
 

 

 

 

 

 

A computational model of amoeboid cell motility in the 

presence of obstacles 
 

 

Journal: Soft Matter 

Manuscript ID SM-ART-03-2018-000457.R1 

Article Type: Paper 

Date Submitted by the Author: 16-May-2018 

Complete List of Authors: Campbell, Eric; Rutgers University, Mechanical & Aerospace Engineering 
Bagchi, Prosenjit; Rutgers University, Mechanical & Aerospace Engineering 

  

 

 

Soft Matter



1 

 

A computational model of amoeboid cell motility in the presence of 

obstacles 

ERIC J. CAMPBELL AND PROSENJIT BAGCHI
1
 

Mechanical and Aerospace Engineering Department 

Rutgers, The State University of New Jersey  

Piscataway, NJ 08854, USA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1
Corresponding author. Email: pbagchi@jove.rutgers.edu 

Page 1 of 40 Soft Matter



2 

 

Abstract 

Locomotion of amoeboid cells is mediated by finger-like protrusions of the cell body, known as 

pseudopods, which grow, bifurcate, and retract in a dynamic fashion. Pseudopods are the primary mode 

of locomotion for many cells within the human body, such as leukocytes, embryonic cells, and metastatic 

cancer cells. Amoeboid motility is a complex and multiscale process, which involves bio-molecular 

reactions, cell deformation, and cytoplasmic and extracellular fluid motion. Additionally, cells within the 

human body are subject to a confined 3D environment known as the extra-cellular matrix (ECM), which 

resembles a fluid-filled porous medium. In this article, we present a 3D, multiphysics computational 

approach coupling fluid mechanics, solid mechanics, and a pattern formation model to simulate 

locomotion of amoeboid cells through a porous matrix composed of a viscous fluid and an array of finite-

sized spherical obstacles. The model combines reaction-diffusion of activator/inhibitors, extreme    

deformation of the cell, pseudopod dynamics, cytoplasmic and extracellular fluid motion, and fully 

resolved extracellular matrix. A surface finite-element method is used to obtain the cell deformation and   

activator/inhibitor concentrations, while the fluid motion is solved using a combined finite-volume and 

spectral method. The immersed-boundary methods are used to couple the cell deformation, obstacles, and 

fluid. The model is able to recreate squeezing and weaving motion of cells through the matrix. We study 

the influence of matrix porosity, obstacle size, and cell deformability on the motility behavior. It is found 

that below certain values of these parameters, cell motion is completely inhibited. Phase diagrams are 

presented depicting such motility limits. Interesting dynamics seen in the presence of obstacles but absent 

in unconfined medium, such as freezing or cell arrest, probing, doubling-back, and tug-of-war are 

predicted. Furthermore, persistent unidirectional motion of cells that is often observed in an unconfined 

medium is shown to be lost in presence of obstacles, and is attributed to an alteration of the pseudopod 

dynamics. The same mechanism, however, allows the cell to find a new direction to penetrate further into 

the matrix without being stuck in one place. The results and analysis presented here show a strong 

coupling between cell deformability and ECM properties, and provide new fluid mechanical insights on 

amoeboid motility in confined medium. 
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1. INTRODUCTION 

Cellular locomotion is found wherever life is present. It is therefore no surprise to imagine the numerous 

strategies by which cells can achieve motility. One such method of motility is the pseudopod, a cellular 

membrane protrusion which extends outward, bifurcates, and retracts in a repetitive fashion, resulting in a 

net displacement of the cell. For amoeboid cells such as Dictyostelium discoideum (Dicty), pseudopod-

driven motility is the dominant mode, and hence it is often referred to as amoeboid motility. This type of 

locomotion is also prevalent within the human body. Some physiological processes associated with the 

pseudopod-driven motility are migration of leukocytes through tissue [1], fibroblast reconstruction of 

damaged tissue [2], epithelial cell migration for wound healing [3], and key positioning of cells during 

fetal development [4]. Perhaps the most prominent example of amoeboid motility is the migration of 

individual metastatic cancer cells through tissue after detachment from the primary tumor [5,11,39]. 

Pseudopod formation is a complex process. When activated by some stimulus, key proteins like Arp2/3 or 

WASP activate nucleation sites where cytoplasmic G-actin monomers are polymerized into F-actin 

filaments [6]. These growing filaments generate a protrusive force, causing a local protrusion of the cell 

membrane which extends outward. When seated on a substrate, additional steps are required to achieve 

cell motility. Adhesion proteins, such as integrins, link the cytoskeleton to the surface to allow for force 

transmission. Myosin II proteins then generate a contractile force in the cell rear, breaking posterior 

adhesion sites and allowing traction forces to drive the cell forward. Cells are not limited to crawling 

however; it has been observed recently that amoeboid cells can “swim” while freely suspended in a fluid.  

[7-9]. The cells were observed to generate pseudopods while in suspension, using them as paddles to 

swim without any adhesion mechanisms.  

While situations certainly permit cells to crawl on 2D substrates or swim through unbounded medium, 

cells within the human body are subjected to a confined 3D environment. The surrounding medium, also 

known as the extra-cellular matrix (ECM), is a crowded and complex environment. It resembles a 

heterogeneous, porous structure that is composed of diverse protein fibers embedded in a gel-like 

polysaccharide fluid [10-14]. The microstructure of the ECM is characterized by features such as 

porosity, pore size, and fiber orientation. The ECM acts as a scaffolding for cells, often influencing their 

behavior through alignment, stiffness, and elasticity [15]. Fibroblasts, for instance, exhibit large adhesive 

forces as they travel through connective tissue, remodeling the ECM along the way. Large adhesion is 

also seen for mesenchymal cancer cells, which bore through ECM as they journey to establish new 

tumors. Amoeboid motility through the ECM is decidedly different, however. Amoeboid-type cancer 

cells operate on very little adhesive capability, instead using their deformability to squeeze through gaps 

in the matrix [16,40,69]. Neutrophils can also adopt an amoeboid-type locomotion with little to no 

adhesion. In fact, neutrophils lacking specific integrins showed no significant differences migrating in 3D 

in comparison to wild-type leukocytes [17]. Amoeboid motility can serve as a compensation mode when 

other locomotion mechanisms are blocked or inconvenient [18]. To that end, conditions such as weak or 

nonexistent adhesion coupled with high confinement can cause the amoeboid phenotype to be selected 

[16]. Metastatic cancer cells, for instance, can revert to an amoeboid mode and continue their metastatic 

journey if the ECM-degrading mesenchymal mode is inhibited. 
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The objective of this current work is to present a computational modeling study of amoeboid motility in 

confined medium. A number of previous studies have investigated cell motility in confined space using 

numerical modeling approaches. Wu et al modeled the adhesion-free swimming of a 2D amoeboid cell 

through a confined microchannel using the boundary integral method and force harmonics to represent the 

active protrusive and contractile forces [19]. They found that sufficient confinement induces a maximum 

swimming speed before reducing in magnitude. Lim et al developed a 2D model of bleb-based, adhesion-

free migration of amoeboid cells through microchannels of increasing confinement. The cell was modeled 

by an elastic actin cortex surrounded by an elastic membrane connected by Hookean adhesion, and the 

boundary integral method was used [20]. They showed migration was possible in the absence of substrate 

adhesion, and that to a certain limit, increasing confinement in a microchannel increased migration speed. 

Schlüter et al examined the dynamics of a 2D rigid adhesive cell migrating on a 2D substrate composed 

of movable cylindrical fibers using Stoke’s drag, while considering matrix stiffness and orientation [21]. 

Results showed cells preferred stiffer matrices over softer ones, and cell persistence increased with fiber 

orientation. Elliott et al simulated both 2D and 3D motility using an activator-inhibitor system coupled 

with an evolving surface finite element method, and predicted bifurcating pseudopods [22]. They 

considered 3D unbounded medium, and 2D porous medium represented by rigid but moveable spherical 

obstacles. Intra- and extra-cellular fluids were not considered, and adhesion was modeled as a frictional 

force. Hecht et al simulated a crawling 2D adhesion-free amoeboid cell exposed to a chemotactic gradient 

in unbounded flow, and in the presence of obstacles and maze geometries [23]. Moure and Gomez 

developed a phase-field model for a 3D amoeboid cell, including an activator-inhibitor system to describe 

the cell biochemistry, transport equations to describe cytosolic biochemistry dynamics, and hydrodynamic 

drag to describe adhesive forces [24]. Simulations were performed in 2D for cells navigating around 

obstacles on a substrate, and in 3D for cells in rigid periodic cylindrical fibrous networks.  

Apart from the aforementioned studies that considered motility in confined medium, there exists many 

noteworthy studies that have modeled general amoeboid motility. For example, Vanderlei et al. [25] 

developed a 2D model of motile cells using an immersed-boundary method that resolves cell deformation, 

internal and external fluid flow, and a reaction-diffusion system in the entire volume of the cell. Bottino 

and Fauci [26] developed a 2D model also using an immersed-boundary method in which the 

cytoskeleton is represented as a dynamic network of springs immersed in a fluid. Their model was able to 

generate protrusive and contractile forces as well as the attachment-detachment cycle in a cell crawling 

over a substrate. Farutin et al. [27] considered a deformable cell driven under a prescribed axisymmetric 

oscillating force in an unbounded medium. Najem & Grant [28] used a phase field approach to simulate 

migration of neutrophils in 3D in response to external cues, but neglected the presence of fluids. 

