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Hydrodynamics of shape-driven rigidity transitions in
motile tissues†

Michael Czajkowski,∗a Dapeng Bi,b M. Lisa Manning,a and M. Cristina Marchettia

In biological tissues, it is now well-understood that mechanical cues are a powerful mechanism
for pattern regulation. While much work has focused on interactions between cells and external
substrates, recent experiments suggest that cell polarization and motility might be governed by
the internal shear stiffness of nearby tissue, deemed “plithotaxis". Meanwhile, other work has
demonstrated that there is a direct relationship between cell shapes and tissue shear modulus
in confluent tissues. Joining these two ideas, we develop a hydrodynamic model that couples
cell shape, and therefore tissue stiffness, to cell motility and polarization. Using linear stability
analysis and numerical simulations, we find that tissue behavior can be tuned between largely
homogeneous states and patterned states such as asters, controlled by a composite “morpho-
taxis" parameter that encapsulates the nature of the coupling between shape and polarization.
The control parameter is in principle experimentally accessible, and depends both on whether a
cell tends to move in the direction of lower or higher shear modulus, and whether sinks or sources
of polarization tend to fluidize the system.

1 Introduction
Pattern formation during embryonic development, coordinated
tissue movements in wound healing, and the breakdown of pat-
terning in cancer tumorogenesis have all traditionally been ex-
plained in terms of biochemical signaling, such as morphogen
gradients and growth factor secretion. Although biochemical gra-
dients are clearly important, recent work has suggested that me-
chanical interactions and mechano-sensitive response can play a
complementary and vital role in the robust patterning of these
self-organized systems. For example, the extra-cellular matrix
(ECM) that contributes to the mechanical environment of can-
cer tissues strongly affects metastasis1,2, and the stiffness of an
underlying substrate can control differentiation3,4 and collective
cell migration in wound healing assays for cell monolayers5.

Concurrent with these investigations of cell-substrate and cell-
ECM interactions, another group of researchers has focused on
cell-cell interactions, in an effort to understand the “material
properties" of tissues. Continuum models that describe epithelia
as active viscoelastic fluids6–10 or active elastic sheets11–14 have
been shown to reproduce many phenomena observed in wound
healing assays and confined tissues. Experimental studies dis-
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covered that many 2D monolayers15–17 and 3D bulk tissues18–20

are viscoelastic, exhibiting glassy dynamics that indicates they
are close to a continuous fluid-to-solid, or jamming transition.
Developing continuum models that incorporate jamming transi-
tions has proven difficult even in non-active materials21–23, and
so continuum models to date have not included this effect. In ad-
dition, although most work has focused on the average material
properties of a tissue, many tissues are heterogeneous. There-
fore, given the close proximity of a fluid-solid transition where the
shear modulus is expected to rise quickly from zero, it is natural
to wonder if stiffness gradients within a tissue can drive pattern-
ing. There is already some experimental evidence for this; Tambe
and coworkers coined the term “plithotaxis" to describe their ob-
servation that MDCK cells polarize and move in the direction of
local maximal principal stress to minimize local shear24. Using a
simple model, this phenomena may be understood in terms of the
deformations of the underlying actomyosin network25.

To our knowledge, there are no models that seek to quantify
how gradients in stiffness within a tissue drive patterning, or pre-
dict the parameters that control patterning in such a system, al-
though there are some analogues that can guide us. For exam-
ple, in active particle-based models, there is a direct relationship
between the packing fraction of particles and the fluidity of the
material. This leads to a natural coupling between the polariza-
tion (the direction that a particle wants to move) and the packing
fraction that can be encapsulated in hydrodynamic models26,27

and gives rise to a novel type of patterning called motility in-
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duced phase separation. Similarly, in liquid crystals there is a
relationship between the nematic order parameter and the molec-
ular mobility28. Again, one can write a hydrodynamic model that
encapsulates this relationship and predicts pattern formation in
liquid crystals.

But what is an appropriate hydrodynamic model for confluent
tissues? It is well-established that cells in a tissue can be polarized
to move in a particular direction and can coordinate their mo-
tion to form a flock29. This suggests that a cell polarization field
should be incorporated in a continuum model of tissue, in anal-
ogy with continuum theories of flocking30–32 and particle-based
active matter models. But confluent tissues can change from fluid
to solid at a packing fraction of unity, suggesting that density
might not be an optimal choice for the hydrodynamic field. A
recent body of work based on vertex models at the cellular scale
suggests that confluent tissues exhibit a novel type of rigidity tran-
sition based on cell shape33–38. Evidence for a similar rigidity
transition has also been found in cellular Potts models39–41 that
may provide an alternate starting point for formulating a contin-
uum theory of tissue.

Therefore, in Section 2 of this manuscript, we develop a mean-
field description of the fluid-solid transition in vertex models that
directly incorporates our knowledge of how cell shapes govern
jamming transitions and tissue stiffness in confluent tissues. It
is important to note the distinction between a single-cell shape
anisotropy field and an orientation field that captures alignment
of elongated cells, first highlighted by Stark and Lubensky28 for
liquid crystals. In inert materials, however, molecular shape
fluctuations decay on microscopic time scales and can there-
fore be neglected in hydrodynamic models. Cells, in contrast,
are extended objects that can individually acquire isotropic or
anisotropic shapes. Moreover, cellular shape changes have been
shown to control the tissue rigidity, driving a continuous transi-
tion between liquid-like and solid-like states. Shape fluctuations
become long-lived at the transition and their dynamics must be
incorporated in a hydrodynamic theory. When elongated, cells
can additionally align their orientation and form states with liq-
uid crystalline order. Various shape-driven behavior of epithe-
lial tissues are shown schematically in Fig. (1-a). Recent work
by Ishihara et al.9, concurrent with our own, also uses vertex
model energy for the tissue to construct a continuum theory. This
work does not, however, distinguish between a tissue of cells with
isotropic mean shape (see Fig.(1a-left)) and a tissue of cells that
have anisotropic shape on average, but do not exhibit nematic or-
der (see Fig.(1a-middle)), as observed in simulations36,37,42. In
the model proposed in Ref. 9 the onset of cell anisotropy is always
accompanied by nematic order of elongated cells, which was not
observed in the shape-driven solid-liquid transition predicted in
Vertex and Voronoi models36,37,42.

