to be switched on. Further equilibration is carried out in the NPT ensemble at pressure

P=0and T = 1.0e/kp for 10° 1, where T = o/m/e is the LJ time unit. This equilibration
process is followed by isobaric quenching to one of the operating temperatures, namely T =
0.3,0.2,0.15 and 0.1 ¢ /kg, respectively, at a cooling rate of 0.0004¢/kgt. The apparent glass
temperature 7,, as determined from the break in slope of the density vs. temperature following
this protocol, is estimated to be 0.36-0.38¢/kg for all samples. Therefore, the final operating
temperatures are below the apparent 7y; no effort is made to further equilibrate these quenched
glassy states. The Nose-Hoover equations of motion were solved for polymer segments,”® while
Newton’s equations of motion are solved for the penetrants. An integration time step of
0.001 and 0.005t was used, depending on g;. For comparison, a set of simulations with a “frozen

matrix” are also conducted. After the quench to the desired temperature, the equations of motion
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for the polymer segments are not integrated so that they stay fixed at their original locations,
while the Nose-Hoover equations of motion were solved for the penetrants at the corresponding
temperature. The solute diffusion coefficients are calculated from the Einstein relation D =

lim,_,¢, (r2(t))/6t, where (r2(t)) is the mean square displacement of penetrants.
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Figure 1. (a) Segmental packing fraction of polymer glass matrix as function of T, which
extrapolates to g at T = 0; (b) D /T as function of penetrant size gg; solid and open symbols
represent results from “mobile” and “frozen” matrix simulations, respectively; data for T =
0.3,0.2,0.15, and 0.1 are shown in red, blue, green and black, respectively; inset in (b)
schematically illustrates the “minimum porosity” of a closely-packed hard sphere medium and
the critical penetrant size o,~0.150.

Figure 1(a) shows the segmental packing fraction n = m/6 03nN/V of a quenched polymer
matrix as a function of temperature. A linear temperature dependence is observed with an
extrapolated T=0 intercept of n, = 0.574. Presumably, this value of 17y depends on the choice of
particle diameter ¢ and the cooling rate used in preparing the quenched sample, since we expect
1o = 0.58 for a colloidal glass.>* Figure 1(b) shows the reduced diffusion coefficients D/T as a
function of penetrant diameter o, measured at various T. For penetrants smaller than o.~0.150,
the D /T collapses on a common curve, i.e., D o T. Further, penetrant diffusion does not seem to
depend on whether the matrix is “frozen” or “mobile”, suggesting that the solute moves without
any matrix facilitation, and without the need for any activation. The critical size of 0.150 reflects
the smallest possible gap between three close-packed spheres [inset to Figure 1(b)]. Motions of

penetrants smaller than g, occur without involving motions of matrix segments, and therefore the
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difference in matrix dynamics (e.g. “mobile” or “frozen”) does not affect the results obtained in

this regime.

As penetrant size increases to s > ag., the D /T curves “separate” from each other, exhibiting a
stronger dependence on oy at lower T. Since it is unlikely that voids comparable to g, (or larger)
are present in static snapshots, the translational motion of these larger penetrants must be
facilitated by local matrix motions.'®'” Thus, we expect that penetrants only perform local
motions in the cage defined by the matrix, followed by relatively rare nonlocal motions— the
localized-hop mode of solute transport. To illustrate this point, Figures 2(a)-(b) compares the
self-part of the van Hove function of penetrants of size o5 = 0.10 and g5 = 0.30, respectively, at
the same temperature T=0.2. For o5 = 0.10, there is a single prominent peak in the van Hove
function that continuously evolves to larger distances with increasing time. In contrast, the van
Hove function for the larger particle size develops a distinct second peak with increasing time,
with the first peak staying at its original location. These two peaks correspond, respectively, to
the localized and hopping species, respectively. While the location of the first peak changes little
with time, more expectedly, its magnitude decreases with time. Since penetrant motion
corresponds to “hopping” from one cage to the next one, diffusion in this regime should be an
“activated” process. Figure 1(b) further shows that D/T obtained from the “frozen” matrix
simulations are one to two order magnitude smaller than that from the “mobile” matrix ones at
corresponding temperatures and penetrant sizes (even though matrix densities are kept the same),
indicating that in this “activated” regime diffusion is inherently facilitated by the “motions” of
matrix. (The diffusion regime can only be reached at T>0.2 for penetrant size o, = 0.30, and no

diffusion regime can be reached for o, > 0.30 within simulation time.)