While significant advancement has been achieved in modeling amoeboid motility, a full 3D modeling in a 

confined medium remains a challenge. Modeling cell migration in 3D environments is important, because 

as noted above, ECM confinement which is known to heavily influence cell migration cannot be 

replicated fully in 2D [12]. Additionally, numerical simulation allows us to independently vary important 

cell and matrix parameters which may not be possible in experiments. Towards that end, in this article we 

present a 3D modeling of pseudopod-driven amoeboid cell motility through a porous extracellular 

medium. The extracellular space is made of a viscous fluid surrounding an array of finite-size, rigid, non-

moving spheres. Our model combines activator/inhibitor reaction/diffusion, extreme deformation of the 

cell, pseudopod dynamics, cytoplasmic and extracellular fluid motion, and a fully resolved extracellular 
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environment. The methodology is based on the immersed-boundary method which allows a seamless 

integration of diverse types of interfaces, both deformable and rigid. Our model predicts highly complex 

and dynamically changing cell shapes similar to those observed in experiments with amoeba. Simulation 

results are presented on the effects of matrix porosity, cell deformability, and obstacle to cell size ratio. 

The Influence of confinement on motility behavior and some novel obstacle-mediated dynamics are 

presented. It is shown that cells lack motile persistence in confined medium, and cell motion can be 

completely hindered below certain values of matrix porosity, cell deformability, and obstacle size. 

Comparisons are made of motility behaviors in confined and fully-unconfined medium, and the 

differences are explained in terms of pseudopod dynamics. 

2. MODEL 

A multiscale, multiphysics computational model coupling fluid mechanics, solid mechanics, and pattern 

formation is developed to simulate fully 3D, pseudopod-driven motility of amoeboid cells through a fluid 

filled porous medium. The extra-cellular porous space is composed of an extracellular fluid and a regular 

lattice of finite-size, rigid, non-moving spherical obstacles (figures 1 and 2). An amoeboid cell in our 

model moves through the fluid-filled gaps between the obstacles. Although this simplified model of the 

extra-cellular space does not exactly represent the complex ECM microenvironment, it allows for a 

detailed parametric study in terms of the effect of ECM porosity and obstacle size. Along with this simple 

ECM geometry, the model integrates actin-based pseudopod-dynamics, cell deformation, and intra- and 

extra-cellular fluid motion. Our current model does not include cell-matrix adhesion. While adhesion 

plays an important role in various forms of motility, amoeboid motility can occur with nearly no adhesion 

as noted in §1. In addition to the aforementioned examples, adhesion-free “swimming”-type motility has 

been recently observed in diverse scenario, e.g., for fat body cells and progenitor cells [67,68]; see also 

Ref. [69]. Different components of the model and their numerical solution techniques are discussed 

below. The models dealing with cell deformation have been described in several of our prior studies [29-

31], while the pseudopod generator model is described in [32]. Nevertheless, we briefly discuss these 

modeling components for the sake of completeness. The specific new contribution in terms of numerical 

technique is the consideration of the ECM.  

2.1 Model of deformable cells 

Cell deformability is an inherent requirement for pseudopod dynamics, and hence for amoeboid motility. 

Deformation allows cells to create, divide, and retract pseudopods. The pseudopod dynamics, in turn, 

result in highly complex and continuously changing cell shapes [6-9,33,34,38]. Protrusive forces from 

growing actin filaments deform the cell membrane to generate pseudopods. The cell membrane has a 

composite structure that is made of a lipid bilayer and an underlying cortex, with a combined thickness 

that  is orders of magnitude less compared to the size of the entire cell. [57]. On the scale of the whole 

cell, the molecular details of the membrane can be coarse-grained as a zero-thickness (i.e. 2D) 

hyperelastic sheet. On the same account, the interior of the cell, which contains the cytoplasm and a very 

complex mixture of diverse proteins, is also modeled as a viscous liquid. Though molecular details are 

neglected, this model still allows for force-mediated extreme deformation of the cell whose numerical 

evaluation in 3D could be a complex problem depending on the physical laws assumed to govern the 

membrane and intracellular fluid properties. In our continuum representation, the stresses generated in the 
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cell membrane from deformation can be obtained by invoking suitable constitutive laws for the membrane 

materials. The membrane cortex primarily exerts a resistance against shearing deformation while the lipid 

bilayer acts against bending and cell surface area dilation. For the shearing deformation and area dilation, 

the following strain energy function is used [35], 
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Viscoelasticity of the cortex is considered later in §5.1. The bending resistance is modeled following  

Helfrich’s formulation for bending energy, 

( )∫ −=
S

B
B dSc

E
W ,2

2

2

0κ    (3) 

where BE is the bending modulus, κ is the mean curvature, 0c is the spontaneous curvature, and S is the 

surface area [36].  

A finite-element method is used to compute the membrane stresses arising from shearing deformation and 

area dilation. The details of the method are given in our previous works [29-31]. In short, the cell surface 

is first discretized using 20,480 Delaunay triangles (or equivalently, 10,242 surface nodes) as shown in 

figure 1. Each surface node is surrounded by five or six triangular elements. Stress components are 

numerically evaluated for these elements. By expressing the displacement field within each element in 

terms of linear shape functions, the deformation gradient tensor, and consequently, the principal stretch 

ratios and the stress components are obtained. The resultant elastic tension fE at each node is then 

obtained by integrating the stresses over the surrounding elements. 

As for the membrane bending, a bending force density derived from Eq. (3) is used as  

( )( )22 2 2 2 ,b b o g o LBE c cκ κ κ κ κ = + − − + ∆ f n  (4) 

where gκ  is the Gaussian curvature, LB∆
 is the Laplace-Beltrami operator, and n  is the normal vector 

[36]. This expression is used to evaluate fb at each surface node. The mean and Gaussian curvatures are 

evaluated at each surface node using a quadratic fitting. Then, the gradient S∇  on a surface triangle is 
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obtained by a linear interpolation of the surface and κ , and LBκ∆  is approximated using the Gauss 

theorem. Additional details of this computation are given in Ref. [30]. 

 

 

Fig. 1. Numerical model for 3D amoeboid cell motility in the presence of obstacles. A, B: Lagrangian mesh on the 

deforming cell surface comprised of Delaunay triangles. C: spherical obstacles and their surface mesh.  D: Eulerian 

mesh discretizes the entire computational domain that is comprised of the extracellular space (extracellular fluid and 

obstacles) and the cytoplasm. The “immersed” cell membrane separates the cytoplasm and extracellular space. E: A 

2D slice showing a sample instantaneous flow field inside and around the cell. 

 

2.2 Model of dynamic pseudopod generation 

Pseudopod protrusions are generated by protein reactions, which are nano-scale processes [6,37-41]. In 

order to simulate cell movement over a distance of hundreds of cell lengths, we must coarse-grain the 

nano-scale protein dynamics. Proteins inside the cells not only react, but also diffuse. One elegant choice 

is to use a system of reaction-diffusion (RD) equations [22,42,43]. However, the model must retain the 

essential dynamics of pseudopods observed experimentally: pseudopods continuously generate and grow, 

bifurcate in to daughter pseudopods, meander over the cell surface, and finally retract [7-9,23,37,38]. To 

recreate these dynamics, we use a nonlinear RD model in which protein biochemistry is coarse-grained 

using dynamic pattern formation [22]. Furthermore, the growth of the actin filaments is a locally positive-

feedback process due to the signaling molecules, but is also restricted by capping proteins. Hence the 

process is described as short-range self-enhancement and long-range inhibition. Such processes can be 

modeled using the so-called Turing instability, which is responsible for many biological pattern 

formations [45,46]. But, the inherent characteristic of many reaction-diffusion systems is to create steady-

state patterns [42,46]. In contrast, pseudopods are highly dynamic. The specific model must create 

patterns that exhibit this dynamic behavior [7-9]. Meinhardt [42] introduced a Turing model that allowed 
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for dynamic pattern formation suitable for pseudopod generation [22,43,47]. This model utilizes the 

behavior of several competing species which are called activators and inhibitors. The activators can be 

thought to represent nucleating proteins and actin filaments, while the inhibitors could represent filament 

capping and severing proteins. By varying the diffusion rates of the species, dynamic patterns can be 

generated as the activator and inhibitors continuously dominate one another. In this model, the following 

system of nonlinear reaction-diffusion equations is solved on the evolving cell surface, 

  (5) 

∫=
S

Sa
S

a d
1

12       (6) 

    (7) 

where the variables 1a , 2a , and 3a are the concentration of activators, global inhibitors and local 

inhibitors, respectively,  and the · (dot) represents a time derivative. Furthermore, S represents the 

deforming cell surface, S∆ is surface Laplacian, 1r is the production and decay rates of the activators, 3r is 

the decay rate of the local inhibitors, 1k represents a baseline concentration of the activators, 2k is the 

production rate of the local inhibitors, 1s controls the saturation level of the activators, 3s is the baseline 

concentration of the local inhibitors, and 1D and 3D  represent surface diffusivity of the activator and local 

inhibitor, respectively. The influence of these parameters on pattern formation is discussed later in §3.1. 

A random noise ),( txε generated from a stochastic differential equation representing the Ornstein-

Uhlenbeck process is used to perturb the system into producing instabilities. No explicit external cue, 

such as a chemoattractant gradient, is present in our model. The cell is only exposed to, and reacts solely 

from random noise.  The Turing instabilities of the surface reaction-diffusion equations lead to growth 

and bifurcation of concentrated regions of activators. Following several prior works [22,25-27,43,48], the 

protrusive force is directly related to the activator concentration as 

nf 1aP ξ=    (8) 

where the parameter ξ represents the force per actin filament. 

The nonlinear reaction-diffusion equations (5-7) are solved on the deforming cell surface using a finite 

element method given in [22]. The same surface mesh used to solve for membrane deformation is 

utilized. Linear shape functions are used to express the concentration variation over each surface triangle. 

This also allows direct evaluation of mass and stiffness matrices. A forward difference method for the 

time derivative term and semi-implicit treatment for the stiffness and forcing matrices is used. 
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2.3 Cytoplasmic and extra-cellular fluids 

The cytoplasm and extracellular fluid are assumed to be incompressible and Newtonian. Since inertia is 

negligible, the fluid motion is governed by the Stokes equations and the incompressibility condition. 

