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Emergent magnetoelectricity in soft materials, insta-
bility, and wireless energy harvesting†

Zeinab Alameh,‡a Shengyou Yang,‡a Qian Deng b and Pradeep Sharma?a,d

Magnetoelectric materials that convert magnetic fields into electricity and vice-versa are rare and
usually complex, hard crystalline alloys. Recent work has shown that soft, highly deformable
magnetoelectric materials may be created by using a strain-mediated mechanism. The electro-
magnetic and elastic deformation of such materials is intricately coupled; giving rise to a rather
rich instability and bifurcation behavior that may limit or otherwise put bounds on the emergent
magnetoelectric behavior. In this work, we investigate the magneto-electro-mechanical instability
of a soft dielectric film subject to mechanical forces and external electric and magnetic fields. We
explore the interplay between mechanical strain, electric voltage and magnetic fields and their
impact on the maximum voltage and the stretch the dielectric material can reach. Specifically, we
present physical insights to support the prospects to achieve wireless energy harvesting through
remotely applied magnetic fields.

1 Introduction
Soft materials that are capable of large mechanical deformation
in response to an external stimuli (such as temperature, pH
or electric field) have recently received extensive attention.
As example, soft dielectrics respond to electric fields and have
been investigated for applications in human-like robots,1,2

stretchable electronics,3 actuators4–6 and energy harvesting.7–11

Magnetoelectric coupling refers to the ability of the material to
electrically polarize under the application of a magnetic field, and
conversely, magnetize under the application of an electric field.
Unfortunately, there are no known natural soft magnetoelectric
materials. Magnetoelectricity was discovered in a class of hard,
crystalline multiferroics.12–14 The intrinsic coupling is low at
room temperature and these materials can hardly sustain large
deformations∗.

Soft materials that are magnetoelectric are expected to
have several interesting applications such as wireless energy
transfer,17 spintronics and nonvolatile memories,18 multiple
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state energy bits that can be written electrically and retrieved
magnetically, among others.14 Perhaps the most enticing one
is that of wireless energy harvesting. Magnetic fields may be
remotely imposed and therefore a suitable magnetoelectric
soft material may provide a facile route to convert magnetic
power into electric energy. Coupled with the large-deformation
capability of soft materials, these materials present a compelling
case as actuators, sensors and energy conversion devices. In
recent works, a rather simple approach to create artificial soft
magnetoelectric materials was proposed by Liu, Sharma and
co-workers19–21 that does not require the materials themselves
to be magnetoelectric, or piezoelectric or exhibit any exotic
atomistic features that conventional hard crystalline multiferroics
do. Rather, any soft material may be made to act like a magne-
toelectric material (Figure 1) provided certain conditions are met.

For instance, a soft dielectric film coated with two compliant
electrodes under an applied voltage will deform because of the
electric Maxwell stress—and this deformation is proportional
to the square of the applied electric field. What will happen to
the dielectric response if an external magnetic field is applied
in addition to the applied voltage? If the dielectric material
also has a magnetic permeability larger than unity, then it
will deform further due to the magnetic Maxwell stress. The
superimposed additional deformation will, in turn, alter the
pre-existing electric field and thus, change the polarization (see
Figure 1). The detectable change in the electric field resulting
from the application of the magnetic field manifests itself as a
magnetoelectric effect.19,20 Since the aforementioned mecha-
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Fig. 1 Schematic figure illustrating the mechanism that can be used to
engineer the magnetoelectric effect in soft materials. A thin film made
of an elastically soft material is coated with two compliant electrodes.
When subjected to a pre-existing electric potential, the dielectric will be
deformed and be polarized by the electric field. Now, if an external mag-
netic field is switched on, the magnetic Maxwell stress will also deform
the thin film if its magnetic permeability µr > 1. That, in turn, alters the ex-
isting polarization and deformation. The change of the polarization in the
film can be measured as a current due to the imposed magnetic field and
thus manifests as an emergent strain-mediated magnetoelectric effect.

nism relies mainly on electric and magnetic Maxwell stress the
resulting magnetoelectric effect is universal. Here, we note three
essential conditions for the effect to take place.19–21 First, the
material must be mechanically soft so that the electrical Maxwell
stress effect is significant. Second, the dielectric material must
have a magnetic permeability larger than that of vacuum. That
is, the magnetic permeability of the soft material must be greater
than one, µr > 1. The latter can be ensured by incorporating a
very minute amount of soft magnetic particles or fluid.22 Finally,
a pre-existing electric field must be present.

Large deformation in soft matter and instabilities go hand-
in-hand. For example, soft dielectrics are vulnerable to a wide
range of electro-mechanical instabilities including thinning and
pull-in instabilities,23–25 electro-creasing to cratering,26 electro-
cavitation,27 wrinkling to name just a few.28,29 Historically,
instabilities have been considered harmful (and they indeed can
be) but more recently, especially in the context of soft dielectrics,
they have also been exploited to enhance material behavior and
design novel devices.30 While the literature on the discussion
of instability in dielectrics (and its avoidance or enhancement)
is extensive, very few works have focussed on analogous issues
in the context of soft magnetically responsive materials.22,31–33

In this work, (i) we analyze the magneto-electro-mechanical
stability of a soft dielectric film subjected to a combination of me-
chanical, electrical and magnetic stimuli, (ii) present insights into
the resulting phenomenon of strain-mediated magnetoelectricity,
and (iii) explore the prospects for wireless energy harvesting due
to remotely applied magnetic fields.

The outline of this work is as follows: In Section 2, we present

the theoretical formulation, first in general terms and then spe-
cialized for the thin-film configuration of interest which we use to
illustrate our key results. In Section 3 we specialize our deriva-
tions to homogeneous deformation and for an ideal dielectric
elastomer. We present the central results related to stability and
magnetoelectric effect in Section 4 and discuss wireless energy
harvesting in Section 5. Finally, we conclude our work in Section
6.

2 Formulation
In this section, we derive the governing equations needed to in-
vestigate the magneto-electromechanical stability of soft dielec-
tric materials subjected to a combination of mechanical forces
and external electric and magnetic fields. We assume the sim-
plest possible configuration: a film of soft material sandwiched
between two electrodes (see Figure 2). This will facilitate explo-
ration of the key mechanisms and insights underpinning magne-
toelectricity in soft materials while avoiding excessive mathemat-
ical tedium. The material forming the layer is assumed elastically
nonlinear but electrostatically and magnetostatically linear.