In Section 3, we present a hydrodynamic model that couples a
cell-shape anisotropy order parameter (that describes the tissue
shear stiffness) to cell polarization. The hydrodynamic equations
incorporate two important effects illustrated in Figs. (1-b,1-c).
The first is a coupling between gradients of tissue rigidity (as em-
bodied by cell shape) and cell polarization through a parameter ν

that relates the coordination of cell migration to the mechanical

MigrationMigration

a.

b.

c.

Isotropic Anisotropic Nematic

Fig. 1 Diagrams illustrating various shape-related behaviors in epithelial
tissues. a From left to right: isotropic cell shapes (solid/jammed state),
anisotropic cell shapes (fluid), nematic order of anisotropic cell shapes. b
and c together display the morphotaxis properties of the tissue. b: Cells
may sense local gradients in shape, corresponding to gradients in tis-
sue rigidity, and thereby polarize and migrate towards (left) or away from
(right) the more anisotropic cells. c: Sinks of polarized motile forces may
induce an increase (left) or a decrease (right) in the local cell anisotropy.

properties of the tissue providing a macroscopic analog of plitho-
taxis. We take ν to be positive when cells migrate in the direction
of stiffer (higher shear modulus) tissue, and negative when the
cells migrate in the direction of softer tissue.

The second effect captures how a sink of polarized motile forces
affects tissue shape and shear stiffness. Our chosen convention is
that if a sink (inward splay of polarization) tends to fluidize the
tissue, generating anisotropic shapes (Fig. (1-c) left), the cou-
pling parameter is negative, and positive in the opposite case
(Fig. (1-c) right). As our analysis will demonstrate, these two ef-
fects encapsulate the interaction between polarization and shape
and their product controls patterning. Therefore we introduce the
new term morphotaxis – morpho- from the greek µoρφή mean-
ing form or structure, and -taxis from the greek τάξ ις . When the
morphotaxis parameter is positive, patterns such as asters and
traveling bands dominate. In contrast, when the morphotaxis pa-
rameter is negative, the tissue response is largely homogeneous.

Finally, we conclude in Section 4 with a discussion of the im-
plications of our model for biological experiments and for glassy
materials. In particular, our work explores for the first time the
hydrodynamics of shape as a property distinct from the orienta-
tional order of elongated shapes. It additionally provides perhaps
the first continuum description of glassy dynamics in terms of
a structural order parameter. While elusive in conventional soft
matter systems, a structural signature of the onset of rigidity ap-
pears naturally in tissues in terms of cellular shape.

2 A mean-field model for 2D shape
anisotropy

2.1 Review of rigidity in the Vertex Model
The Vertex Model (VM) captures the topological features of con-
fluent tissues by representing cells as polygons that tile the
plane33,43. For a two-dimensional tissue containing N cells the
inter- and intra-cellular interactions are captured by a shape en-
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Fig. 2 Schematic phase diagram comparing negative (left) and pos-
itive(right) morphotaxis parameters for a shape-based hydrodynamic
model where convergent polarization tends to decrease local cell shape
anisotropy. The “target shape" axis captures the average cell’s preferred
perimeter to area ratio, while the “shape-driven flocking" axis quantifies
the degree to which elongated cell shapes promote polarization. The
left panel corresponds to tissues in which cells tend to migrate toward
fluid-like regions with more shape anisotropy, and the behavior is largely
homogeneous. The right panel describes tissues where cells polarize
toward solid-like regions of tissue with lower shape anisotropy, and the
tissue exhibits patterns like asters or bands in a large region of the phase
space.

ergy parametrized in terms of area Aa and perimeter Pa of the a-th
cell, given by

Eshape =
N

∑
a=1

[
κA(Aa−A0)

2 +κP(Pa−P0)
2
]
. (1)

The first term arises from tissue incompressibility in three dimen-
sions that allows cells to achieve a target area A0 by adjusting
their height. The second term captures the interplay between
contractility of the actomyosin cortex and cell-cell adhesion, re-
sulting in a cell membrane tension that controls the target perime-
ter P0. P0 increases with either decreasing cortical tension or with
increasing cell-cell adhesion. Finally, κA and κP are moduli asso-
ciated with the area and perimeter terms, respectively.

Numerical studies of the ground states of the shape energy
given in Eq. (1) have identified a rigidity transition36–38 that
occurs as a function of the dimensionless “target shape-index"
s0 = P0/

√
A0. In previous work, the symbol p0 was used for this

quantity, but we change it here both for consistency with work
in 3D44 and to distinguish it from cell polarization p. When
s0 < s∗0 ≈ 3.81, cortical tension dominates and the tissue is rigid
with finite barriers to cellular rearrangements. For s0 > s∗0 the
energy barriers to cellular rearrangements vanish, resulting in
zero-energy deformation modes that enable cells to elongate their
shapes and fluidize the tissue. An analysis of cellular shapes re-
veals that the spatially-averaged cell shape-index q =

〈
Pa/
√

Aa
〉

provides an order parameter for the transition in both non-motile
and motile tissues: a tissue with q < s∗0 is a rigid network of
roughly regular cell shapes, while a tissue with q > s∗0 is a fluid-
like tissue of elongated and irregular cell shapes.

2.2 The Shape Tensor
Our first goal is to construct a continuum mean-field model of the
rigidity transition captured by the VM. To do this we characterize

the shape of the a-th cell via a shape tensor, given by

Ga =
1
na

∑
µ∈a

(
xµ −xa

)
⊗
(

xµ −xa

|xµ −xa|

)
, (2)

where xµ is the position of the µ-th vertex of the a-th cell, xa

points to the geometric center of cell-a and the sum runs over the
na vertices on this cell. The cellular shape tensor Ga is very similar

Fig. 3 Left: The Vertex Model representation of cells in a confluent mono-
layer. Right: The vectors which are used to create the cellular shape
tensor.

to the gyration tensor used to characterize the configuration of
polymers45,46. To directly connect with area and perimeter, we
define the shape tensor with units of length, in contrast to what is
done in most previous literature. This choice does not, however,
impact our results. Since Ga is a real and symmetric tensor, it has
three independent degrees of freedom in two dimensions, and
can generally be written in the form

Ga
i j = Ma

[
êa

i êa
j −

1
2

δi j

]
+

1
2

Γaδi j , (3)

where Ma = λ a
1 −λ a

2 > 0 and Γa = Tr[Ga] = λ a
1 +λ a

2 are the sum
and differences of the eigenvalues λ a

1,2, êa is the eigenvector of
the largest eigenvalue, λ a

1 , and i, j denote Cartesian components.
We introduce the dimensionless parameter ma = Ma/Γa, which
vanishes for isotropic cells and can be written as

ma =
2

Γa
êa ·Ga · êa−1 . (4)

Note that ma is chosen to be positive definite. For regular n-sided
polygons the shape tensor is always diagonal with λ a

1 = λ a
2 , hence

ma = 0. The area Aa and the perimeter Pa can then be expressed
in terms of the shape tensor as

Aa = 2na sin(2π/na)Det[Ga] , (5)

Pa = 2na sin(π/na)Tr[Ga] . (6)

It can be shown numerically that these shape relations will hold
approximately for small deformations of irregular polygons†.