[ ]T0 uu ∇+∇⋅∇+−∇= µp   (9) 

0=⋅∇ u     (10) 

where u and 
p

represent the fluid velocity and pressure fields both in the cytoplasm and in the 

extracellular fluid. We assume that the densities and viscosities of the cytoplasmic and extracellular fluids 

are same and equal to those of water. This assumption is not a limitation of the methodology; the 

influence of viscosity difference between the two fluids has been considered in our previous work [32]. 

We further assume that the extracellular fluid is otherwise stagnant; however, movement of the cell 

causes the fluid to displace.  

 The cell membrane is “immersed” within the surrounding fluid. The coupling between the protrusive 

force, membrane deformation, and fluid motion in the cytoplasm and extracellular fluid is done using the 

continuous forcing immersed-boundary method (IBM) [49]. It is an efficient way of dealing with 

problems involving highly complex and deformable interfaces without using a body conforming mesh. In 

this approach, a single set of governing equations is written for both the interior and exterior of the cell, 

while an indicator function is used to differentiate between the two zones. The presence of the membrane, 

which is the interface between the two fluids, is accounted for by introducing a source term in the Stokes 

equation which includes the forces acting on the cell membrane as 

[ ] ( )∫ +++∇+∇⋅∇+−∇=
S

PBE Sp d  0 T δµ fffuu     (11) 

where δ is the 3D Dirac delta function, S represents the cell surface, fE and fB are the membrane forces 

arising from shearing deformation and area dilation, and bending, respectively, and fP is the protrusive 

force. The delta function is zero everywhere except at the location of the membrane, and is used to couple 

the protrusive and membrane forces to the fluid motion. The delta function is numerically approximated 

with a cosine function spanning over four Eulerian points around the cell boundary as 

 ( ) ( )∏
=






 ′−
∆

+
∆

=′−
3

1
3 2

cos1
64

1

i

ii xxxx
π

δ ,    for  ∆≤′− 2ii xx , 3,2,1=i     

                0= , otherwise,  (12) 

where ∆ is the size of a computational mesh in the fluid domain, ix is a fluid node, and ix′ is a 

Lagrangian node on the cell surface [50].  

Once the fluid velocity is obtained by solving Eq. (11), the membrane velocity mu is computed by 

interpolating the fluid velocity from the surrounding Eulerian nodes using the Delta function as 
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( ) ( ) xxxxuxu d
S

m )( ′−=′ ∫ δ .  (13) 

Then, the membrane nodes mx are advected as mm t ux =d/d , resulting in a new location and deformed 

shape of the cell. It may be noted that the above method directly couples the fluid motion with the 

membrane deformation. Thus, the effect of fluid drag on cell movement is directly resolved. No ad hoc 

modeling of fluid drag is needed here unlike some earlier works [22,47,51-54]. 

The computational domain includes the cell and its membrane, intra- and extra-cellular fluids, and 

obstacles. It is a cubic domain with lengths about 19 times the cell radius for most simulations. The 

domain is discretized using a fixed (Eulerian) rectangular mesh of 360
3
 nodes (figure 1). The governing 

equations for fluid motion are solved on this mesh. The numerical technique is given in detail in [55], and 

is briefly discussed here. We use a projection method for time integration of the unsteady Stokes 

equations. The projection method is usually used for the full Navier-Stokes equations, but is considered 

here more suitable for the IBM implementation. In this approach, an advection-diffusion equation is first 

solved, followed by a Poisson-type equation to enforce the incompressibility condition. In the first step, 

the body force terms representing the membrane and protrusive forces are treated explicitly using a 

second-order Adams-Bashforth scheme, and the viscous terms are treated semi-implicitly using the 

Crank-Nicholson scheme. A staggered arrangement for the variables in the Eulerian mesh is used by 

defining the velocity components at the edges of an Eulerian mesh element, and pressure at the element 

center. All spatial derivatives are evaluated using second-order differencing. The advection-diffusion 

equation is solved using an alternating direction implicit (ADI) scheme which allows for fast inversion of 

matrices and a robust technique when complex boundaries are involved. The Poisson equation must be 

solved implicitly to satisfy the incompressibility condition. The periodicity of the computational domain 

allows us to use the Fourier expansion, and hence a fast, implicit solution. 

2.4 Modeling extracellular objects 

As mentioned before, the extracellular objects are modeled as rigid, non-moving spheres of finite size that 

are “immersed” within the extracellular fluid, and therefore, within the Eulerian mesh (figure 1). These 

obstacles define the “solid phase”, and together with the extracellular fluid, they constitute the porous, 

extra-cellular space. The fluid must satisfy the no-slip condition on the surface of the obstacles. The 

continuous forcing IBM that is suitable for elastic interfaces as discussed in §2.3, however, is not well-

behaved for rigid boundaries for which we use a direct forcing IBM, namely the sharp-interface Ghost-

Node method (GNIBM). The GNIBM method has been implemented in our previous publication in the 

context of deformable blood cells flowing through highly complex geometry [55]. The general 

methodology can be applied to treat rigid objects of any arbitrary shape, and not just spherical objects as 

considered in the present study. The basic premise of the method is how to enforce the no-slip condition 

along a rigid surface that does not coincide with the rectangular Eulerian mesh. Such a condition is 

achieved in the GNIBM by enforcing a constraint at certain Eulerian grid points. In this approach, first the 

surface of each spherical obstacle is discretized using 1280 Delaunay triangles (or, 642 nodes). The 

Eulerian nodes residing inside the spheres that are immediately next to the sphere surface are labeled as 

ghost nodes (GN). The intercept of the sphere surface and the surface normal passing through a ghost 

node is labeled as a boundary intercept (BI). A point outside the sphere that lies along this normal but as 
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equidistant from the BI as the GN is labeled as image point (IP). The velocity uBI at the BI is taken as the 

average of the values at the GN and IP, that is, (uGN + uIP)/2. By letting uBI = 0 to satisfy the no-slip 

condition, the condition at a GN is obtained as uGN = ―uIP, which is enforced while solving the governing 

equations for fluid flow. A trilinear interpolation is used to obtain uIP from the surrounding Eulerian 

nodes. 

2.5 Model parameters and validation 

The initial undeformed shape of the cell is assumed to be spherical. The simulation results are presented 

using dimensionless variables. Lengths are scaled by the cell radius R , time is scaled by 1

2 / DR , and 

velocities are scaled by RD /1 , where D1 is the activator diffusivity. The spherical obstacles are arranged 

in a regular lattice (figure 2). The major dimensionless parameters defining the extracellular space are the 

porosity (void fraction) ϕ, defined as the ratio of the extracellular fluid volume to total volume, and the 

ratio of the radius of each obstacle to that of the cell γ = RO /R. The parameter that defines the cell 

deformability is the ratio of the protrusive force to membrane elastic force SRG/ξα = . Finally, the 

major parameter of interest in the reaction-diffusion model is the ratio of inhibitor to activator 

diffusivities 13 / DD=β . The force per actin filament is in the range 3—8 pN [56], cell radius ~R 10 

µm [37], 1D and ~3D 1 µm
2
/s [56], and membrane shear modulus ~SG 10

―6
 N/m [57]. Membrane 

stiffness varies in cells. For instance, immune cells are relatively softer than fibroblasts [2]. Stiffness also 

varies in malignant and drug-treated cells [58-61]. Our interest in the present work is in the role of matrix 

porosity ϕ, obstacle size ratio γ, and cell deformability as defined by α. Matrix porosity is varied from 

0.54 to 1, representing highly confined to fully unbounded medium. This range corresponds to 

physiological conditions in addition to those encountered in tissue engineering [70]. Connective tissue, 

for example, is characterized by loose fibers, while the basal laminae is composed of densely-packed 

crosslinked tissue. The range of γ, determined from numerical experiments, is 0.25 to 2: The lower bound 

is usually reached when cell motion is completely hindered due to confinement, while the upper bound 

can represent interstitial blood vessels or impassable geometries. The suitable ranges of α and β have been 

discussed in our prior work [32], and are selected such that experimentally observed bifurcating 

pseudopod dynamics can be recreated in the model. Following this, we consider membrane deformability 

in the range α = 1-7 and β = 3 in the present work. Additional parameters in the RD equations are also 

listed in [32] and kept constants in the present study. 

Extensive validation of the cell deformation model has been done in our previous works [29,30,55]. This 

includes numerical experiments of cell aspiration in a micropipette, and cell deformation in externally 

applied shear flow. For brevity, we avoid repeating these studies here. Validation of the reaction-diffusion 

model was presented in [32]. There it was shown that our model can accurately predict various types of 

Turing instabilities on curved surfaces. A detailed study of pseudopod-driven motility in unconfined 

medium was also presented there. It was shown that the predicted cell shapes were qualitatively similar to 

those observed in experiments [7-9,37,44]. Predicted cell speeds also agreed very well with 

experimentally measured cell speeds. Instantaneous fluid velocity vectors both inside and outside the cell 

from one current simulation are presented in figure 1E, which shows the complexity of the flow field 

during amoeboid migration, and the ability of the methodology to resolve such complexities. 
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Cell volume is preserved within about 1% (see figure S5 in Supplementary Materials). No explicit 

volume preserving force is used. This may be due to the use of very high resolution on the cell surface, 

and accuracy in satisfying the incompressibility condition. 

 

 

Figure 2. Different Turing patterns generated by the RD system (Eqs. 5—7). For A—C, evolution of the 

activator patch is shown in (i)—(iii) using activator concentration field a1, while (iv) shows inhibitor to 

activator concentration ratio a3/a1 corresponding to the time instance of (iii). For activator concentration 

a1, the regions in red are those of high concentration. A: single, steady patch. B: travelling patch. C: 

multiple patches. D: bifurcating patch. In D, (i)-(iv) shows activator concentration field, and (v)-(viii) 

shows inhibitor to activator concentration ratio at same time instances. 