2.1 Geometry and deformation
If we consider a film of soft dielectric and choose a positively-
oriented, orthonormal basis {eX ,eY ,eZ} with associated Cartesian
coordinates X , Y , and Z, the domain occupied by the dielectric
film (see Figure 2), in the reference configuration, is given by

B = {X ∈ R3 : 0≤ X ≤ L1,0≤ Y ≤ L2,0≤ Z ≤ L3}, (1)

where Li, i = 1,2,3, are geometrical dimensions.

The deformation is denoted by a smooth mapping:χ : B→ R3

and the deformed film dimensions become (l1, l2, l3). In contrast
to the material point X ∈B, the spatial point is then represented
by x = χ(X), which is denoted by the Cartesian triplet (x,y,z) in
the current configuration.

We consider the following class of deformations

x = X +a(X), y = Y (1+b(X)), z = Z(1+ c(X)), (2)

where a(X), b(X) and c(X) are functions of only the variable X .

The deformation gradient is

F =
∂ χ

∂X
=

 λ1 0 0
Y b′(X) λ2 0
Zc′(X) 0 λ3

 , (3)

where the prime denotes the derivative with respect to X and the
stretches † are

λ1 =
∂x
∂X

= 1+a′(X), (4a)

λ2 =
∂y
∂Y

= 1+b(X), (4b)

†The stretches here are not the principal stretches of the deformation.
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and

λ3 =
∂ z
∂Z

= 1+ c(X). (4c)

The (volumetric) Jacobian then becomes

J = detF = λ1λ2λ3, (5)

where λi is given in (4). For incompressible materials, the Jaco-
bian in (5) is unity

J = 1 (6)

and then the stretches have the relation

λ1 =
1

λ2λ3
. (7)

Fig. 2 A film of soft dielectric material subject to two pairs of in-plane
mechanical loads P2 and P3, an applied electrical voltage difference V be-
tween the upper and bottom surfaces coated with compliant electrodes,
and an external magnetic field he in the thickness direction.

2.2 Maxwell’s equations and boundary conditions
2.2.1 Maxwell’s equations

In the current configuration, the Maxwell equations are20,34

div(−ε0 gradξ +p) = 0, div(−gradζ +m) = 0, (8)

where ε0 is the vacuum permittivity, “div” and “grad” are the
divergence and gradient operators, ξ is the electric potential
field and ζ is the magnetic potential field. p and m respectively
denote the polarization and the magnetization.

The relation between the polarization and the magnetization
in the current and reference configurations are19,20,34

p =
P
J
, m =

M
J
, (9)

where P and M respectively denote the polarization and the mag-
netization in the reference configuration. Other definitions of
these relations between the true and the nominal polarization
(or magnetization), see for example the definition by Dorfmann
and Ogden,35, can also be used if the expressions of the corre-
sponding Maxwell equations are properly articulated. The current

choice of the defined nominal magnetization in (9) are consistent
with our formulation.

2.2.2 Electric and magnetic boundary conditions

The electric boundary conditions on the upper (x= l1) and bottom
(x = 0) surfaces in the current configuration are

ξ |x=l1 =V, ξ |x=0 = 0, (10)

where x is the coordinates in the current configuration and l1 is
the thickness of the deformed film.

The far-field magnetic boundary condition is20,34

−gradζ → he as |x| → ∞, (11)

where x is the spatial point and he = heex is the external far-field
magnetic field in the current configuration with basis {ex,ey,ez}.

From Ampère’s law for time-independent problems and in the
absence of external currents, we have the following interface dis-
continuity/boundary condition for the magnetic field on the up-
per (x = l1) and bottom (x = 0) surfaces

n× J−gradζ K = 0 on x = 0 & l1, (12)

where n is a unit normal to the surface and J f K = f+− f−, is the
difference of the field quantity f evaluated at either side of the
discontinuity surface.

In addition, given the absence of “magnetic monopoles" on
the interfaces, we have the following interface discontinu-
ity/boundary condition for the magnetic flux:

n · J−µgradζ K = 0 on x = 0 & l1, (13)

where µ is the magnetic permeability.

2.3 Free energy of the system

The total free energy of a general conservative magneto-electro-
mechanical system in a three-dimensional space can be expressed
as34

F [χ,P,M] = U [χ,P,M]+E elect[χ,P]+E mag[χ,M]+Pmech[χ].

(14)

Here, U is the internal energy

U =
∫
B

W (χ,P,M), (15)

where B is the domain of the system in the reference configura-
tion and W (χ,P,M) is the internal energy function. The smooth
function χ : B→B∗ that assigns to each material point X ∈B a
spatial point x ∈B∗.

In addition, E elect in (14) is the electric energy

E elect =
ε0

2

∫
B∗
|gradξ |2 +

∫
∂B∗d

ξ (−ε0 gradξ +p) ·n, (16)
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where B∗ is the domain of the deformed body and ∂B∗d is the
electric boundary in the current configuration, and n is the unit
normal to the surface ∂B∗d .

E mag in (14) is the magnetic energy ‡

E mag =
µ0

2

∫
R3
|gradζ |2

=
µ0

2

∫
R3
|gradζ

self|2−µ0

∫
B∗

he ·m,

(17)

where µ0 is the magnetic permeability of free space, he is the far-
field applied magnetic field and m is the magnetization in the cur-
rent configuration. ζ self is the so-called magnetic self-field which
is defined for convenience by decomposing the total magnetic
field h as: h= he+hsel f and hsel f =−gradζ self and hsel f =−gradζ .
Finally, Pmech in (14) is defined by

Pmech =−
∫

∂Bt

t ·χ (18)

that is the potential energy related to the dead load t applied on
the traction boundary ∂Bt .