† To verify the validity of Eqs. (5) & (6), we have tested these equations by deforming
polygons through the application of Gaussian noise to the positions of the vertices
of regular polygons of area = 1 . Up to a noise magnitude of 0.2, the shape tensor
estimates correlate with the exact values of area and perimeter with a correlation
coefficient r > 0.95.
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2.3 Mean-field theory

Our first goal is to re-write the deformation energy of a single cell
in terms of the cell shape anisotropy, ma. This is accomplished
using Eqs. (5) and (6):

εa =
[
c1(na)(1−m2

a)Γ̃
2
a−1

]2
+ κ̃

[
c2(na)Γ̃a− s0

]2
, (7)

where c1(na) =
na
2 sin(2π/na), c2(na) = 2na sin(π/na) and we have

scaled lengths with
√

A0 and energies with A2
0κA and defined Γ̃a =

Γa/
√

A0 and κ̃ = κP/(A0κA).
Now we would like to use this to develop a simple mean-field

model that captures the fluid-solid transition we see in metastable
states at s∗0 ≈ 3.81 in the vertex model. From previous work we
expect the transition to be governed by the shape anisotropy ma,
so we minimize (7) as function of ma, keeping Γ̃a fixed such that
Pa = P0. Alternatively, we could have chosen to fix Det(Ga) such
that Aa = A0, obtaining qualitatively the same results, as shown
in Appendix A.

The minimal single-cell energy can then be written as a func-
tion of cell shape anisotropy as

ε
min
a =

1
2

α(s0,na)m2
a +

1
4

β (s0,na)m4
a . (8)

The parameters α and β are controlled by the target shape pa-
rameter s0 and the polygon degree na. While β is positive for all
s0 and na, α changes sign as a function of s0 and na. Equation (8)
has the familiar form of a φ 4 theory, changing continuously from
a single well to a double well at a critical value s∗0(na), as shown
in Fig. (4).

Nothing in our analysis so far has specified na, the polygon de-
gree, which sets the value of the shape order parameter at the crit-
ical point. Previous work on the 2D vertex model has shown that
the rigidity transition occurs at s∗0 ≈ 3.81, which is the shape index
corresponding to a regular pentagon. Although pentagons cannot
tile space, we can still choose na = 5 in our mean field model, so
that the ground state anisotropy m̄ that minimizes Eq. (8) transi-
tions from m̄ = 0 to m̄ > 0 at the correct value of s∗0, as shown in
the inset to Fig. (4). With this choice, α and β are given by

α(s0) = as2
0−bs4

0 , (9)

β (s0) = bs4
0 . (10)

with a = Cot(π/5)/5 and b = [Cot(π/5)]2 /100. Cell-cell interac-
tions could provide additional constraints not present in Eq. (8),
which should generally increase the energy of a cell (hence this
is a minimal energy). Recent work by some of us has also shown
that in this model rigidity arises from purely geometric incom-
patibility44, even in the absence of topological defects such as T1

transitions47.
In summary, we have re-written the vertex model energy func-

tional in terms of the shape anisotropy m of deformed polygons
of degree n, minimized with respect to m to find a ground state,
and then chosen n = 5 so that the ground state switches from
isotropic to anisotropic shape at a value of the control parame-
ter that is consistent with simulations of the microscopic model.
While the choice n = 5 is well motivated, we note that choosing a

ma
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Fig. 4 Mean-Field tissue energy as a function of shape-anisotropy
for various values of the target shape-index s0. As this shape index
is increased past s∗0 ≈ 3.81 the energy develops two minima and the
anisotropy m̄ becomes finite, as shown in the inset.

different value of n (e.g. n = 6) will only shift the location of the
fluid-solid transition, without impacting the qualitative results of
the model.

3 Hydrodynamic theory of cellular shape
Guided by the mean-field theory described in the previous sec-
tion, we now formulate a continuum model of the shape-driven
rigidity transition. As previously pointed out in the context of
the Poisson-bracket derivation of the hydrodynamic equations of
nematic liquid crystals28, it is important to distinguish between
fluctuations in the shape of individual cells, as quantified by the
single-cell anisotropy ma, and fluctuations in the local alignment
of elongated cells that are captured by correlations in the direc-
tion êa of the shape tensor eigenvectors. To our knowledge, a
hydrodynamic description of single cell fluctuations has not been
explored before. To define continuum fields, it is convenient to
introduce the traceless part of the cellular shape tensor, given by

G̃a
i j = Ga

i j−
1
2

δi jΓa = Ma

[
êa

i êa
j −

1
2

δi j

]
. (11)

Following conventional definitions, we introduce coarse-grained
fields, given by

Γ(x, t) =
[
∑
a

Γa δ (x−xa)

]
c
, (12)

G̃i j(~x, t) =
[
∑
a

G̃a
i j δ (x−xa)

]
c
, (13)

where the brackets [...]c denote coarse-graining and xa is the po-
sition of the centroid of the a-th polygonal cell. Additionally, the
local coarse-grained number density is given by

ρ(x, t) =
[
∑
a

δ (x−xa)

]
c
. (14)
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For fixed number of cells, i.e., in the absence of cell growth and
death, and in systems of fixed total area AT with periodic bound-
ary conditions, the number density is slaved to cell area. Recent
experiments have reported “giant number fluctuations” (GNF) in
tissues17,48–50. One may then expect the dynamics of the number
density, ρ, to play a role in tissue stability. GNF have been mainly
observed, however, in highly motile, fluid tissue, while in the rigid
state the number density seems to remain uniformly high, with
minimal fluctuations. We therefore expect that the dynamics of
density fluctuations may play an important role in fluid tissue, but
not in the vicinity of the fluid-solid transition. The study of such
effects is reserved for future work and in the following we simply
equate the density to its mean value ρ0 = 1/Ā, with Ā the mean
cell area.