R2, #2 
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3. Interaction between reaction-diffusion, surface shape, and deformation 

Before presenting the results on cell motility, we present insights on interaction between the RD system, 

surface shape, and deformation. First, in §3.1 we consider the Turing patterns on the surface of a rigid 

sphere. Then, in §3.2 we consider the influence of surface curvature. The influence of a deforming surface 

is explained in §3.3. Finally, the presence of obstacles is considered in §3.4. These physical insights help 

to explain the pseudopod-driven motility presented in §4. 

3.1 Turing patterns on rigid spheres 

The Turing instabilities of the RD equations lead to growth and bifurcation of concentrated regions of 

activators. The activator equation (Eq. 5) represents a positive-feedback (self-enhancing) process. A small 

local increase in the activator concentration by the random noise ε is further enhanced due to the 

nonlinear reaction term which depends on 2

2

1 / aa (see figure 2A). The growth of the activator is also 

accompanied by an increase in inhibitors (both  and ) concentration via Eqs. 6-7. The global 

inhibitor , via Eq. 6, overpowers and annihilates the activator everywhere except at incipient site where 

both a1 and a3 continue to grow creating localized region(s) of high concentration. As both activator and 

local inhibitor concentrations grow, increased gradient also causes increased diffusion away from this 

site. Eventually a dynamic equilibrium is established under the balance of production, annihilation, and 

diffusion leading to a specific pattern of localized regions of high activator concentration. This process is 

shown using an example simulation in figure 2A(i)-(iii) demonstrating the growth of a single, steady 

activator patch by a random noise. Figure 2A(iv) shows the ratio a3/a1 at steady state, which suggests that 

the activator patch is surrounded by a ring of higher inhibitor concentration; thus, the instability is 

essentially in equilibrium, as any attempt to diffuse away is met by activator depletion. 

Different patterns can be generated by varying the parameters in the RD equations, for instance, a single, 

but travelling patch as in figure 2B, multiple steady patches as in figure 2C, and a bifurcating pattern as in 

figure 2D. The single or multiple, steady patches are generated when inhibitor diffusion is faster than 

activator diffusion (D3 > D1). A travelling patch is formed when their diffusion is comparable (D3/D1 ~1). 

In all these patterns, the region of high activator concentration is surrounded by a ring of high a3/a1, 

which dictates the nature of the dynamic equilibrium. For instance, for the travelling patch, the ring has a 

non-uniform thickness. Because of this, activator diffusing towards the thick end is quickly annihilated by 

the inhibitor, while activator diffusing towards the thin end is virtually unaffected, allowing it to meander 

over the sphere surface.  

A bifurcating pattern is formed when activator reaction rate r1 is large. As shown in the figure, an 

activator patch is generated, but because of large r1 it quickly bifurcates creating two daughter patches. A 

wedge-shaped region of high a3/a1 is drawn between the two daughter patches. In time, one patch is 

annihilated, and the remaining patch bifurcates again as the pattern repeats. 

The phase diagrams for different patterns obtained on a rigid sphere by varying β = D3/D1, r1, and s1 are 

given in the Supplementary Materials (figure S1); it shows the sensitivity of the patterns to the 

parameters. The pattern relevant for the pseudopod-based motility is the bifurcating pattern as it mimics 

R1, #3 
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bifurcating pseudopods. Thus, in subsequent analysis, we limit our parameter values to bifurcating 

patterns only (see §2.5). 

3.2 Influence of curvature on Turing patterns 

The discussion above was for Turing patterns on a rigid sphere. We now consider the influence of surface 

curvature. Previous works have shown that diffusion is dependent on surface curvature, and, species 

concentrate on a convex surface (positive Gaussian curvature), but away from a hyperbolic surface 

(negative Gaussian curvature) [71,72].The former mechanism causes a faster growth of activator and 

local inhibitor in the high curvature regions, and enhances the instability of Turing patterns. To show this, 

we compare the Turing patterns on a rigid sphere and on a cup-shaped surface for the same parameters of 

the RD equations: β = 3, and r1 R/D1= 150 (figure 3). On the rigid sphere, the resulting pattern is a single, 

steady activator patch. But on the cup, the patch always bifurcates as it moves to the high curvature edge. 

The dependence on curvature is via the surface Laplacian in Eqs. 5 and 6. 

 

 

Figure 3. Influence of surface curvature on pattern formation. A: a single, steady activator patch is 

generated on the surface of a rigid sphere for β = 3, and r1 R/D1= 150. B: In contrast, the patch becomes 

unstable and bifurcates when a cup-shaped object is considered for the same RD parameters. (i)—(iv) 

show a time sequence of the bifurcating patch. Colors show activator concentration; red corresponds to 

high activator concentration (a1). 

3.3 Surface deformation 

In figures 2 and 3, wherever distribution of activator concentration a1 is shown, the regions in red are 

those of high concentration. In these regions, the protrusive force which points outward as given by Eq. 8 

is large. If the surface is now free to deform, then such a region on the cell surface bulges outward 

creating a membrane protrusion and mimicking a pseudopod. This process is shown in figure 4A. For 

amoeboid cells, experiments have shown that pseudopods continually bifurcate. Over time, one of them 

dies, while the remaining one bifurcates again. To mimic the bifurcating pseudopods, we select the RD 

parameters corresponding to the bifurcating Turing patterns as noted before (e.g. figure 2D). The resulting 

bifurcating patterns, and the protrusion of the cell surface over time are shown in figure 4A, which also 

shows the evolution of concentration of the activator a1. As evident, at the regions with high a1, the cell 

membrane protrudes outward creating the pseudopods. The ratio a3/a1 is also shown in figure 4B, which 

essentially depicts the same mechanism of bifurcation as for the rigid surface. The activator patch is 

surrounded by a ring of relatively high inhibitor concentration, which eventually encroaches in to the 
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activator patch causing it to bifurcate. Over a longer time, one of the daughter patches, and hence one of 

the pseudopods, dies, while the other bifurcates repeating the cycle. 

A deforming surface causes the RD system to become more unstable. This is illustrated in figures 4C and 

D using the phase plots in terms of β and r1. Figure 4C is for a rigid sphere, and 4D is for a deformable 

sphere at α = 5. Note that SRG/ξα =  represents the ratio of the protrusive force to membrane tension. 

The phase plots show that the bifurcating pattern appears over a larger region of the phase plot for the 

deformable sphere. This is because as the membrane bulges out due to the protrusive force, it creates a 

region of high curvature. It is noted in §3.2 that high curvature regions make the RD system more 

unstable leading to bifurcation of the activator patch, and, hence, the pseudopod. 

In summary, the following physics arises from the above analysis. Patterns of bifurcating activator 

patches can be created using the RD system to mimic the bifurcating pseudopods in motile amoeba. The 

bifurcating patterns are more likely to form in presence of high surface curvature. For the same reason, 

they are also likely to form when the outward protrusive force  (Eq. 8) is present as in case of a 

deformable cell. 

 

Figure 4. Influence of surface deformation on Turing patters. A: time sequence of bifurcating activator 

patch, and the resulting bifurcating pseudopod, for a deformable cell is shown. B: ratio of inhibitor to 

activator concentrations at the same time instances as in A. C and D are phase plots showing bifurcating 

(filled symbols) and non-bifurcating (open symbols) for the rigid sphere (C) and deformable cell (D), 

respectively. 
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3.4 Presence of obstacles 

Figure 5 describes what happens when an obstacle is encountered. Two pseudopods wrap around it, 

creating a concave front. Over time, one activator patch dies while the other bifurcates. As noted above 

(§3.2), the high curvature near the rim of the concavity makes the activator/inhibitor system more 

unstable causing the patch to bifurcate. In contrast, locally hyperbolic regions exist just below the rim 

which stabilize the patch [71,72]. If the activator patch attempts to move out of the concave region by 

crossing over the rim, it causes further extension of the rim (and, hence, further increase in rim curvature) 

around the obstacle due to the protrusive force that is generated at these locations, thereby further 

increasing the concavity. Consequently, the patch remains bounded in the concave region just below the 

rim. Shortly thereafter, the patch bifurcates due to its own instability (as discussed in §3.1), and the 

process repeats itself.  

Therefore, it is the interaction between cell deformation and the obstacle that causes confinement of the 

activator patches within the concave region. We have verified by additional simulations that if the cell is 

not allowed to deform further after it has developed a concave front around an obstacle, the activator 

patch can indeed move out of the concave region, and a pseudopod can form elsewhere. 

 

Figure 5. Time sequence of pseudopod dynamics in presence of an obstacle (sphere in grey). Activator 

concentration is shown in color, with red being the maximum concentration. The membrane protrudes 

outward at regions of high activator concentration. Starting with two activator patches (A and B, as 

shown), one of them (B) dies over time, while the other (A) bifurcates in to two daughter patches, and 

hence, two pseudopods (A1 and A2). Subsequently A1 dies, and the process repeats. The activator patch 

favors hyperbolic regions (§3.2). As it tries to move over the rim, it causes even more elongation of the 

rim, thereby confining itself within the concave front. 

 

Next we present the main results of this study. 
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Fig. 6. Simulation results: Sequence of images of a migrating amoeba (in color) through the extracellular space. The 

extracellular solid phase represented by an array of rigid, non-moving spheres of finite size is shown in grey. 

Parameters are 5=α , γ=1, and ϕ=0.79. Direction of cell motion is shown by red arrows. Color contours on cell 

surface represent activator concentration (scaled by initial concentration). Pseudopod protrusions are formed in 

regions of high activator concentration and pull the cell forward. 

 

4. RESULTS 

4.1 General motility behavior 

Figure 6 shows a sample result from our simulations by considering the time sequence of a cell migrating 

though the ECM. An animation is provided in the Supplementary Material. Starting from an initial 

spherical shape and subject to a random noise for sufficient time, a Turing instability develops on the cell 

surface in the form of a region of high activator concentration. As the activator is coupled directly to 

protrusive force in our model, the local cell membrane begins to protrude outward, resulting in a de novo 

pseudopod. Soon after, a bifurcation event takes place, resulting in two distinct regions of high activator 

concentration. The activator concentration at these new regions grows, resulting in two pseudopods 

diverging from one another. After some time, one pseudopod retracts while the remaining one bifurcates. 