In this work, we will consider the case of a dielectric elastomer
subject to two in-plane biaxial forces P2, P3, an applied voltage
(10) and an external far-field magnetic field (11) in the thickness
direction (see Figure 2). Considering the assumption of the de-
formation (see eqs. (2)-(7)) and the 1-dimensional nature of the
problem, the total free energy of the system shown in Figure 2, in
contrast to the general form (14) in the three-dimensional space,
is given by19,20

F
L1L2L3

=
1

L1

∫ L1

0
W (λ2,λ3,P,M)dX +

1
L1

∫ l1

0

ε0

2
λ2λ3(ξ,x)

2dx

+
1

L1

[
ξ λ2λ3(−ε0 ξ,x + p)

]∣∣
x=l1

+
1

L1

∫ l1

0

µ0

2
λ2λ3(ζ

self
,x )2dx

− 1
L1

∫ l1

0
λ2λ3µ0he ·mdx− P2λ2

L1L3
− P3λ3

L1L2
, (19)

where the subscript ‘,x’ denotes the derivative with respect to x
in the current configuration.

The free energy expression (19) contains a mixture of both ma-
terial and spatial representations. In the following subsection, we
will reformulate the free energy expression entirely in the refer-
ence configuration.

2.3.1 Material representation of the free energy

Recalling the expression for the stretch λ1 in (4), the relationship
between the differentials in the current and reference configura-

‡The detailed derivation of the form of the magnetic energy and the expression of
(17) can be found in equation (5.1) - (5.5) of the work by Liu. 34

tions can be written as

ξ,x = ξ,X
∂X
∂x

=
ξ,X

λ1
, ζ

self
,x =

ζ self
,X

λ1
, dx = λ1dX . (20)

In contrast to the spatial forms (8), the 1D Maxwell equations
in the reference configuration are

(−ε0 λ2λ3ξ,X +P),X = 0, (−λ2λ3ζ,X +M),X = 0. (21)

Thus the free energy (19) can be written in the reference con-
figuration as

F
L1L2L3

=
1

L1

∫ L1

0
WdX +

1
L1

∫ L1

0

ε0

2
(λ2λ3)

2(ξ,X )
2dX

+
1

L1

∫ L1

0
[−ε0(λ2λ3)

2(ξ,X )
2 +λ2λ3ξ,X P]dX

+
1

L1

∫ L1

0

µ0

2
(λ2λ3)

2(ζ self
,X )2dX

− 1
L1

∫ L1

0
µ0heMdX− P2λ2

L1L3
− P3λ3

L1L2
(22)

by using the equations (20), (7), and the 1D Maxwell equations
(21) as well as integration by parts.

2.3.2 A vector form of the free energy

There are four generalized coordinates (independent variables)
including λ2, λ3, P and M in the expression of the free energy
(22). Other variables like the electric potential ξ , the magnetic
potential ζ and the self-magnetic potential ζ self are related to the
four generalized coordinates through the relation (20) and the
Maxwell equations (21).

By introducing a vector

v = (λ2, λ3, P, M)T , (23)

A more compact form of the free energy (22) can be written as:

F(v)
L1L2L3

=
1

L1

∫ L1

0
W t(v)dX− s2λ2− s3λ3, (24)

where the total energy density W t(v) is

W t(v) =W (v)− ε0

2
(λ2λ3)

2(ξ,X )
2 +λ2λ3ξ,X P

+
µ0

2
(λ2λ3)

2(ζ self
,X )2−µ0heM, (25)

and the nominal stresses are

s2 =
P2

L1L3
, s3 =

P3

L1L2
. (26)

It should be noted that ξ,X and ζ self
,X in the energy function (25)

are implicitly related to the vector v in (23).

2.4 Principle of minimum free energy

The equilibrium state v in (24) is dictated by the principle of min-
imum free energy. The free energy should be minimized among
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all the neighboring states v+δv, |δv| � 1:

F(v)≤ F(v+δv). (27)

The inequality (27) gives the following conditions for the first and
second variations:

δF(v) = 0 (28)

and
δ

2F(v)≥ 0. (29)

Using (28) and (29), the first variation condition can be written
as:

δF
L1L2L3

=
1

L1

∫ L1

0
δW t(v)dX− s2δλ2− s3δλ3 = 0 (30)

while the second variation condition is an integral inequality, such
that

δ 2F
L1L2L3

=
1

L1

∫ L1

0
δ

2W t(v)dX ≥ 0. (31)

We remark that the first and second variations are integral
quantities since we have allowed for inhomogeneous states. For
homogeneous deformation and perturbation, a direct use of the
Hessian matrix approach is often used to study stability.11,25 De-
tailed derivations of the first and second variations can be found
in the Appendix A.

3 Homogeneous deformation of ideal di-
electric elastomer

3.1 Homogeneous deformation

In order to make the calculation simpler and obtain clear insights
regarding our stated objective, we now limit our attention to the
homogeneous deformation. That is, the deformation gradient
is constant everywhere in the deformed body. This assumption
has been used quite frequently to study electromechanical
instability.7,11,25

For homogeneous deformation of incompressible materials, the
deformation gradient (3) reduces to

F =

1/λ2λ3 0 0
0 λ2 0
0 0 λ3

 , (32)

where λ1,λ2, and λ3 are undetermined constants that are
independent of the coordinates.

In addition, the free energy (24) reduces to

F
L1L2L3

=W t(v)− s2λ2− s3λ3, (33)

the first variation condition (30) becomes

δF
L1L2L3

=
∂W t

∂v
·δv− s2δλ2− s3δλ3 = 0 (34)

and the second variation condition (31) reads

δ 2F
L1L2L3

= δ
2W t(v) = δv · ∂

2W t

∂v2 δv = δv ·Hδv≥ 0. (35)

This stability condition δ 2F ≥ 0 only requires a positive-definite
(Hessian) matrix H= ∂ 2W t

∂v2 at equilibrium.

3.2 Ideal dielectric elastomer

The formulation in the preceding sub-sections is applicable for
any soft dielectric material with the internal energy W (v). To
produce specific results, we will make a choice of constitutive law
and consider an ideal dielectric material19,20,34

W =
c
2
(λ 2

2 +λ
2
3 +λ

−2
2 λ

−2
3 −3)+

P2

2ε0(ε̂r−1)
+

µ0M2

2(µ̂r−1)
, (36)

where c is the small-strain shear modulus, ε̂r and µ̂r are the
relative electric permittivity and magnetic permeability of the
film, respectively.

The first term in (36) denotes the mechanical part, while the
second and third terms are the electrical and magnetic parts of
the internal energy, respectively. In the absence of electric and
magnetic fields, the internal energy simply represents an incom-
pressible neo-Hookean elastic material.