The self-part of the van Hove function at the different (glassy) temperatures [Figure 2(c)] are

2 r2e=r2/a?
s

well fit by the Maxwell distribution function b f , where b and « are fitting parameters.

a3
Except at early times, the distributions do not vary with time in any significant way, suggesting

that motions of matrix segments are only of a “local” nature in these deeply quenched states.

The parameter a represents the “width” of the van Hove distribution, often reported as the
effective cage size or the Debye-Waller factor of matrix. Plots of the mean squared displacement

of chain monomers show a temporal plateau at longer times, and the square root of the height of
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this plateau scales directly with a. Figure 2(d) shows that a exhibits a linear dependence on T,
and its extrapolated value at T =0 is @y = 0.046 . (Interestingly, an admittedly long
extrapolation yields that @ = 0 for n = 0.583, which is close to the extrapolated glass transition
volume fraction for colloidal spheres, Figure 2(e).) Thus, the a, being nonzero is likely a
consequence of the method used to prepare the matrix glass.
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Figure 2. The self-part van-Hove function measured at T = 0.2 for penetrants of size (a)
o5 = 0.10 at time 0f 0.2, 0.4, 0.8 and 1.6 7 (from left to right); (b) o, = 0.30 at time of 1, 4, 16
and 64 7 (from top to bottom); (c) the self-part van-Hove function of polymer segments at
T = 0.1,0.15,0.2 and 0.3(from left to right); the dashed lines in (b) and (c) show the fitting by
the Maxwell distribution function; (d)-(e) dependence of the fitting parameter a on temperature
and matrix segmental volume fraction.
Transition state theory has been proposed to account for such activated diffusion processes, i.e.,
D X Ppss ¢ e Ea/T where P.,,sis the probability of barrier crossing and Ej, is the temperature
independent apparent “activation energy”. By plotting D /T as function of 1/T in Figures 3(a)-
(b), and fitting the resulting Arrhenius plots we obtain the apparent “activation energy” E, for
“mobile” and “frozen” matrix simulations [Figure 3(c)]. Based on the deduced values of E, two
regimes can be identified, and like in Figure 1 the transition occurs at o;~0,. For o5 < g, E,is
practically zero and indistinguishable between “frozen” and “mobile” matrix simulations. For
os > 0.150, E, is observed to increase linearly as the function of oy, with the slope being
significantly greater for the “frozen” matrix simulations. Since the segmental density is kept the
same between the two types of simulations, the drastic difference in the apparent activation
energy between the mobile and frozen solute simulations is solely a result of local matrix

dynamics rather than the static properties of the polymer matrices.

Based on the transition state theory, we further exploit the relation of T « @ — a, and E,; < g5 —
o, as suggested in Figure 2(d) and Figure 3(c), respectively, and plot the reduced diffusion
coefficient D /T as function of (o, — 0.)/(a — @) (for oy > o). Figure 3(d) shows that D/T
exhibits an apparently universally exponential dependence on (o5 — a.)/(a — ay) for all
temperatures studied. We believe that Figure 3(d) represents a physically based understanding of
the activated diffusion process. The parameter (o5 — 0.)/(a@ — @) which is the ratio of the
“excess” size of penetrants relative to the degree of “dynamic” matrix fluctuations serves as a

measure of “effective” activation energy in this situation.
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Figure 3. The Arrhenius plot of the reduced diffusion coefficients D /T from the (a) “mobile-"
and (b) “frozen-"" matrix simulations; (c¢) dependence of the apparent activation energy E, from
“mobile-" (blue) and “frozen-" (purple) matrix simulations as the function of penetrant size; (d)

The universal dependence of the reduced diffusion coefficients D /T as a function of the
“effective” penetrant size (g5 — 0.)/(a — a,), at different temperatures.

We take a moment here to relate this work to the earlier conjecture of Gusev, who suggested that

the solute motion was facilitated by the local elastic fluctuations of the matrix molecules.

16-17

Our results agree with this model, and further show that the Debye-Waller factor is the

appropriate measure that is relevant to describing these elastic fluctuations. Analogously, the

diffusion of large nanoparticles through certain rubbery polymers can also follow a hopping

mechanism.*” Here, the constraint on solute motion originates either from cross-linked networks

or from strong chain entanglement. Similar phenomena are also observed in non-polymeric

disparate-size mixtures, in which the coupling between the diffusion of small particles and the
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movement of the large obstacles gives rise to interesting delocalized phases and anomalous
dynamics.”’*® However, in absence of polymer bonds, the glass transition of these obstacle
matrices often couples with their packing fraction, which leads to different critical penetrant size

for its activated motion.
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