The coarse-grained field Γ(x, t) represents a fluctuating cell
perimeter density. If all cell perimeters are identical it will simply
be proportional to the number density. The coarse-grained field
G̃i j(x, t) is a symmetric and traceless tensor of rank two. It has
a structure similar to that of the familiar nematic alignment ten-
sor, but it incorporates both fluctuations in individual cell shape
and in the direction of the principal eigenvector. To separately
quantify cell-shape fluctuations, we define an additional coarse-
grained field, the cell-shape anisotropy, as

m(x, t) =
[∑a Maδ (x−xa)]c

Γ(x, t)
. (15)

The traceless shape tensor is then written as

G̃i j(x, t) = m(x, t)Γ(x, t)Qi j(x, t) , (16)

where

Qi j(x, t) =
G̃i j(x, t)

m(x, t)Γ(x, t)
. (17)

is the nematic alignment tensor.
At the single-cell level, the shape tensor Ga

i j is characterized
by three independent quantities that can be chosen as the cell
area (proportional to Det(Ga) and inversely proportional to the
mean density in a confluent tissue), the cell anisotropy ma =

Ma/Γa, and the angle defined by êa. Then Γa, which is propor-
tional to cell perimeter, can be written as Γa = c

√
Aa/(1−m2

a) ∼[
ρ0(1−m2

a)
]−1/2, with c a numerical constant of order unity. Fluc-

tuations in the field Γ(x, t) will then be controlled by density and
shape anisotropy fluctuations, and Γ(x, t) = Γ(ρ(x, t),m(x, t)) '
Γ(ρ0,m(x, t)). In other words, we do not need to consider Γ as
an independent field as it is slaved to m.

If cells are isotropic, both m and G̃i j vanish identically. When
cells are elongated and m is finite, cells can additionally exhibit
orientational order captured by the tensor Qi j. For uniaxial sys-
tems, Qi j can be written as

Qi j(x, t) = S(x, t)
[

nin j−
1
2

δi j

]
, (18)

where n(x, t) is the nematic director. Tissues of elongated cells
with a nonzero mean value of m can then additionally exhibit ori-
entational order of cell elongation characterized by a finite value
of S(x, t). Such nematic order has not, however, been observed

in simulations of Active Vertex or Self-Propelled Voronoi models
in the absence of interactions that tend to align cell polarization.
For this reason we do not consider the dynamics of Qi j here and
leave this for future work. As seen below, here we only model
tissues where cell elongation may result in polar alignment of cell
motility, possibly leading to global flocking of the tissue. This
may describe monolayers of MDCK cells as studied by Puliafito et.
al.51 that show a strong correlation between cell morphology and
the transition between motile and non-motile tissues.

3.1 Hydrodynamics of Shape in Non-Motile Tissues

We begin by constructing a hydrodynamic equation for m(x, t) in
the absence of cell motility. Due to the complexity of the interac-
tions arising from the shape energy, an exact coarse graining ap-
pears intractable. Instead, we recognize that the simplified mean-
field theory of pentagons described in Section 2.3 already encodes
the key properties of the shape driven liquid-solid transition seen
in simulations36,37. At large length scales, we then neglect den-
sity fluctuations and assume that the VM can be described by a
Landau-type free energy functional given by

F =
∫

dx
{

1
2

α(s0)m2 +
1
4

β (s0)m4 +
D
2
(∇m)2

}
, (19)

where D is a stiffness that describes the energy cost of spatial vari-
ation in cellular shape arising from interactions. Since the rigidity
transition is found to be continuous in numerical simulations of
Vertex and Voronoi models, and well described by the free en-
ergy of Eq. (19), we use here the same quadratic energy derived
for a single cell as a mean-field description for the tissue. The
relaxational dynamics of m(x, t) is then given by

∂tm =− 1
γ

δF
δm

=−
[
α(s0)+β (s0)m2

]
m+D∇

2m ,

(20)

where for simplicity we have taken the kinetic coefficient γ = 1.
The phenomenological parameters α and β depend on the target
shape index s0 via Eqs.(9, 10), with β > 0 and α changing sign
at s0 = 3.81. The steady state solution of Eq. (20) then yields two
homogeneous states: a solid state with mss = 0 for α > 0, cor-
responding to s0 < 3.81, and a liquid state with mss =

√
−α/β

for α < 0, corresponding to s0 > 3.81. It therefore provides a
mean-field description of the liquid-solid transition seen in the
vertex model. The stiffness D tends to stabilize the homogeneous
states. Fluctuations are characterized by a correlation length
`m ∼

√
D/|α| that diverges at the transition. In the rest of this

work α and β are functions of s0 even where this dependence is
suppressed.

3.2 Hydrodynamics of Shape in Motile Tissues

Inspired by the Toner-Tu model of flocking, we describe cell motil-
ity at the continuum level in terms of a local polarization field,
p(x, t), that defines the direction of the propulsive force originat-
ing from the traction that cells exert on a substrate. In particle-
based flocking models, a mean polarization arises from the ex-
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plicit tendency of particles to align with their metric neighbors
and is thereby tuned by density. In contrast, collective motion in
our model is directly tuned by cell shape, which can exhibit slow
dynamics at the liquid-solid transition. On the other hand, al-
though cell-shape anisotropy can generate mechanical forces that
build up local polarization, the direction of cellular polarization
does not in general need not correlate with the orientation of
anisotropic cell shapes. As a result, a tissue may be polarized
(i.e., |p| 6= 0) even in the absence of nematic order of elongated
cell shape (i.e., Tr[Q2] = 0). In this work, we ignore the dynam-
ics of Qi j and explore the possibility that structural nematic order
of elongated cell shapes and polar alignment of cell polarization
be effectively independent. The long time dynamics of the tis-
sue is then described by coupled continuum equations for cell
anisotropy and polarization, given by

∂tm+ν1p ·∇m =−
[
α(s0)+β (s0)m2

]
m+σ∇ ·p+D∇

2m , (21)

∂tp+λ1 (p ·∇)p =−
[
αp(m)+βp p2

]
p−ν∇m

+λ2∇p2−λ3 (∇ ·p)p+Dp∇
2p .