3.3 Equilibrium solutions

With (A.69) and (34), the Euler-Lagrange equations are

∂W t

∂λ2
− s2 = 0,

∂W t

∂λ3
− s3 = 0,

∂W t

∂P
= 0,

∂W t

∂M
= 0. (37)

Together with the energy function (36), we have

c(λ2−λ
−3
2 λ

−2
3 )− ε0λ2λ

2
3 (ξ,X )

2 +λ3ξ,X P+µ0λ2λ
2
3 (ζ

self
,X )2− s2 = 0,

(38a)

c(λ3−λ
−2
2 λ

−3
3 )− ε0λ

2
2 λ3(ξ,X )

2 +λ2ξ,X P+µ0λ
2
2 λ3(ζ

self
,X )2− s3 = 0,

(38b)

P
ε0(ε̂r−1)

+λ2λ3ξ,X = 0, (38c)

µ0M
(µ̂r−1)

+µ0(λ2λ3)
2
ζ

self
,X [ζ self

,X ],M−µ0he = 0. (38d)

In this set of four algebraic equations, we have four unknown
independent variables, λ2, λ3, P and M. The remaining two vari-
ables ξ,X and ζ self

,X are related to these four independent variables
through the relation (20) and the Maxwell equations (21). To-
gether with the electric and magnetic boundary conditions, we
can solve this set of algebraic equations. In the following, we give
the details of the solution.
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3.3.1 Solution of the polarization and the electric field

From (38c), we can easily obtain the polarization P in the refer-
ence configuration as

P =−ε0(ε̂r−1)λ2λ3ξ,X . (39)

With (7), (9) and (20), the polarization can be written in the
current configuration as

p =−ε0(ε̂r−1)ξ,x, (40)

which is consistent with the constitutive relation stated earlier in
this work.

Substituting (40) into the Maxwell equation (8), we can obtain
a Laplace equation of the electric potential ξ . Together with the
electric boundary condition (10), the solution of the potential in
the current configuration is given by

ξ =
V
l1

x, 0≤ x≤ l1. (41)

Then the electric fields in the current and reference configurations
are

−ξ,x =−
V
l1

(42)

and
−ξ,X =−λ1ξ,x =−

V
L1

. (43)

For further discussion, we define the magnitude of the nominal
electric field as:

Ẽ =
V
L1

. (44)

3.3.2 Solution of the magnetization and the magnetic field

Similar to the polarization, from (38d), we can get the magneti-
zation M in the reference configuration as

M = (µ̂r−1)(−λ2λ3ζ
self
,X +he). (45)

With (7), (9) and (20), the magnetization in the current configu-
ration is

m = (µ̂r−1)(−ζ
self
,x +he) =−(µ̂r−1)ζ,x, (46)

which, as expected, agrees with our constitutive relation.

Substituting (46) into the Maxwell equations (8), we have a
Laplace equation of the potential ζ . Together with the magnetic
boundary conditions (11), (12) and (13), the solution of the mag-
netic field in the current configuration is given by

−ζ,x =


1
µ̂r

he, 0 < x < l1,

he, otherwise.

(47)

Then the magnetization and the self-magnetic field in the current

configuration are given by

m =


h̃, 0 < x < l1,

µ̂rh̃, otherwise,
(48)

and

−ζ
self
,x =

 − h̃, 0 < x < l1,

0, otherwise,
(49)

where

h̃ =
(µ̂r−1)

µ̂r
he. (50)

Using the relation (20), the magnetic field, the magnetization
and the self-magnetic field in the reference configuration are

−ζ,X =
−ζ,x

λ2λ3
, M = m and −ζ

self
,X =

−ζ self
,x

λ2λ3
. (51)

3.3.3 Solution for the stretches

By substituting (39), (43) and (51) into (38a) and (38b), we have

c(λ2−λ
−3
2 λ

−2
3 )− ε0ε̂rλ2λ

2
3 Ẽ2 +µ0λ

−1
2 h̃2− s2 = 0, (52)

c(λ3−λ
−2
2 λ

−3
3 )− ε0ε̂rλ

2
2 λ3Ẽ2 +µ0λ

−1
3 h̃2− s3 = 0. (53)

For the sake of convenience, we introduce the following dimen-
sionless variables by appropriate normalization

s̄2 =
s2

c
, s̄3 =

s3

c
, E = Ẽ

√
ε0ε̂r

c
, H = h̃

√
µ0

c
. (54)

Then (52) and (53) can be recast as

(λ2−λ
−3
2 λ

−2
3 )−λ2λ

2
3 E2 +λ

−1
2 H2− s̄2 = 0, (55)

(λ3−λ
−2
2 λ

−3
3 )−λ

2
2 λ3E2 +λ

−1
3 H2− s̄3 = 0. (56)

For given values of control parameters (the dead loads s̄2 , s̄3,
the electric field E and the magnetic field H) defined in (54), the
two equilibrium equations (55) and (56) determine the values of
the two stretches λ2 and λ3.

3.4 Stability analysis

According to principle of minimum energy (27), a homoge-
neously deformed dielectric will be stable under small perturba-
tions in control parameters when the Hessian matrix H in (A.74)
is positive-definite. By substituting the energy function (36) into
the Hessian matrix (A.74), we obtain:

H=


H11 H12 H13 H14

H22 H23 H24

H33 H34

Sym H44

 , (57)

where the entries, at the equilibrium solutions (39), (43), (45),
(49)-(56), are

H11 = c(1+3λ
−4
2 λ

−2
3 )− ε0λ

2
3 Ẽ2 +µ0λ

−2
2 h̃2, (58a)
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H12 = 2cλ
−3
2 λ

−3
3 − ε0(ε̂r +1)λ2λ3Ẽ2 +2µ0λ

−1
2 λ

−1
3 h̃2, (58b)

H13 = λ3Ẽ, (58c)

H14 = 2µ0λ
−1
2 h̃, (58d)

H22 = c(1+3λ
−2
2 λ

−4
3 )− ε0λ

2
2 Ẽ2 +µ0λ

−2
3 h̃2, (58e)

H23 = λ2Ẽ, (58f)

H24 = 2µ0λ
−1
3 h̃, (58g)

H33 =
1

ε0(ε̂r−1)
, (58h)

H34 = 0, (58i)

H44 =
µ0µ̂r

µ̂r−1
. (58j)

In what follows we will limit our discussion to the determinant
of the Hessian matrix rather than all its principal minors. For
prescribed dead loads P2 and P3 and external magnetic field he,
for example, changing the voltage V takes the system from a state
of stable equilibrium to a critical state specified by the condition:

det(H) = 0. (59)

Beyond that, the determinant of the Hessian matrix becomes neg-
ative and the equilibrium states are no longer stable.