The sequence of pseudopod bifurcation, growth and retraction observed in our model is similar to that 
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observed in experiments using crawling and swimming Dicty cells [7-9,34,37]. The cell squeezes through 

the gaps as the resultant protrusive force acting on the pseudopods pulls it forward. The sequence in 

figure 6 shows the cell is often highly deformed and confined as its pseudopods weave around and 

through dense obstacles. Pseudopods are highly dynamic in nature, produced from leading-edge 

bifurcations or by lateral de novo formation. The cell deforms because of the growing, bifurcating, and 

retracting pseudopods, as well as its interaction with obstacles. The cell body often partly wraps around 

an obstacle as the pseudopods at the front pull the cell. When obstacles preclude forward motion, the cell 

is capable of turning back and retracing its path in order to find a more favorable direction. In addition, 

the cell can send out two pseudopods in opposite directions, straddling around an obstacle. In time, one 

pseudopod retracts, leaving the pseudopod free to pull the cell in its direction, thereby navigating around 

the obstacle. These and several other mechanisms of navigation through obstacles are discussed later. As 

noted in §3, the bifurcating Turing patterns mostly remain confined in regions of concavity near the cell 

front.. Because of this, we must take necessary steps to ensure cells do not get stuck on obstacles. As a 

first step to prevent a cell from directly hitting an obstacle surface, we add a lubrication pressure which 

begins to act on the cell membrane when its distance from the obstacle is less than two Eulerian grid 

points. Secondly, if an active pseudopod becomes closer than this distance, we terminate the 

activator/inhibitor dynamics and reset their concentrations back to their initial value. This allows 

generation of activator patches in new locations, and, hence, new pseudopods in alternate directions so 

that the cell can continue its migration. 

Cell shapes predicted by the simulation are comparable to experimental images of cells migrating through 

tissue [1,18,33,34]. Cells are observed to undergo significant deformation when confined by or interacting 

with obstacles. The degree of deformation depends on membrane stiffness, matrix porosity, and obstacle 

size, and is evident in figure 7 where cell shapes are shown for several cases. Highly complex cell shapes 

with extreme deformation can be noted here. Such complex shapes also suggest the robustness of the 

numerical method. Throughout the simulations (up to 100 dimensionless time), the Lagrangian mesh on 

the cell surface does not show any breakdown, and hence, no re-meshing was needed. Unlike the 

nonlinear membrane model used here, Hookean models that have been used in some prior works often 

experience unwanted mesh distortion, and require re-meshing of the cell surface or other ad hoc 

corrections [22,47,51-54]. Our method does not suffer from such numerical issues. Case A in figure 7 

considers a cell with high deformability (α = 5), smaller obstacle radius (γ=0.5), and porosity ϕ = 0.83. 

Here deformation is clearly evident with multiple obstacle impressions visible on the cell surface as it 

successfully navigates through the matrix. The cell is highly confined due to the small distance between 

obstacles, yet is capable of matrix penetration. Case B considers a cell with high deformability (α = 7), 

cell-sized obstacles (γ = 1), and reduced matrix porosity (ϕ = 0.68). Because of the increased 

confinement, the front half of the cell becomes highly flattened as it navigates through narrow openings, 

while the rear of the cell bulges out as the cytoplasmic fluid is squeezed backward. Case C presents a cell 

with reduced deformability (α = 1), cell-sized obstacles (γ=1), and higher porosity (ϕ = 0.83).  A 

noticeable deformation is present here also, although the cell maintains a more spherical morphology due 

to its stiffer membrane. In addition, the cell is incapable of penetrating the matrix because its membrane is 

too stiff to allow the deformation necessary for migration. 
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Figure 7. Examples of highly complex cell shapes predicted by the simulations. A: α = 5, γ = 0.5, and ϕ = 0.83. B: α 

= 7, γ = 1, and ϕ = 0.68. C: α = 1, γ = 1, and ϕ = 0.83. 

We now describe interesting motility behaviors that have been observed in our simulations. Figure 8A 

illustrates a time-progression of a cell migrating through an obstacle matrix; the obstacles are not shown 

here so that the cell dynamics can be clearly seen. The sequence of important events is shown and marked 

as (a) through (n). In (a), the generation of two de novo pseudopods is observed, while in (b) one 

pseudopod retracts and the other bifurcates into two daughter pseudopods. An interesting mode of 

behavior takes place in (d), where all existing pseudopods are terminated and the cell retracts and enters a 

brief dormancy period. We call this type of behavior ‘freezing’ or temporary cell-arrest, as the cell may 

remain inactive for some time. In (e), the cell becomes active again with the generation of a de novo 

pseudopod and its subsequent bifurcation. In (f) and (g), the cell is approaching an obstacle directly 

ahead, and must react accordingly. As such, less-favorable pseudopods are shown to retract, while the 

remaining pseudopod meanders over the cell surface. The end result is a very sharp turn, which allows the 

cell to successfully navigate further into the matrix, when it would otherwise be blocked from any further 

motion. In (h) through (j), pseudopods freely bifurcate and meander across the cell membrane. 

Meandering pseudopods in (j) allow the cell to turn gradually. Another freezing event occurs in (l)-(m). 

Interestingly, even during this time of inactivity, the cell shape is observed to slowly change as it relaxes 

towards a nearly spherical shape. Finally, in (n), the cell returns to an active state as de novo pseudopods 

form and propel it forward.  
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Figure 8. Different motility dynamics observed in our simulations for amoeboid cells migrating through the ECM. 

The spherical obstacles are not shown for clarity. Time sequence is from (a) onwards. A: α = 5, γ = 1, ϕ = 0.79. B: α 

= 7, γ = 1, ϕ = 0.68. See text for descriptions. 
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Figure 8B illustrates another interesting behavior predicted. Similar to the sequence in figure 8A, we have 

a de novo pseudopod forming and bifurcating in (a)-(b). (c) shows pseudopod termination due to collision 

with an obstacle, followed by a hard turn in (d). (e)-(g) show pseudopod bifurcation. In (h), a freezing 

event occurs, causing the cell to retract and become inactive. In (i), the cell becomes active again with the 

formation of a de novo pseudopod, which subsequently bifurcates in (j). In (l)-(n), the cell is restricted 

within the same space while it sends out pseudopod protrusions, usually through narrow gaps in the 

matrix, which are terminated after interacting with an obstacle. This happens repeatedly as the cell 

manages to slowly overcome the obstacle with each new pseudopod. We refer to this behavior as probing 

or groping. The difference between freezing and probing is that in the former, the pseudopods are 

completely withdrawn and the cell becomes inactive for some time, while in the latter case, activator 

concentration repeatedly grows and disappears resulting in cyclical phase of pseudopod extension and 

pause. Additional probing events can be recognized in (p)-(s).  

4.2 Obstacle-mediated dynamics 

The freezing and probing dynamics offer new insights into cell migration through confined matrices, and 

are further analyzed here. Figure 9A shows the instantaneous velocity of the cell centroid and distance 

traveled for a case showing repeated freezing events. During such events, the cell velocity drops to 

essentially zero and the accumulated distance traveled remains constant, giving more evidence that the 

cell has regressed and become inactive. Large spikes in velocity appear at the end of a freezing event 

when a pseudopod forming in a new direction is able to pull the cell out of the confinement. Figure 9B 

shows a time-sequence of cellular activities during one such freezing event (t ≈ 10.5-17) comprised of 

pseudopod termination, retraction, a period of inactivity and cell retraction, and de novo pseudopod 

formation. The cell shape is clearly observed to become more spherical after pseudopods are terminated. 

During the freezing events, new regions of activator patches may form on the cell surface adjacent to an 

obstacle. One reason for this occurrence is that the reaction-diffusion system creates the bifurcating 

Turing patterns that remain confined within the concave front created by obstacle indentations (as 

explained in §3). The nascent activator patches formed are terminated immediately due to their proximity 

to the obstacle surface. If subsequent activator patches continue to form in the same area, a freezing event 

ensues and the cell remains inactive until a new pseudopod can form in a favorable direction. 

Freezing behavior was noted to occur in experimental studies of neutrophils migrating in 3D ECM [17]. It 

should be noted though, that in experiments this behavior can be a result of chemokine-directed activity, 

since chemokines can induce cell-arrest in order to halt T cells in areas of infected tissue [1], or draw 

leukocytes to accumulate at, slow down, or stop near chemokine sources [62]. Our simulations, which do 

not have any chemokine activity, show that cell-arrest can also be a result of confinement, which is a 

mechanical effect.  

During some freezing events, we find that the cells completely reverse their trajectory (doubling-back). 

Such cases are shown in figure 10A,B where an obstacle prevents forward cellular motion, forcing the 

cell to polarize in the opposite direction, completely reversing its trajectory after a brief period of freezing 

and retraction. Such doubling-back behavior has been observed experimentally in T-cells where 

impassable tissue structures prohibited forward movement [1]. Note that the fundamental reason of such a 

reversal in our model is the same mechanism which causes freezing.  When a collision with an obstacle is 
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detected, we stop the inhibitor-activator evolution and set their concentrations to their baseline values, 

causing termination of the pseudopod. Due to random noise in the reaction-diffusion equations, a new de 

novo pseudopod just so happens to form in the rear of the cell, thus allowing it to reverse course.  

 

Figure 9. Obstacle-mediated dynamics: Freezing of cells in a highly confined matrix. A: Instantaneous velocity of 

the cell centroid Vc (left axis, black line) and distance traveled (L, right axis, red line). Parameters are α = 5, γ = 1, 

and ϕ = 0.79.  Arrows are used to indicate freezing events. B: Time sequence of cell behavior during the freezing 

event occurring over t ≈ 10.5—17 in A. The sequence shows pseudopod termination, cell retraction, and formation 

of a new pseudopod in a different direction. 