(22)

As with all phenomenological hydrodynamic models, Eqs. (21)
and (22) contain quite a few parameters, which can in general
be functions of m and p2. For simplicity here we take them as
constant unless otherwise noted. The cell anisotropy field m is
convected by polarization at rate ν1 and diffuses with diffusiv-
ity D. The polarization equation has a form closely analogue to
the Toner-Tu equations, with the shape anisotropy m replacing the
density, but with the important difference that m is not conserved.
The convective parameters λ1,λ2 and λ3 arise from the breaking
of Galilean invariance due to the presence of the substrate. For
simplicity we neglect the anisotropy of the stiffnesses for bend
and splay deformations and assume a single isotropic diffusivity,
Dp. The coefficients β (described in Section II) and βp are both
assumed to be positive so the model admits stable anisotropic and
flocking states. Both α (introduced in the previous section) and
αp(m) = α0

p−am (with α0
p,a > 0) change sign as a function of s0,

resulting in mean-field transitions and instabilities tuned by the
target cell shape s0. The choice a > 0 describes the possibility that
anisotropic cell shapes promote flocking in the fluid, which is a
new ingredient of our model. Motivation for such a term comes
from the expectation that cell elongation and the associated tissue
fluidity may enhance cell motility, promoting alignment. Since a
controls the onset of flocking and its value is not experimentally
constrained, we explore the stability of the hydrodynamic model
as a function of this parameter. Note that an alternate mecha-
nism for flocking, akin to ones explored in particle-based active
matter models, was recently considered in Ref. 52 via a coupling
that tends to align the cell polarization with the mean forces due
to the cell’s neighbors. This alignment mechanism allows for the
formation of a flocking solid state that cannot occur in the model
presented here, where a finite value of m (hence fluidity) is re-
quired for the onset of a polarized state. In fact the alignment
with the local force implemented in Ref. 52 even enhances tissue
rigidity by suppressing fluctuations transverse to the direction of

mean motion. Incorporating such an alignment interaction into
our model may require coupling to internal cellular degrees of
freedom distinct from shape anisotropy and perhaps also higher
order terms. This is left for future work.

There are two key parameters that couple p and m. The term
proportional to σ describes the fact that spatial gradients of po-
larization can drive changes in local cell shape. A positive value
of σ corresponds to a situation where m increases towards regions
of positive polarization splay. The sign of this parameter could be
determined by correlating TFM measurements of local traction
forces with cell shape fluctuations from segmentation images of
static tissues. Here we set σ = +1. The term proportional to ν

represents a stiffness gradient driven by cellular shape. Tambe
et. al.24 have shown that collective cell migration is directed by
gradients in local stress. Since stress transmission is controlled by
the mechanical properties of the material, it is then natural to ex-
pect that cells may sense gradients in tissue stiffness and this may
direct their migration. Wound healing assays in expanding tissues
have reported the tendency of MDCK and RPME cells to migrate
along directions of minimal shear stresses24. This may suggest a
tendency to move from the solid to the liquid, corresponding to
ν < 0, although other behavior may occur in different cell types.
Below we explore our hydrodynamic model for both ν = +1 and
ν =−1.

An important difference between the Toner-Tu equations and
our model is that cell-shape anisotropy m is not a conserved field,
but an order parameter associated with a liquid solid transition.
Our model couples for the first time collective cell motility with
a tissue rigidity transition, allowing us to examine the feedback
between motility and shape in a crowded environment.

3.3 Homogeneous Steady States
Our hydrodynamic equations for motile tissues exhibit three ho-
mogeneous steady state solutions:

(i) a solid with mss = pss = 0 for α > 0 and α0
p > 0, correspond-

ing to a non-motile rigid tissue with isotropic cellular shapes;
(ii) a non-motile fluid with mss =

√
−α/β and pss = 0 for α < 0

and αp(mss)> 0, or equivalently −β (α0
p/a)2 < α < 0, correspond-

ing to a liquid-like tissue with elongated cellular shapes and zero
mean motion;
and

(iii) a flocking fluid with mss =
√
−α

β
and pss =√

(amss−α0
p)/βp for α < 0 and αp(mss) < 0, or equivalently

α < −β (α0
p/a)2, corresponding to a liquid-like tissue with

elongated cellular shapes and finite mean polarization.
The regions of parameter space where each solution exists are

summarized in Table (1) and in Fig. (5). We find two critical
values of α(s0) in the mean-field phase diagram, corresponding
to αc1 = 0 and αc2 = −β (α0

p/a)2. These give two critical lines in
the (s0,a) phase diagram shown in Fig.(5), where s0 is the tar-
get shape parameter and a controls elongation-driven collective
motility.

Our model yields a density-independent flocking transition in
confluent tissues tuned by cortical tension and cell-cell adhesion,
which are captured by the parameter s0. The existence of a “flock-
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Table 1 Homogeneous steady states

Phase Fields Homogeneous Stability Condition
Solid mss = |pss|= 0 α > 0 , α0

p > 0
Fluid m2

ss =− α

β
, |pss|= 0 α < 0 , αp(mss)> 0

Flocking Fluid m2
ss =− α

β
, βp p2

ss =−αp(mss) α < 0, αp(mss)< 0

ing solid" state has been prevented by the choice α0
p > 0.

Our hydrodynamic equations are formally similar to those stud-
ied by Yang et al.53 to describe populations of self-propelled enti-
ties in the absence of number conservation, with a nonconserved
density taking the place of the shape parameter m. This work,
in fact, reports static and dynamical patterns qualitatively similar
to the ones obtained here. One difference, however, is that the
density of self-propelled entities discussed by Yang et. al.53 even
if not conserved always fluctuates around a finite value, so that
small fluctuations can have either sign. Here, the shape parame-
ter m is defined positive and fluctuations in the solid state where
mss = 0 can only be positive, describing the occurrence of liquid-
like regions in a solid matrix.This impacts the linear stability of
these states, as discussed in the next section.