4 Stability and emergent magnetoelectricity
4.1 In the absence of external magnetic field
To connect with past work on dielectric elastomers, we first con-
sider the scenario when magnetic fields are absent. For H = 0, the
equilibrium equations (55) and (56) reduce to

(λ2−λ
−3
2 λ

−2
3 )−λ2λ

2
3 E2− s̄2 = 0, (60)

(λ3−λ
−2
2 λ

−3
3 )−λ

2
2 λ3E2− s̄3 = 0. (61)

These two equations are equivalent to eqs.(6a) and (6b) in
the work of Zhao and Suo25 with an appropriate change of
notation. We remark that the state variables used in the work25

are the stretch and the nominal electric displacement D̃ while in
this paper we have chosen to use the stretch and the nominal
polarization P. The connection between various flavors of
electromagnetic theories of deformable media has been discussed
at length by Liu.34

4.2 Effect of the magnetic field on the equilibrium
In this section, we investigate the effect of an external magnetic
field. For simplicity of presentation, we consider the special case
of equal biaxial stresses, such that s̄2 = s̄3 = S in the equilibrium
equations (55) and (56). As a result, λ2 = λ3 = λ and the two
equilibrium equations become:

(λ −λ
−5)−λ

3E2 +λ
−1H2−S = 0, (62)

(a)

(b)

Fig. 3 Behavior of a neo-Hookean dielectric film subjected to a zero
magnetic field H = 0 under various equal-biaxial loads from S = 0 to S = 4
in equilibrium: (a) in-plane stretch λ vs. nominal electric field E, (b) in-
plane actuation stretch λ/λ PS vs. nominal electric field E.

where the dimensionless electric and magnetic fields E and H
are defined by (54). The dimensionless magnetic field H is
related to the magnetic parameter h̃ in (50). It is important to
note that the magnetic permeability should be µr = µ̂rµ0 > µ0

for the emergent magnetoelectric effect to manifest. Therefore,
h̃ = (µ̂r − 1)he/µ̂r > 0 and H > 0 are chosen in our numerical
plots of the equilibrium (62) and the stability (57). Note that S,
E and H are control parameters that result in the stretch λ . In
the absence of the magnetic field, H = 0, (62) will yield eq.(8)2

in the work of Zhao and Suo.25

For the material properties suggested in the reference25, the
shear modulus of soft dielectric is c = 106 N/m2, the material
permitivity is ε0ε̂r = 4×10−11 F/m, and the nominal electric field
is of the order Ẽ = 108 V/m in (54). Then the dimensionless
electric E in (54) is, E = 0.63. For a dimensionless magnetic field
H = 0.5 in (54), we need to input an external magnetic field
h̃ = 0.55 T (tesla), where h̃ ≈ he for a large relative magnetic
permeability. This external magnetic field can decrease the
true electric field from 1.25× 108V/m (E = 0.63 and H = 0) to
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1.07× 108V/m (E = 0.63 and H = 0.5), which can avoid the
electric breakdown of soft dielectrics in some circumstances.

In Fig. 3, we show the stretch λ and the actuation stretch
λ/λ PS of the dielectric film subject to an applied voltage and
various dead loads in the absence of a magnetic field. For
simplicity, only the case of non-negative E in (62) is plotted.
Fig. 3(a) shows that the nominal electric field E increases
nonmonotonically with the increase of the in-plane stretch λ

under an equal-biaxial load S. Alternatively, the electric field
and the dead load can increase the in-plane stretch, that is, they
can expand the dielectric film. At a zero electric field E = 0, the
higher the dead load S, the larger the stretch λ .

For every value of the dead load S, there exists a peak that
corresponds to the maximum of the nominal electric field in
equilibrium. The maximum E in each curve decreases with the
increase of the dead load S and the peak moves from a low
stretch (the left) to a high stretch (the right). A point in each
curve corresponds to an equilibrium state whose stability can be
verified by the positive-definiteness of the Hessian matrix (57).
The peak of each curve corresponds to det(H) = 0, each point
on the left-hand side corresponds to a positive-definite Hessian
(stable), each point on the right-hand side corresponds to a
non-positive-definite Hessian (unstable).

Fig. 3(b) shows how the nominal electric field E affects the
actuation stretch. The actuation stretch here is defined as the
ratio of the stretch λ to the prestretch λ PS that is only induced
by the dead load. Each curve in Fig. 3(b) starts at the unit
actuation stretch and a zero electric field, and then the trend and
the stability of each curve is similar to that in Fig. 3(a). These
results are to be expected and simply presented as benchmark.
For detailed discussion of these non-magnetic behaviors, the
reader can refer to the work.7,11,25

In Fig. 4, we present the stretch λ and the actuation stretch
λ/λ PH of the dielectric film subject to an applied voltage and
various magnetic fields. For simplicity, all these curves are
plotted at a zero dead load S = 0. In Fig. 4(a), with the increase
of the magnetic field from H = 0 to 1, the peak in each curve
increases significantly and moves slightly from a high stretch
(the right) a low stretch (the left). These changes indicate
that the magnetic field increases the critical electrical field (the
electric field at the peak of each curve). However, the shift of
the peak (from right to left) due to the increase of H in Fig.
4(a) is opposite to that observed in Fig. 3(a) (from left to
right) resulting from the increase in S. This indicates that the
magnetic field squeezes the dielectric film and then decreases the
in-plane stretch. Indeed, the magnetic field H has an opposite
effect on the in-plane stretch λ compared to the electric field
E and the dead load S. The magnetic field compresses the film
in-plane while the electric field and the dead load expands it. At
a zero electric field E = 0, for example, increasing the magnetic
field H changes the stretch λ from 1 (at H = 0) to 0.87 (at H = 1).

(a)

(b)

Fig. 4 Behavior of a neo-Hookean dielectric film at a zero dead load
S = 0 under various magnetic fields from H = 0 to H = 1 in equilibrium:
(a) in-plane stretch λ vs. nominal electric field E, (b) in-plane actuation
stretch λ/λ PS vs. nominal electric field E.