 

 
Figure 10. Obstacle-mediated dynamics: A, B: Two examples of doubling-back dynamics. C: Tug-of-war between 

pseudopods straddling around an obstacle. 
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Another interesting behavior observed in our simulations occurs when a cell adjacent to an obstacle 

generates a pseudopod which bifurcates and forks around both sides of the obstacle. The two pseudopods 

then compete, and a resulting tug-of-war ensues until one pseudopod wins and carries the cell forward 

(figure 10C). The cell is seen to wrap around the obstacle before one pseudopod retracts. Experiments 

involving neutrophils in vitro have observed this behavior, noting there was no significant bias in the 

direction cells chose [63]. 

A closer look at a probing event is shown in figure 11. During such events, cells extend a pseudopod 

which collides with an obstacle, resulting in the elimination of its activator concentration patch by 

resetting the concentrations to their baseline values. This stops the extension of the pseudopod. The 

pseudopod does not fully retract, however. Following a brief pause, the activator patch may reappear near 

the previous location, and the pseudopod extends again (figure 11B). This process can happen several 

times in a repetitive fashion. With each successive appearance of the activator patch, the pseudopod 

slowly pulls the cell through the matrix. On the velocity versus time plot (figure 11A), probing appears as 

the small shark-fin shaped spikes which occur due to the centroid rapidly moving each time the 

pseudopod extends forward, and reverting back when pseudopod extension temporarily stops because of 

the resetting of activator concentration. Unlike in freezing, the cell velocity does not drop to zero here. 

Thus, the probing event eventually pulls the cell out of the confinement. A probing event can also 

terminate if the existing pseudopod bifurcates (figure 11C). Also note that probing is not exclusive to 

highly confined areas. In some cases, the pseudopod may brush up against an obstacle, resulting in the 

activator patch repeatedly terminating and forming again, resulting in a sequence of pseudopod extension 

and pause. 

Probing dynamics can also be traced to experimental findings which showed constant shape change with 

protruding and retracting pseudopods [17,62]. It can be loosely related to dynamic information sampling, 

i.e., these exploratory protrusions act as a method of spatiotemporal sensing to give the cell a better idea 

of its environment [1,62]. 

 

Figure 11. Probing dynamics.  A: Instantaneous velocity of cell centroid for α = 7, γ = 1, and ϕ = 0.68. B: Sequence 

showing cell activity during a probing event. C: sequence showing the transition from probing to bifurcation 

dynamics. 
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4.3 Limits on motility 

Obstacle-mediated dynamics, such as freezing and probing, arise as confinement increases, and limit a 

cell’s ability to migrate using pseudopods. If the confinement is significant, cell motion can be completely 

prevented. Our model predicts that matrix porosity, obstacle size, and membrane deformability have 

substantial effects on cell migration. The influence of matrix porosity and cell deformability on 

instantaneous cell velocity is considered in figure 12A. The corresponding 3D cell trajectories are shown 

in the inset. For a low deformability (α = 1) and a moderately dense matrix (ϕ = 0.68), the cell is not able 

to migrate at all. Activator patches keep forming over the cell surface, however, generating additional 

pseudopods. These pseudopods are unable to penetrate through small gaps due to reduced deformability. 

Low magnitude spikes in the cell velocity occur from the cell moving back and forth trying to find a 

suitable path through the matrix. When deformability is increased, say to α = 5, the cell is able to migrate 

through the same matrix by forming flat elongated shapes (similar to figure 7B). Frequent probing events 

are observed here due to high confinement. If the porosity is decreased to ϕ = 0.54 for the same 

deformability (α = 5) however, the cell is no longer able to penetrate the matrix. Frequent freezing and 

probing events are observed here. For much higher porosity (ϕ = 0.87), the cell is able to migrate over a 

larger distance. Periods of reduced velocity exist, but are also in the company of very large fluctuations. 

The cell slows down as it encounters obstacles, but quickly moves in alternate directions with the 

formation of new pseudopods. 

In figure 12B we present the time-averaged cell migration speed vs matrix porosity for different values of 

cell deformability. For each case, the migration speed is observed to increase with increasing porosity. 

Furthermore, the migration speed is observed to increase as membrane deformability increases. Cells 

capable of large deformation are more likely to penetrate the matrix faster than a stiffer cell. Also shown 

by error bars are the root-mean-squared fluctuations in cell velocity scaled by the average. Relative 

fluctuations are observed to increase with increasing confinement, partly because cells have to constantly 

change their direction, and partly because the average velocity becomes smaller. Note that fluctuations in 

CV can arise either due to change in overall cell velocity, or pseudopod dynamics. In the time series plots, 

pronounced maxima and minima indicate large changes in direction, while smaller maxima and minima 

are likely due to the pseudopod dynamics. In figure 12C, the average speed is shown for different obstacle 

sizes. For a constant porosity and deformability, migration speeds are seen to increase as the obstacle size 

increases. An explanation follows from the distance between each obstacle. Larger obstacles result in 

larger voids. Cells are then able to migrate fairly easily, leading to higher speeds. In contrast, smaller 

obstacles are packed tightly, resulting in smaller voids and inhibited cell motion. 

The predicted average migration speed can is comparable to experimental measurements. For leukocytes, 

Ref. [33] found migration speeds ~ 4 µm/min, while Ref. [65] showed speeds greater than 10 µm/min for 

dendritic and immune cells. For amoeboid cancer cells, Ref. [66] reported a cell speed of 4 µm/min, while 

Ref. [64] estimated a migration speed in the range 0.1—20 µm/min. Ref. [34] noted that peak migration 

velocity could be as high as 25 µm/min. It may be noted that experimental data on amoeboid migration is 

relatively scarce and can have significant uncertainty in terms of extracellular environment, cell response, 

and imaging. In converting the numerical data to dimensional values, we use a cell radius of 10 µm, and 

an activator diffusivity of 1 µm
2
/s. Then, a typical dimensionless migration velocity of ≈CV 0.5—1 as 
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obtained from figure 12B for moderate values of matrix porosity, obstacle size and cell deformability 

yields a dimensional speed of 3—6 µm/min. This is in agreement with the range of experimentally 

measured speeds.  

 

 

Figure 12. A: Influence of matrix porosity and cell deformability on instantaneous cell velocity and cell trajectory 

(inset). B: Time averaged migration speed as a function of matrix porosity for different cell deformabilities. C: Time 

averaged migration speed as a function of matrix porosity for different obstacle size. The error bars represent rms 

velocity fluctuation. 
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As figure 12 shows, cell migration becomes increasingly hindered with decreasing porosity, cell 

deformability, and obstacle size. Below certain values of these parameters, cell penetration through the 

matrix will not be possible. Such “motility limits” for the current matrix are shown in figure 13. It shows 

that for a given porosity and obstacle size, migration is possible only if the cells are deformable enough. 

Similarly, for a given deformability, migration can occur only if the matrix porosity is sufficient. It further 

shows that obstacles of smaller size can also result in cell arrest. These results are qualitatively similar to 

experimental observations. Neutrophils, for instance, are capable of squeezing through very tight spaces 

due to their soft membranes, while the stiffer fibroblasts cannot [2], and must use other means to move 

through the body such as matrix remodeling [64]. 

 

 

Figure 13. Motility limits as obtained from the current simulations. Phase diagrams are shown in terms for 

confinement (1― ϕ) and cell deformability for three different obstacle sizes. Open squares represent cases for which 

cells are able to migrate through the matrix, and filled circles represent cases when cell movement is prevented. 

 

4.4 Pseudopod dynamics 

Amoeboid motility is dictated by pseudopod dynamics, which in turn are observed to depend on matrix 

porosity, obstacle size, and cell deformability. To quantify pseudopod dynamics, we consider the average 

lifetime of pseudopods in figure 14A,B. It shows that pseudopod lifetime increases with increasing 

porosity. This is because fewer obstacle interactions means less terminated pseudopods and therefore 

longer lifetimes. Secondly, it also shows that the lifetime decreases with increasing cell deformability.  A 

similar result was also observed in our prior study of cell migration in unconfined domain [32]. This is 

because a more deformable membrane results in more instability in the reaction-diffusion system, and 

hence frequent bifurcations of activator patches. It can also be noted that the influence of porosity on 

pseudopod lifetime is much greater at smaller α than at higher α. This result can also be explained in 

terms of the dynamics presented earlier. At smaller α, reduced cell deformability causes frequent 

collisions with the obstacles as porosity decreases. At larger α, cells can squeeze through narrow spaces, 

and hence, pseudopod dynamics are less dependent on obstacle interactions. Figure 14B shows that 

pseudopod lifetime decreases with decreasing obstacle size, on the account of increasing collisions. 
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Another important pseudopod characteristic is the number of de novo pseudopods produced. As noted 

before, a pseudopod can generate either from a freshly formed activator patch that has not bifurcated 

previously, or from bifurcation of an existing pseudopod. The de novo pseudopods are defined as those 

generated by the first mechanism. Figure 14C,D shows the percentage of the de novo pseudopods of the 

total formed by both mechanisms. It can be observed that the fraction of de novo pseudopods increases 

with decreasing porosity. Cells encountering a greater number of obstacles in a low porosity environment 

have more pseudopods terminated (due to frequent resetting of activator and inhibitor concentrations to 

their baseline values). New pseudopods are then generated more frequently in order for the cell to 

migrate. Also, for a given porosity, the fraction of de novo pseudopods increases with increasing cell 

deformability. A decreasing obstacle size also results in more de novo pseudopods. The explanation for 

these results directly follow from the one given above for the pseudopod lifetime. 