3.4 Simplified 1d Model

The hydrodynamic equations (21) and (22) contain many param-
eters and the linear stability analysis described in the next section
is not transparent. It is therefore instructive to first consider an
approximate form of the model that provides useful insight. Re-
taining only the lowest order couplings between shape parameter
and polarization in Eqs. (21) and (22) and specializing to a one-
dimensional system, the dynamics of small deviations from the
homogeneous values is governed by

∂tδm =−α̃δm+σ∂xδ px , (23)

∂tδ px =−α̃pδ px−ν∂xδm (24)

where α̃, α̃p > 0 are effective relaxation rates. At steady state
these equations are readily combined into a single equation de-
scribing, for instance, spatial variations of the shape parameter

∂
2
x δm =

α̃α̃p

σν
δm , (25)

revealing a characteristic length scale `c =
√

(|σν |)/(α̃α̃p). For
σν < 0, there are no spatially varying solutions that satisfy uni-
form boundary conditions, suggesting that the homogeneous
states are stable, as indeed found below from the analysis of the
full equations. For σν > 0, the system admits wave-like solu-
tions of wavelength 2π`c, which may be excited in the presence
of noise. In this case we expect the emergence of spatial patterns,
as found below. This simple model also reveals information about
the nature of the patterns, specifically that spatial variations of m
and px are shifted by a quarter of a wavelength. Assuming σ > 0,
for ν > 0, we expect large migratory forces directed from fluid re-
gions toward solid regions of tissue, while these forces will point
in the opposite direction for ν < 0. This qualitative picture is
confirmed by the simulations of the full model described in Sec-

tion 3.6.

3.5 Linear Stability Analysis

Here we examine the linear stability of each of the three homo-
geneous states against spontaneous fluctuations. After linearizing
the hydrodynamic equations (21) and (22) in the fluctuations of
the fields around their steady state values, δm(x, t) = m(x, t)−mss

and δp(x, t) = p(x, t)−pss, we expand the fluctuations in Fourier
components, [

δm(x, t)
δp(x, t)

]
=
∫

dk e−ik·x
[

mk(t)
pk(t)

]
. (26)

The linear dynamics of the Fourier components of the fluctuations
can then be written in the compact form

∂tφk(t) = Mss(k) ·φk(t) , (27)

where φk = (mk,pk) and Mss(k) is a matrix given in Eqs. (48) and
(58) of Appendix B.

The decay or growth of the fluctuations is governed by the
eigenvalues zµ (k) of Mss(k), where µ labels the eigenvalue (see
Appendix B for details). An instability occurs when Re[zµ (k)]> 0
for any (µ,k). A nonzero imaginary part of the eigenvalue corre-
sponds to propagating modes.

As we will see below, pattern formation in our model depends
crucially on the sign of the product σν that defines the morpho-
taxis parameter of the tissue (or, since we have chosen σ = +1,
the sign of ν) and is best discussed by examining each steady state
one at a time. This product combines the response of polarization
to gradients in shape with the response of shape to sinks/sources
of polarization.

3.5.0.1 Solid State. The solid state with mss = pss = 0 exists
for α > 0. The steady state has no spontaneously broken sym-
metry and fluctuations are isotropic in the sense that their decay
rates only depend on the magnitude of k, not on its direction.
In this case it is convenient to split pk in components longitudi-
nal and transverse to k as pk =

(
pL

k, pT
k
)
, where pL

k = k̂ · pk and
pT

k = pk− k̂pL
k, with k̂ = k/|k|. Fluctuations in the transverse part

of the polarization that corresponds to bend deformations are de-
coupled and always decay. The coupled dynamics of fluctuations
in shape anisotropy and pL

k that describes splay deformation is
controlled by two eigenvalues, given by

z(solid)
± =− 1

2

[
α +α

0
p +(D+Dp)k2

]
± 1

2

√[
α−α0

p +(D−Dp)k2
]2
+4k2νσ .

(28)
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Fig. 5 Phase diagrams and simulation results in the s0−a plane. As in the legend, blue circles represent simulations in which the fields relax to their
homogeneous steady state solution. Orange squares represent simulations in which patterns are found to emerge. Here we compare the cases ν =−1
(Top-Left) and ν = 1 (Top-Right) to show the qualitative change induced by this plithotactic parameter. Bottom: Snapshots of different types of emergent
patterns from tissue simulations. Colorbars represent the magnitude of local anisotropy (m) while red arrows represent local cell polarization (p). (A):
Sparse aster-like islands of anisotropic cells emerge near the onset of instability in the solid phase. (B): shows an example of “solid” islands arising in
the flocking fluid phase due to a splay instability and preventing collective motion. (C) shows the elongated structures resultant from banding instability
for ν = 1 while (D) shows the qualitatively different band structures for ν =−1.

The modes are always stable for σν < 0. When σν > 0 the
mode z(solid)

+ can become positive and yield an instability when

σν >
[√

αpD+
√

αDp
]2. This condition is, however, obtained by

relinquishing the constraint that m > 0 and allowing it to fluctu-
ate freely around mss = 0. Imposing the constraint of positive m
renormalizes the stability boundary. Lacking an analytic tool, the
analysis must, however, be carried out numerically.

The wavelength of the fastest growing mode defines a charac-
teristic length scale given by

`solid = 2π

√
2DDp

σν−α0
pD−αDp

. (29)

At the onset of instability this becomes `solid = 2π(DDp/αα0
p)

1/4

and can be interpreted as the geometric mean of two length
scales, `solid = 2π

√
`m`p, where `m =

√
D/α represents the

distance over which diffusion balances the relaxation of the
anisotropy field, while `p =

√
Dp/α0

p describes spatial variation

in the polarization field.

3.5.0.2 Fluid state. The non-polarized fluid state is obtained
for α < 0 and αp = αp(mss)> 0 and has finite mss =

√
−α/β and

pss = 0. The behavior is formally the same as obtained for the
solid state, but with the relaxation rate of the anisotropy param-
eter m replaced by −2α > 0 and that of polarization decreased
from α0

p to αp = α0
p−amss = α0

p−a
√
−α/β > 0. The steady state

is again isotropic and fluctuations in the transverse polarization
~pT

k are decoupled and always decaying. The coupled dynamics of
fluctuations in shape and splay polarization is controlled by the
eigenvalues

z( f luid)
± =− 1

2

[
2|α|+αp +(D+Dp)k2

]
± 1

2

√[
2|α|−αp +(D−Dp)k2

]2
+4k2νσ .