The prestretch λ PH , in contrast to λ PS in Fig.3(b), is defined
as the stretch induced solely by the magnetic field. Then the
actuation stretch by the electric field here is defined as the ratio
λ/λ PH . Unlike the maximum electric field, the actuation stretch
of the peak on each curve is insensitive to the increase of the
magnetic field.

From the previous discussion of Fig. 3, we know that the
magnetic field squeezes the dielectric film in-plane. Since the film
is incompressible, the thickness of the dielectric film will increase.

Fig. 5 shows the stretch λ1 = 1/λ 2 and the actuation stretch
λ1/λ

PH
1 in the thickness direction of the film. To make a direct

comparison between the electric and magnetic fields, we choose
a zero dead load here. In Fig. 5(a), at a zero electric field
E = 0, the magnetic field H can increase the thickness from an
initial stretch of 1 (at H = 0) to a stretch of 1.32 (at H = 1).
With the increase of the electric field, there exists an apparent
competition between the electric and magnetic fields. At a low
electric field but a relatively high magnetic field, the stretch is
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(a)

(b)

Fig. 5 Behavior of a neo-Hookean dielectric film at a zero dead load S= 0
under various magnetic fields from H = 0 to H = 1 in equilibrium: (a) in-
thickness stretch λ1 = 1/λ 2 vs. nominal electric field E, (b) in-thickness
actuation stretch λ1/λ

PH
1 vs. nominal electric field E.

greater than one (increasing thickness); at a high electric field
but a relatively low magnetic field, the stretch is less than one
(decreasing thickness). It is worth mentioning that each point
in Fig. 5 on the left-hand side of the peak corresponds to a
non-positive-definite Hessian (unstable) while each point on
the right-hand side corresponds to a positive-definite Hessian
(stable), unlike Figs. 3 and 4.

In Fig. 5(b), the actuation stretch in the thickness direction is
plotted. Note that the actuation stretch induced by the electric
field compresses the film in the thickness direction. Thus the
actuation stretch is always less than 1 in Fig. 5(b) but greater
than 1 in Fig. 4(b).

In Figs. 3 4 5, we examine the effect of a varying nominal
electric field (the vertical axis) while fixing the external magnetic
field and the dead load on the in-plane and in-thickness stretches
(the horizontal axis). The electric and magnetic fields have oppo-
site effects on the in-plane and in-thickness stretches. To further
investigate the role of magnetic field, we plot the variation of

Fig. 6 Behavior of a neo-Hookean dielectric film at a zero dead load S= 0
under various nominal electric field from E = 0 to E = 1 in equilibrium: in-
plane stretch λ vs. magnetic field H.

the in-plane stretch as a result of a varying magnetic field (the
vertical axis) at constant nominal electric field and dead load.
The results are shown in Fig. 6 for a zero dead load for simplic-
ity.We first note that the plot is symmetric about the horizontal
axis. This is expected mathematically because the magnetic
field appears a squared term in the equilibrium equation (62)
which makes it independent of the sign. From a physical point
of view, the Maxwell stress is a quadratic form of the magnetic
field, and thus the equilibrium state is the same regardless of the
magnetic field direction. In addition, for a prescribed nominal
electric field E, the equilibrium equation (62) yields two curves.
For an E less than the critical value, between 0.6 and 0.7, the
two equilibrium curves are separated on the left and on the
right. On the other hand, for an E greater than the critical E,
the two equilibrium curves are separated on the top and bottom.
In each curve, there exists a turning point. For the up (down)
curves, the turning point denotes a minimum (maximum) of
the magnetic field; for the left (right) curves, it denotes the
maximum (minimum) of the in-plane stretch. Note that a point
in each curve corresponds to an equilibrium state and the sta-
bility can be verified by the positive definite of the Hessian matrix.

In what follows, we will show that if a point on each curve is
on the left-hand side of the turning point, the Hessian is positive-
definite and the point stands for a stable equilibrium state. On
the contrary, if the point is on the right-hand side of the turning
point, it denotes an unstable equilibrium state. Therefore, the
curve on the left-hand is always stable while the curve on the
right-hand side is unstable. For up and down curves, the parts on
the left-hand of the turning points are stable, and the right part is
unstable.

4.3 Effects of the magnetic field on stability
Each curve in Figures 3, 4, and 5 reveals a maximum which
corresponds to det(H) = 0. To further illustrate the magneto-
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electro-mechanical stability, we consider the sign of the
determinant det(H) of an uniaxial stretched thin film subject to
electric and magnetic fields in equilibrium.

Fig. 7 Stability and instability regions in the dead load (s1) - electric
field plane of a neo-Hookean dielectric film under various magnetic fields
H = 0,0.3,0.5. The stability region is enclosed by the curve of zero de-
terminant and the axes. A higher magnetic field corresponds to a larger
stability region.

Figure 7 shows the regions of stability and instability for
a film of soft materials subject to a uniaxial tension s1 and a
constant electric field under various external magnetic fields.
We plot three curves and each of them corresponds to the zero
determinant det(H) = 0 at a given value of the magnetic field,
H = 0,0.3,0.5. For a given H, the curve in Figure 7 represents the
variation of the critical electric field Ẽc at which det(H) = 0 with
respect to the applied dead load. The determinant is positive
(stable) below the curve while it is negative (unstable) above the
curve.

It is clear from Figure 7 that the external magnetic field
enhances the magneto-electro-mechanical stability. The curve
with a higher magnetic field H is always above the curve with a
lower H. Without considering the magnetic field H = 0, the curve
would be the lowest. A higher curve means a larger stability
region that is enclosed by the curve of zero determinant and the
axes. This clearly shows that the magnetic field allows the film
to sustain a higher electric field. We remark that the electric
breakdown is not taken into account here.