 

 

Figure 14. Pseudopod lifetime τP (scaled by R
2
/D1) as a function of α for different values of matrix porosity (A), 

and as a function of obstacle size (B). Fraction of de novo pseudopods to total pseudopods as a function of α for 

different values of matrix porosity (C), and as a function of obstacle size (D). 
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4.5 Confined versus unconfined medium 

The frequent generation of de novo pseudopods is a distinctive characteristic of amoeboid motility in a 

matrix, as opposed to an unconfined medium without any obstacles. In fact, our current simulations and 

previous study [32] showed that in the absence of any obstacles, no de novo pseudopods are generated; 

rather new pseudopods are generated entirely by ‘bifurcation’ (or, tip-splitting, as often referred to in 

literature) from an existing pseudopod. As such, pseudopod lifetimes are significantly greater in 

unconfined medium, and for the parameter ranges considered here, they are 2—6 times greater than those 

in confined medium. Furthermore, the average number of active pseudopods in unconfined medium is 

close to two due to frequent bifurcations, while it ranges from 1.25 to 1.75 due to the presence of more de 

novo pseudopods which appear in singles. Additionally, we observe that the maximum number of active 

pseudopods that can simultaneously exist at any time can be as high as four in the unconfined medium, 

but ranges from 2—3 in confined medium. These numbers are observed to decrease with decreasing 

matrix porosity, cell deformability, and obstacle size. 

Another significant difference between cell motility in confined and unconfined medium is observed in 

terms of persistence. At relatively large α , cells in unconfined medium are observed to maintain a nearly 

persistent unidirectional motion over a large distance as shown in figure 15A. In contrast, no such 

persistent motion can be observed for cells in confined medium where the cell trajectories are 

characterized by frequent and large-amplitude turns. Turning events indeed occur in the unconfined 

medium, but they are much less frequent and occur slowly, as they arise either due to pseudopod 

bifurcation along the sides of the cell or due to pseudopod meandering over the cell surface. In contrast, 

turning events in a confined medium are more frequent and occur over larger angles primarily due to de 

novo pseudopods which can form anywhere on the cell surface. As seen in the figure, even a small 

amount of confinement (ϕ = 0.92) can eliminate persistent motion. To quantify the persistence in cell 

motion, we compute the total directional change in the trajectory as 

   (14) 

where  is the change in angle between trajectory over a length dL. For a purely unidirectional motion, 

∆͞θ = 0. Figure 15B shows that ∆͞θ is small in the unconfined medium (ϕ = 1), but increases with 

decreasing porosity, implying the loss of persistence in cell motion in the matrix. Decreasing obstacle size 

also results in larger values of ∆͞θ. Interestingly, ∆͞θ increases significantly for more deformable cells as 

these cells travel at higher speeds and with shorter pseudopod lifetimes.  

In our previous study, we showed that for cells in unconfined medium, pseudopods are generated only 

near the anterior of the cell body [32]. A mechanism of such pseudopod polarization was identified, in 

which subsequent bifurcations continue to occur nearly at the same location in the leading edge of the 

cell. Such polarization resulted in the persistent unidirectional motion of cells in the unconfined medium 

even in the absence of any external cue, as is the case in our simulations. In contrast, as confinement 
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increases, the number of de novo pseudopods increases. Such de novo pseudopods appear all over the cell 

surface without any directional preference due to the random noise in the reaction-diffusion system. To 

quantify pseudopod polarization, we compute the angular position of pseudopod tips using the spherical 

angles Ψ and Θ as shown in figure 15C, D. Ψ and Θ are spherical coordinates measuring the outward 

normal vector of active pseudopods. They are absolute coordinates using the Eulerian Cartesian system as 

a frame of reference. Ψ is the angle of the pseudopod normal projected onto the xy plane, relative to the 

x-axis, while Θ is the angle off the z-axis. Each data point represents the direction of an active pseudopod 

at a specific time step. Because pseudopods are force generators, cells tend to move in the direction the 

pseudopod points. Therefore, the orientation of the pseudopods determines the track the cell will take. For 

the cell in unconfined medium (figure 15C), a tight grouping of data points in a small range of Ψ is 

observed, which indicates that pseudopods are focused and generated in nearly the same direction. The 

reason for the tight grouping for the unconfined case was studied in details in our previous work [32]. A 

brief explanation is as follows: in an unconfined space, the same bifurcating pattern continues as there is 

no need for resetting the activator /inhibitor concentrations. Because of its own instability (§3.1), an 

activator patch located near the front of the cell bifurcates before it can travel significantly over the cell 

surface. As such, the activator patches remain within the front part f the cell, thereby creating a focused 

distribution of the activator patches. The resulting pseudopods, therefore, remain focused as well, 

generating the angular bias for the unconfined case. In contrast, for the cell in confined medium (figure 

15D), a uniformly scattered distribution is noted, which indicates that pseudopods are generated around 

the entire cell surface in all directions. Again, this is because the RD process is terminated every time a 

cell gets stuck around an obstacle. As evident in the figure, even a small amount of confinement (ϕ = 

0.87) is sufficient to break the polarity of the pseudopods. This loss of polarization is due to the frequent 

collision of the pseudopods with the obstacles, and results in the loss of persistence in cell motion in the 

matrix.  

 

R1, #7 
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Figure 15. Cell motility in confined (ϕ < 1) versus unconfined (ϕ = 1) medium. A: 3D cell trajectories in the 

unconfined (black, dotted curve) and a confined (ϕ = 0.92; red, solid curve) medium. B: Total directional change ͞∆͞θ 

in cell trajectory as a function of matrix porosity for different α and γ. C,D: Pseudopod directionality is quantified by 

the angular position of pseudopod tips using the spherical coordinates Ψ (0 to 2π ) and Θ (0 to π ) for the 

unconfined and a confined (ϕ = 0.87) domains, respectively, for α = 5, and γ = 1. 

4.6 Flow field 

Next, we consider the instantaneous fluid motion caused by the migrating cell. Because of the dynamic 

nature of pseudopods and cell deformation, and the presence of obstacles, highly complex and transient 

fluid flow develops both inside and outside the cell. Even in the absence of any obstacles, the flow 

patterns appear to be very complex and have been discussed in our previous work [32]. In general, flow 

patterns similar to those observed in unconfined mediums are also present in confined medium. A 

growing pseudopod is observed to occasionally generate a streaming flow inside the cell directed from the 

cell body towards toward its anterior. A growing pseudopod also drives the surrounding fluid along the 

direction of the cell motion. In contrast, a retracting pseudopod results in a fluid motion towards the cell 

body. Complex vortical patterns are observed to develop during the growth and retraction of pseudopods. 
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Microswimmers of well-defined shapes under harmonic motion are often classified as pushers and pullers 

depending on their swimming patterns. Pushers repel fluid along the direction of swimming, but attract it 

along the sides, while pullers draw fluid towards the swimming direction but repel fluid outwards along 

the sides. In our simulations, pusher motion is rarely seen, and only during the initial transience. Puller 

motion, on the other hand, is seen more often in our simulations. In general however, the cell behavior 

cannot be uniquely classified as pusher or puller because of the highly deformed cell shape and the 

dynamic nature of the pseudopods.  

Additionally, some unique features are also observed in the flow patterns in confined medium that are not 

present in unconfined medium. Specifically, vortices rotating in alternating directions are observed to 

form during pseudopod growth and retraction in confined medium. A sequence of such events is shown in 

figure 16(A--F) for a matrix of ϕ = 0.54. Here in (A), two clockwise vortices (shown by locations A and 

B) form during pseudopod growth and bifurcation. These pseudopods are terminated in (B) as they 

encounter obstacles, and their retraction generates two counter-clockwise vortices. Two clockwise 

vortices are generated again in (E-F) as new pseudopods are formed. Such alternating sequence of 

vortices is a result of repeated formation of de novo pseudopods and their termination due to the presence 

of the obstacles. As such, these patterns are absent in an unconfined medium, and occur more frequently 

with increasing confinement. Another example is shown in sequence (G—J) that corresponds to a probing 

event. Here, counter-rotating vortices are observed on both sides of a growing pseudopod. As the 

pseudopod repeatedly extends and retracts, vortices generated during the extension phase reverse 

direction during the retraction phase. 
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Figure 16. Flow patterns for cell migrating though a matrix. A—F shows a sequence of flow patterns for α =3, ϕ = 

0.54, and γ = 1. Vortical patterns can be seen at locations A and B marked in red. Velocity vectors are drawn in a 

plane passing through the cell center. Dimensionless times are 0.80, 1.05, 1.15, 1.20, 1.35, 1.40. G—J shows another 

sequence of a probing event (α = 5, ϕ = 0.68, γ = 1). Here the clockwise and counter-clockwise vortices are marked 

by CW and CCW, respectively. Times are 6.80, 6.95, 7.65, 7.90. 
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5. ADDITIONAL CONSIDERATIONS 

5.1 Viscoelastic membrane   

In our previous work [29], we have developed a highly-accurate model for viscoelastic 

membrane. The viscoelastic behavior is resolved using the Kelvin-Voigt model in which the total 

membrane stress is expressed as the sum of the elastic and viscous stresses as  

   
where the elastic stress is given by Eq. 2, and the viscous stress is expressed as  

  

 
where µm is membrane shear viscosity (~10

‒7
―10

‒6
 N.s/m, [29]), D is the strain rate tension, and 

Is is the surface projection tensor. For numerical implementation, the stress is computed in terms 

of the strain history using a time-convolution integral. Simulations of cell motility are performed 

by considering three different values of dimensionless membrane viscosity as µm/µ0 R = 0, 1, and 

10, with zero being the elastic membrane. These results are given in the Supplementary Materials 

(figure S2). The dimensionless average cell speed shows a small increase with increasing 

membrane viscosity (from ~ 0.4 to 0.6), and the RMS velocity fluctuation shows a small 

decrease. The persistence was also similar, with the total directional change ͞∆θ being 0.026, 

0.021, and 0.020, respectively. The general motility behavior remains similar. The obstacle-

mediated dynamics, namely, the freezing and probing was also observed. Viscosity stiffens the 

membrane, and causes ruffles that are footprints of dead pseudopods (see Supplementary 

Materials, figure S3). These ruffles are high curvature regions, and hence, they cause more 

frequent bifurcation of activator patches as noted in §3.2. As a result, the number of pseudopods 

slightly increases resulting in higher speed. Note that the time scale for membrane deformation R 

µ0 / GS ~  µm/GS ~ 10
‒3

―10
‒2

s, while the time scale for activator/inhibitor diffusion R
2
/D3 or 

R
2
/D1 ~ 1s. So, the membrane quickly responds to the evolving Turing patterns, even when the 

viscosity is relatively large, and the cell behavior is essentially dictated by the activator/inhibitor 

dynamics.  