(30)

Again the steady state is stable when σν < 0 and unstable for
σν >

[√
αpD+

√
2|α|Dp

]2. The wavelength of the fastest grow-
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ing mode is

` f luid = 2π

√
2DDp

σν−αpD−2|α|Dp
(31)

that reduces to ` f luid = 2π(DDp/2|α|αp)
1/4 at the onset of the

instability. Note, however, that αp vanishes at |αc2| = (α0
p/a)2β

where the system undergoes a mean-field transition to a flocking
liquid state and ` f luid diverges.

3.5.0.3 Flocking fluid. In the flocking fluid state, obtained for
α < αc2, the system acquires a finite mean polarization, breaking
rotational symmetry, and all modes are coupled. We then choose
the x axis along the direction of broken symmetry, i.e., pss = pssx̂.
For simplicity we only examine here the behavior of the fluctua-
tions for wavevectors parallel and perpendicular to the direction
of broken symmetry. For wavevector k along the direction of bro-
ken symmetry, k = kx̂, bending fluctuations in the orientation of
polarization, δ py

k, decouple and are always stable. Fluctuations
in shape anisotropy and the magnitude of polarization, δ px

k, are
coupled and the stability is controlled by the eigenvalues

2z(band)
± = 2(α +αp(mss))+ ipss(ν1 +λT )k− (D+Dp)k2

±

[[
2(α−αp(mss))+ ipss(ν1−λT )k− (D−Dp)k2

]2

+4σ(νk2− ikapss)

]1/2

(32)

where λT = λ1 + λ3− 2λ2. In this case the sign of the real part
of the modes was examined numerically. We find an instability
close to the mean-field transition line in a range of wavevectors
along the direction of broken symmetry, analogous to the band-
ing instability of Toner-Tu models32,54. Near the mean field tran-
sition, the banding instability occurs in a narrow region of s0 for
σν > 2|α|Dp > 0 and is absent when σν < 0. A numerical solu-
tion of the nonlinear equations reveals, however, a narrow region
of banding instability even for σν < 0. The sign of the morpho-
taxis parameter σν additionally affects the morphology of these
banded states (see Fig. (5C,5D).

Next we examine the stability of the ordered state deep in the
flocking regime. In this case fluctuations in the magnitude of po-
larization, δ px

k, decay on microscopic time scales and can be elim-
inated by neglecting ∂tδ px

k in Eq. (27). We then obtain coupled
equations for fluctuations in cell shape and direction of orienta-
tional order. The latter are long-lived at long wavelength because
they represent the Goldstone mode associated with the sponta-
neously broken orientational symmetry. The full decay rates are
shown in Appendix B.4. We examine the stability by carrying
out a small wavevector expansion of the hydrodynamic modes.
For k= kx̂, corresponding to bend deformation, the homogeneous
state is always stable. For k = kŷ, coupled splay and shape fluctu-
ations become unstable for

σν >
σλ2a

βp
+2|α|

(
Dp−

λ2λ3

βp

)
. (33)

Unlike the corresponding instability obtained in the Toner-Tu
model32, this instability persists even when the advective non-
linearities proportional to λ2 and λ3 are neglected.

3.6 Numerical simulations

We have solved numerically the full nonlinear hydrodynamic
equations (Eqs. (21,22)) on a periodic grid using a standard RK4
explicit iterative method. We choose a timestep ∆t = 0.005 and
grid spacing ∆x = 0.1 to satisfy the Von Neumann stability condi-
tion. Simulations are initialized in the appropriate homogeneous
state (Table.(1)) with superimposed spatially white noise of vari-
ance small compared to all equation parameters. To quantify the
onset of spatial patterns, we examine the Fourier spectrum of the
configurations obtained at long times. If the integral of the dis-
crete Fourier transform of the deviations of the m-field from its
mean value is greater than some small cutoff number, then the
corresponding state is identified as patterned in Fig.(5). Because
the perturbations are small, we expect these numerics to agree
with and reinforce our analytic phase diagram.

As shown in Fig. (5) the numerical results agree well with those
of the linear stability analysis. For ν < 0 (Fig. (5) top left) the
homogeneous states are stable in most of parameter space, with
patterns emerging only in a narrow banding region. In contrast,
for ν > 0 (Fig. (5) bottom left) we obtain a variety of emergent
patterns, as expected from the linear stability analysis. As an-
ticipated in Sec. 3.5, the stability boundary of the ν = 1 homo-
geneous solid is shifted as compared to the analytic prediction
(i.e. there are blue circles denoting numerical observations of ho-
mogeneous states in the region linear stability analysis suggests
should be unstable). This is due to the m > 0 restriction used
in the numerics but not in the linear analysis, which prevents
some instabilities from arising. Reassuringly, we find that relaxing
this constraint in simulations resolves the discrepancy and yields
agreement with the analytics.

The simulations also reveal the structure of the spatial pat-
terns that replace the uniform states. Examples are shown in
Fig. (5). For ν = 1, in the solid phase we find droplets of fluid
asters surrounded by solid tissue with a positively splayed polar-
ization field (frame A). As s0 increases, the asters become more
closely spaced, and elongated inclusions begin to appear. Past
the transition from the solid into the liquid, these patterns in-
vert and we find clusters of solid tissue surrounded by fluid, with
the polarization now pointing inward, corresponding to negative
splay (frame B). In the banding region we observe elongated re-
gions of fluid tissue, with outward pointing polarization (frame
C). Because of the symmetry of the polarization in these bands,
the structures do not migrate and their dynamics is reminiscent
of coalescence. The banding patterns obtained for ν = −1 are
qualitatively different, as shown in Fig. (5D). In this case we ob-
tain alternating solid/fluid traveling bands with the polarization
aligned transverse to bands. The direction of motion of the band
is opposite to that direction of the net polarization, which is rem-
iniscent of a“traffic wave” phenomenon. For video examples of
characteristic pattern formation in our model please refer to the
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SM†.

4 Conclusions
We have developed a hydrodynamic theory of confluent tissue
close to the recently proposed rigidity transition tuned by cell
shape35–37. The hydrodynamic equations are formulated in terms
of a scalar field that quantifies single-cell anisotropy and a cell
polarization field. Cell anisotropy can drive alignment of local
polarization, resulting in a flocking liquid state. The interplay of
cell shape and polarization additionally drives the organization of
a variety of aster and banding patterns consisting of solid tissue
inclusions in a liquid matrix or liquid inclusions in the solid, with
associated polarization patterns. Pattern selection is controlled by
a single parameter νσ , referred to as the morphotaxis parameter,
that quantifies the tendency of cells to move towards more rigid
or less rigid regions of the tissue.