5 Wireless actuation and energy harvesting
A key insight evident from the discussion in the preceding
paragraphs is that the presence of external magnetic field
increases the critical nominal electric field and reduces the
critical actuation stretch, thus suppressing pull-in instability. The
critical value of the nominal electric field corresponds to the

intersection point of the three stresses acting on the dielectric
material: the mechanical stress, the electric Maxwell stress and
the magnetic Maxwell stress. At a constant external magnetic
field, the latter attempts to “squeeze" the material, thus reducing
its actuation stretch and increasing its thickness. Changing the
external voltage while maintaining constant external magnetic
field and mechanical stress will affect the nominal electric field,
thus changing the electric Maxwell stress. Since magnetic stress
acts against the electric and the mechanical stresses, the material
is able to withstand a larger critical electric field, but the critical
actuation stretch will be smaller and depends on the magnitude
of the magnetic field. Beyond that critical point, any small
perturbation will move the film to an unstable state where it fails
without reaching an equilibrium. The same effect can be seen in
the case of a uniaxial stress (see Figure 7); the presence of the
magnetic field also reduces the actuation stretch and increases
the critical electric field as can be seen in Figures 4 and 5.

We have shown that the applied electric voltage and the
external magnetic field have opposite effects on the deformation
of a soft dielectric, that is, the voltage makes the film thinner
while the magnetic field makes the film thicker. Based on these
results, along with the concept of a simple electric capacitor
where capacitance decreases as thickness increases, we propose
a simple design to increase the voltage between an isolated
charged film by applying an external magnetic field. A higher
voltage can be exploited to do useful work—shown schematically
in form of powering a light-bulb (see Figure 8). To make a
rough estimate of how much energy can be harnessed in this
case, we consider the simple model of a dielectric thin film with
dimensions L1 = 10 mm, L2 = 10 mm and L3 = 1 mm. The shear
modulus of the soft material can be assumed to be of the order
of c = 106 N/m2, the electric permittivity ε0ε̂r = 4× 10−11 F/m
and magnetic permittivity µ̂r = 5. We assume a surface charge of
density q0 = 1× 10−3 C/m2 at the upper surface and −q0 at the
lower surface of the thin film. Before applying the magnetic field,
the capacitance of this dielectric capacitor is C = Q

V0
= ε0 ε̂rL1L2

L3
.

Note that the total charge on each surface, Q = q0L1L2, is also
conserved. Thus, the electric potential energy stored in the film
is U0 = 1

2
Q2

C = 1
2

Q2

ε0 ε̂r

L3
L1L2
≈ 1.25× 10−3 J. Normally, a magnetic

field of 0.5 T (equivalent to 0.5×104 Oe) can deform the thin film
and increase its thickness by about 10%. Substituting this 10%
change of the thickness L3, we can easily see that the electric
potential energy stored in the capacitor can be increased by more
than 20%. This amount of potential energy (∼ 0.2U0 = 250µJ)
is due to the magnetic field. If the frequency of the magnetic
field is 20 Hz, then the output power due to the magnetic field is
∼ 250µJ×20s−1 = 5 mW. This power is enough to power a single
mini-LED. Of course, we have chosen a rather small piece of
thin film as an example. In In a realistic application, the output
power can be further enhanced by increasing the size of the thin
film, hanging the magnetic permittivity of the material and of
course stacking multiple films together. In summary, the external
magnetic field increases the voltage on the film and can be used
for wireless energy harvesting.
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(a)

(b)

(c)

Fig. 8 Fixed total charges on the top and bottom layers of a dielectric
film: (a) No magnetic field. The film thins down and expands its area
which results in a large capacitance C. Since C ∼ Q/V and the charge Q
is fixed, large C corresponds to low voltage V , (b) With external magnetic
field. The thickness of the film increases whereas the area decreases.
This results in a lower capacitance C. Lower C corresponds to large
voltage V , (c) A higher voltage can power a connected device.

6 Concluding remarks
In this paper, we have explored the magneto-electro-mechanical
behavior and instability of soft materials under the combined
action of mechanical, electrical and magnetic loads. As long as
the magnetic permeability of the soft matter is larger than that
of vacuum, an emergent magnetoelectric effect appears due to
the interaction of deformation and and a pre-existing electric
field. While this insight has been appreciated before19, our key
emphasis in this paper is to explore the instability behavior of
such a system. Our formulation is relatively general although,
for illustrative results, we primarily focus on thin films and
homogeneous deformation of an ideal neo-Hookean elastomer.
Even for this simple case, the insights are rich. The presence of
an external magnetic field gives us an important control variable
to impact the equilibrium behavior of the dielectric thin film.
In particular, pull-in instability can be significantly suppressed

by applying an external magnetic field. As a result, the stability
of the dielectric film is enhanced which allows it to sustain
larger electric fields and mechanical loads. In contrast to the
conventional interplay between mechanical and electrical fields,
the interaction of three fields provides interesting opportunities
to harness large deformation and instabilities of soft dielectrics
and presents tantalizing prospects for wireless energy harvesting.
Our work provides a simple basis to further explore magneto-
electric wireless energy harvesting devices. Further research on
magneto-electro-mechanical instabilities could be elaborated to
investigate the post-bifurcation analysis and the effects of the
magnetic field on wrinkling, creasing, and cratering as well as
other types of instabilities.

A Appendix

We list the detailed derivations of the first variation (30) and the
second variation (31) in the following.

A.1 Details of the first variation

Consider a smooth variation:

δv =
(
δλ2, δλ3, δP, δM

)T (A.63)

of the four generalized coordinates v in (23). Then the variation
δW t(v) in (30) reads

δW t(v) = δW (v)− ε0(λ2λ3ξ,X )δ (λ2λ3ξ,X )+δ (λ2λ3ξ,X P)

+µ0(λ2λ3ζ
self
,X )δ (λ2λ3ζ

self
,X )−µ0he

δM, (A.64)

where

δW (v) =
∂W
∂λ2

δλ2 +
∂W
∂λ3

δλ3 +
∂W
∂P

δP+
∂W
∂M

δM, (A.65a)

δ (λ2λ3ξ,X ) = (λ3ξ,X )δλ2 +(λ2ξ,X )δλ3 +(λ2λ3)δξ,X , (A.65b)

δ (λ2λ3ξ,X P) = (λ3ξ,X P)δλ2 +(λ2ξ,X P)δλ3 +(λ2λ3P)δξ,X

+(λ2λ3ξ,X )δP, (A.65c)

δ (λ2λ3ζ
self
,X ) = (λ3ζ

self
,X )δλ2 +(λ2ζ

self
,X )δλ3 +(λ2λ3)δζ

self
,X .

(A.65d)

The terms related to the variation δξ,X in (A.65b) and (A.65c)
can be finally omitted by considering the Maxwell equation (21)
and the variation of the electric boundary conditions as well as
integration by parts.