 

5.2  Variation of bending rigidity 

 

The nonlinear constitutive law (Eq. 1) used to model membrane deformation is known to create 

membrane buckling [29]. Also, the protrusive force can cause sharp kinks. To avoid these, 

membrane bending is needed. The bending stiffness EB typically is in the range 1―9 X 10
‒19

 J 

[36,57]. The corresponding dimensionless parameter is EB
*
 = EB/R

2
 GS . Simulations were 

performed by varying EB
*
 as 0.003 to 0.02, and the average cell speed is given in the 

Supplementary materials (figure S4). Cell velocities had no significant deviations, nor did the 

persistence as defined by Eq. 14. Cell dynamics were also similar with comparable trajectories. 

In addition, obstacle-mediated dynamics, such as probing and freezing, were also observed. 

 

R1, #2 
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5.3 Cutoff distance for cell-obstacle interaction    

It was noted in §4.1 that when the cell membrane gets within two Eulerian mesh points from the 

obstacle, the RD system is terminated, and a repulsive force is introduced to prevent the collapse 

of the membrane onto the obstacle. The choice of 2-grid point cutoff is not arbitrary. As 

discussed in §2.3, the coupling between the cell membrane and the surrounding fluid is done by 

using the Dirac delta function that spreads the membrane force over a finite region. For the 

immersed-boundary/front-tracking method used here, the delta function is modeled numerically 

as a cosine function that spreads over 2 grid points on each side of the membrane (Eq. 12). Thus, 

the membrane is numerically diffused over certain region. This is the fundamental reason why 

the 2-grid point cutoff is used. Nevertheless, we have performed additional simulations by 

varying the cutoff distance as 1, 1.5, 2.5, and 3 grid points. There are no major distinctions 

between 1.5 and 3 grid point cutoff observed except that the mesh collapses for 1 grid point 

cutoff.  

5.4 Cylindrical obstacles 

 

The present numerical method allows consideration of diverse obstacle shapes, and indeed more 

complex geometrical features of the ECM than the rather simple spherical obstacles considered 

so far. Although the spherical obstacles do not represent real geometry of the ECM, they allow a 

simple parameterization of the matrix using only two parameters, ϕ and γ. A physiological ECM 

may have more fibrous structure, spherical pores, a mix of both, or highly heterogeneous and 

amorphous structure. Consideration of this complex problem is beyond the scope of the current 

work. Even for the spherical obstacles, connection with experimental studies can be made as 

already done in §4. 

Nevertheless, a limited number of simulations using cylindrical obstacles are considered as 

shown in figure 17. The pseudopod bifurcations, and cell motility dynamics are qualitatively 

similar as in case of spherical obstacles. Average cell speeds are also compared for the 

cylindrical and spherical obstacles. It may be noted that the cylinder results show unsmooth 

variations because of a fewer number of simulations performed. 

 

 

R2, #3 
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Figure 17. Influence of cylindrical obstacles. Snapshots show a sequence of motility. The 

average cell speed is compared for cylinders (open symbols) and spheres (filled symbols) for γ = 

1 (diamonds), and 0.25 (squares). 

 

6. CONCLUSIONS 

We presented a 3D multiscale and multiphysics computational model coupling fluid mechanics, solid 

mechanics, and dynamic pattern formation to simulate locomotion of amoeboid cells through a porous 

extra-cellular space. The extracellular space is made of a viscous fluid and an array of finite-size, rigid, 

non-moving spherical obstacles. Amoeboid cells migrate by extending pseudopods, and undergoing 

extreme deformation. We use an immersed-boundary method (IBM), which is efficient in resolving 

extreme deformation, and allows a seamless integration of diverse types of interfaces, both deformable 

and rigid. The model combines reaction/diffusion of activator/inhibitors, extreme deformation of the cell, 

pseudopod dynamics, cytoplasmic and extracellular fluid motion, and a fully resolved extracellular 

environment. Cell deformation is numerically computed using a surface finite element method, and the 

fluid motion is solved using a combined finite-volume and spectral method. An evolving surface finite-

element method is also used to solve the non-linear reaction-diffusion equations for the activator-inhibitor 

dynamics. The dynamic nature of the Turing instability in the activator-inhibitor model allows us to 

evolve protein concentration on the cell membrane, which is then correlated to the protrusive force. A 

continuous forcing IBM is used to couple cell deformation with the fluid, while a direct forcing IBM is 

used for obstacle—fluid coupling. In the model, the receptor-ligand bond formation between the cell and 

an obstacle is not considered. Furthermore, no external cue such as a chemical gradient is applied. 

The model is able to recreate pseudopod-driven motility of a cell through the matrix. The predicted cell 

shapes are similar to those observed in experiments. The dynamics of pseudopods, namely their 

generation, bifurcation, meandering, and retraction are accurately predicted by the model. Extreme 

deformation of the cells is reliably predicted as they squeeze and weave through the narrow spaces 

between obstacles over long simulation times suggesting robustness of the methodology. Additionally, 

the predicted migration velocity is in agreement with the range reported in experimental studies. 

We presented a detailed mechanistic view of how amoeboid cells negotiate around obstacles. Toward that 

end, we studied the influence of matrix porosity, obstacle size, and cell deformability on the cell motility 

behavior. All of these parameters are shown to strongly affect cell migration. We show that below certain 

values of these parameters, cell motion can be completely prevented. Cells must be sufficiently 

deformable to squeeze through narrow spaces between obstacles. Based on our simulations, we present 

phase diagrams of motility limits for the cell—matrix combination considered here. Existence of such 

motility limits can be inferred from experimental studies. For example, softer immune cells are known to 

easily migrate through tissue, while stiffer fibroblasts move with an order of magnitude slower speed. 

Furthermore, our model predicts interesting motility behaviors that are caused by the obstacles, namely 

freezing, probing, doubling-back, and tug-of-war. The freezing event is characterized by a temporary 

pause in cell motion, while in probing the cell repeatedly extends and retracts its pseudopod as if to 

sample its surroundings. The doubling-back and tug-of-war dynamics allow the cell to get out of a 

R1, #8 

Page 35 of 40 Soft Matter



36 

 

confined region and continue its migration. These dynamics are absent in unconfined medium, and they 

appear more frequently with decreasing matrix porosity. Only a few experimental studies have suggested 

the presence of such dynamics, but attributed them to signaling proteins. In contrast, our model shows 

that such dynamics could be of mechanistic origins. 

The model predicts that in the unconfined medium, cells exhibit persistent unidirectional motion over 

long times. Such persistent unidirectional motion of amoeboid cells in the absence of any external 

chemoattractant gradient was reported in experimental studies [9,44]. Here, and in our previous study 

[32], we showed that such persistent motion is due to the polarization of pseudopods near the anterior of 

the cell. This persistent motion, however, is shown to be lost in the presence of obstacles as the cells 

migrate with a zig-zag pattern. We show that the loss of persistence is due to a major alteration in the 

pseudopod dynamics. In the unconfined medium, new pseudopods are generated only by bifurcation of an 

existing pseudopod. In contrast, in a confined medium, an existing pseudopod is often terminated as it 

collides with an obstacle. As such, the cells in a confined medium migrate primarily by forming de novo 

pseudopods.  A de novo pseudopod is generated from a new activator patch which can form anywhere on 

the cell surface due to the random noise in the reaction-diffusion system. Our simulations predict that the 

fraction of such de novo pseudopods increases with increasing confinement. Increasing confinement also 

results in a decreasing lifetime of the pseudopods. The increase in randomly generated de novo 

pseudopods and their shorter lifetimes result in frequent direction changes and hard turns in the cell 

trajectory in a confined medium. While this mechanism causes the loss of persistence in the motion, it 

also allows the cell to find a new direction, without which it would be unable to migrate through the 

matrix. Additionally, we find that the average and maximum number of pseudopods are reduced in 

presence of confinement, as well as with decreasing matrix porosity. 

Inclusion of fluid interaction enables us to extract instantaneous 3D velocity fields both inside and outside 

the migrating cells. In general, highly complex and dynamic flow patterns are observed, even in the 

absence of any obstacles. Some unique features are also observed in the flow patterns in confined medium 

that are not present in the unconfined medium. Specifically, vortices rotating in alternating directions are 

observed to form during pseudopod growth and retraction. Such flow patterns generated by the motion of 

the cell itself can alter the distribution of the extracellular molecules and chemoattractants. 

In conclusion, the current study presents a fully 3D, robust numerical model for pseudopod-driven 

motility of highly deformable amoeboid cells through an extracellular medium. The results and analysis 

presented here provide new insights on cell motility in confined medium. They show a strong coupling 

between cell deformability and ECM properties in dictating motility behavior. These results could also be 

useful in designing artificial tissue scaffolds where controlled cell migration may be desired. While in this 

work we considered a rather simple extracellular scaffold, the numerical method is not limited to such 

specific geometry. Highly complex and physiologically realistic scaffolds can be considered, and will be 

addressed in our future studies. 

 

Supplemental Materials: Additional results and an animation from one simulation is provided. 
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