Similarly, the term related to the variation ζ self
,X in (A.65d) can

also be recast, that is,∫ L1

0
µ0(λ2λ3ζ

self
,X )(λ2λ3)δζ

self
,X dX

=
∫ L1

0

{
µ0(λ2λ3ζ

self
,X )[(λ2λ3)δζ

self
,X −δM]+µ0(λ2λ3ζ

self
,X )δM

}
dX
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=
∫ L1

0
µ0(λ2λ3ζ

self
,X )δMdX , (A.66)

The first term on the second line disappears due to the zero
variation of the Maxwell equations (21) and the magnetic
boundary condition with respect to the magnetization M.

Thus the first variation (30) can be written as

δF
L1L2L3

=
1

L1

∫ L1

0

(
∂W t

∂v
·δv
)

dX− s2δλ2− s3δλ3 = 0. (A.67)

Here the vector derivative has the component form

∂W t

∂v
=
(

∂W t

∂λ2
,

∂W t

∂λ3
,

∂W t

∂P
,

∂W t

∂M

)T
, (A.68)

where the components are

∂W t

∂λ2
=

∂W
∂λ2
− ε0λ2λ

2
3 (ξ,X )

2 +λ3ξ,X P+µ0λ2λ
2
3 (ζ

self
,X )2, (A.69a)

∂W t

∂λ3
=

∂W
∂λ3
− ε0λ

2
2 λ3(ξ,X )

2 +λ2ξ,X P+µ0λ
2
2 λ3(ζ

self
,X )2, (A.69b)

∂W t

∂P
=

∂W
∂P

+λ2λ3ξ,X , (A.69c)

∂W t

∂M
=

∂W
∂M

+µ0(λ2λ3)
2
ζ

self
,X [ζ self

,X ],M−µ0he, (A.69d)

[ζ self
,X ],M in (A.69d) is a coefficient related to the variations of the

magnetization M and the self-magnetic field ζ self
,X in (A.66).

A.2 Detailed second variation

Consider the integrand δ 2W t(v) in (31).

δ
2W t(v) = δ

2W (v)− ε0

2
δ

2
[
(λ2λ3ξ,X )

2
]
+δ

2 [
λ2λ3ξ,X P

]
+

µ0

2
δ

2
[
(λ2λ3ζ

self
,X )2

]
, (A.70)

where

δ
2W (v) = δv ·H1

δv, (A.71a)

δ
2
[
(λ2λ3ξ,X )

2
]
= 2(λ3ξ,X )

2
δλ

2
2 +2(λ2ξ,X )

2
δλ

2
3

+2(λ2λ3)
2
δξ

2
,X +8λ2λ3(ξ,X )

2
δλ2δλ3

+8λ2λ
2
3 ξ,X δλ2δξ,X +8λ

2
2 λ3ξ,X δλ3δξ,X , (A.71b)

δ
2 [

λ2λ3ξ,X P
]
= 2
{

ξ,X Pδλ2δλ3 +λ3Pδλ2δξ,X

+λ3ξ,X δλ2δP+λ2Pδλ3δξ,X

+λ2ξ,X δλ3δP+λ2λ3δξ,X δP
}
, (A.71c)

δ
2
[
(λ2λ3ζ

self
,X )2

]
= 2(λ3ζ

self
,X )2

δλ
2
2 +2(λ2ζ

self
,X )2

δλ
2
3

+2(λ2λ3)
2
δ (ζ self

,X )2 +8λ2λ3(ζ
self
,X )2

δλ2δλ3

+8λ2λ
2
3 ζ

self
,X δλ2δζ

self
,X +8λ

2
2 λ3ζ

self
,X δλ3δζ

self
,X .

(A.71d)

Here H1 in (A.71a) is a fourth-order symmetric tensor

(H1)i j =
(

∂ 2W
∂v2

)
i j
=

∂ 2W
∂vi∂v j

, (A.72)

where i, j = 1,2,3,4, and v = (λ2, λ3, P, M)T .

Combining (A.70) - (A.72), we can recast the second variation
in a more compact form

δ
2W t(v) = δv ·Hδv, (A.73)

where H is a fourth-order symmetric tensor

H=
∂ 2W t

∂v2 =



∂ 2W t

∂λ 2
2

∂ 2W t

∂λ2∂λ3

∂ 2W t

∂λ2∂P
∂ 2W t

∂λ2∂M

∂ 2W t

∂λ 2
3

∂ 2W t

∂λ3∂P
∂ 2W t

∂λ3∂M

∂ 2W t

∂P2
∂ 2W t

∂P∂M

Sym
∂ 2W t

∂M2



(A.74)

with the entries

∂ 2W t

∂λ 2
2

=
∂ 2W
∂λ 2

2
− ε0(λ3ξ,X )

2 +µ0(λ3ζ
self
,X )2, (A.75a)

∂ 2W t

∂λ2∂λ3
=

∂ 2W
∂λ2∂λ3

−2ε0λ2λ3(ξ,X )
2 +Pξ,X +2µ0λ2λ3(ζ

self
,X )2,

(A.75b)

∂ 2W t

∂λ2∂P
=

∂ 2W
∂λ2∂P

+λ3ξ,X , (A.75c)

∂ 2W t

∂λ2∂M
=

∂ 2W
∂λ2∂M

+2µ0λ2λ
2
3 ζ

self
,X [ζ self

,X ],M , (A.75d)

∂ 2W t

∂λ 2
3

=
∂ 2W
∂λ 2

3
− ε0(λ2ξ,X )

2 +µ0(λ2ζ
self
,X )2, (A.75e)

∂ 2W t

∂λ3∂P
=

∂ 2W
∂λ3∂P

+λ2ξ,X , (A.75f)

∂ 2W t

∂λ3∂M
=

∂ 2W
∂λ3∂M

+2µ0λ
2
2 λ3ζ

self
,X [ζ self

,X ],M , (A.75g)

∂ 2W t

∂P2 =
∂ 2W
∂P2 , (A.75h)

∂ 2W t

∂P∂M
=

∂ 2W
∂P∂M

, (A.75i)

∂ 2W t

∂M2 =
∂ 2W
∂M2 +µ0(λ2λ3)

2[ζ self
,X ]2,M . (A.75j)
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