Since cell anisotropy is effectively a measure of the rheologi-
cal properties of the tissue, with isotropic cell shapes identifying
the solid or jammed state and anisotropic shapes corresponding
to a liquid, variations in cell shape anisotropy are directly asso-
ciated with variation in the rheological properties of the tissue.
Our work therefore quantifies for the first time the role of gra-
dients in tissue stiffness in driving morphological patterns. This
is achieved through a morphotaxis parameter that couples polar-
ization to gradients of cell shape anisotropy. Tambe et al.24 used
the name “plithotaxis” to describe the observed tendency of cells
to move in the direction that minimizes local shear stresses. The
parameter ν in our equations could be related to such a plithotac-
tic effect as it embodies the transmission of positional sensing in
collective cell migrations via gradient in local tissue rigidity aris-
ing from variations in cell shape (see the term ν∇m in Eq. (22)).
Patterning in our model is controlled, however, by the combined
action of this term and the changes in local cell shapes induced
by polarization sinks and sources (the term σ∇ · p in Eq. (21)).
These two effects together define the “morphotaxis” properties of
the tissue. Our work therefore provides a complementary, purely
mechanical view to how patterns of growth and differentiation
may be specified in development and tissue regeneration. Our
results could be tested in experiments by combining segmented
cell images with traction force microscopy and particle image ve-
locimetry. In solid regions, where cell migration is strongly sup-
pressed, traction forces provide a direct measure of local cell po-
larization. Correlating traction measurements with cell shapes
could therefore provide information on the sign of the morpho-
taxis parameter.

Once elongated, cells can also align their orientations and ex-
hibit nematic order on tissue scales, an effect not included in our
work. Nematic order has been observed for instance in mouse
fibroblasts and can be enhanced by confinement55. Recent work
has also established an intriguing connection between topological
defects in nematic tissue and cell extrusion and death56,57. Work

† Electronic Supplementary Information (ESI) available: [details of any
supplementary information available should be included here]. See DOI:
10.1039/cXsm00000x/

concurrent to ours by Ishihara et. al.9 has examined the inter-
play of nematic alignment of elongated cells with tissue mechan-
ical properties and active contraction-elongation. This is accom-
plished with a continuum model that, although similar in spirit
to ours, does not highlight the important distinction between cell
anisotropy and nematic order that allows for the onset of polar-
ized states even in the absence of nematic alignment of cell shape,
as seen in simulations of self-propelled Voronoi models. Further
work will be needed to examine the interplay between cell shape,
polarization and nematic order, as well as the role of cell growth,
in driving tissue patterning.

Another open question is the role of number density fluctua-
tions, that can be very large in highly motile, fluid tissue, as re-
cently observed in experiments17,48–50. Extending our work to
include variations in number density will require understanding
the density dependence of the tuning parameters of the model,
such as the cells target perimeter and area, P0 and A0. This is a
challenging problem and is left for future investigation.

Finally, it will be interesting to explore in more details the in-
terplay between different flocking mechanisms. In particular, re-
cent work by some of us has implemented an explicit alignment
interaction of the cell polarization with the local force due to the
neighbors and found that this alignment mechanism promotes so-
lidification and allows for a solid flocking state not present in the
model considered here52. In contrast, in the present model polar
order is driven directly by cell shape anisotropy, hence requires
tissue fluidity, which in turn enhances coordinated cell migration.
These two mechanisms may generally be both at play in living
tissue, but further work is needed to understand how they may
compete to control the tissue rheology.

The patterns obtained here are not uncommon in developmen-
tal biology. The polarization sinks found in our model imply a lo-
cal tissue compression that may lead to buckling such as that seen
in the apical constriction and invagination of the Drosophila em-
bryo58. Similar developmental patterns are zebrafish stripes59,
hair follicles60, evenly spaced feathers in the chicken embryo61,
and branching during lung development62. These are more com-
monly understood as biochemical in origin and modeled through
reaction-diffusion equations and Turing-type models63,64. Our
work suggests an alternative or complementary purely mechani-
cal mechanism for tissue sorting and pattern formation that may
be at play in many of these examples.
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Fig. 6 The mean value m̄ of the order-parameter obtained by minimizing
the single-cell free energy derived using different geometric perturbations
of the energy of a regular pentagon.

6 Appendices

A Anisotropic Perturbation of the Shape
Tensor

We describe here two ways in which the shape energy of an ir-
regular polygon may be obtained as a perturbation of that of a
regular one. In this section we work at the single-cell level and
for convenience suppress the cell label a. Using the definition
given in Eq. (2), the shape tensor Greg of a regular polygon is
diagonal and has a single eigenvalue λ , i.e., it takes the form

Greg = λ

[
1 0
0 1

]
=

TrGreg

2

[
1 0
0 1

]
. (34)

We are interested in the form that the tensor takes when per-
turbed away from this initial reference state. As we will only
be concerned with quantities constructed from the eigenvalues of
this tensor, we may choose to consider the perturbed tensor in
a reference frame in which it is diagonal. The perturbed shape
tensor can then be written as

Gdiag =
TrGreg +∆

2

([
1 0
0 1

]
+m

[
1 0
0 −1

])
, (35)

where ∆ is the change in the tensor trace due to the perturbation.
Our choice of the function ∆ will constrain our perturbation to a
subset of possible trajectories. Our goal is to show that the choice
of this function (within reasonable bounds) is not consequential,
and therefore that we may consider the energy in terms of the
anisotropy m alone. Employing the Area and Perimeter relations
(Eqs.(5,6)), the dimensionless vertex model energy for a single
cell can be rewritten in terms of ∆ and m as

ε =
[n

2
sin(2π/n)(1−m2)

(
T̃r[Greg]+ ∆̃(m)

)2−1
]2

+ κ̄
[
2nsin(π/n)

(
T̃r[Greg]+ ∆̃(m)

)
− s0

]2
,

(36)

where T̃r[Greg] = Tr[Greg]/
√

A0 and ∆̃(m) = ∆(m)/
√

A0 are dimen-
sionless quantities.

We first explore the choice ∆̃(m) = 0 that corresponds to a per-
turbation with constant trace, hence constant perimeter. In this

case the cell energy becomes

ε =
1
2

α
(tr)(T̃rGreg)m2 +

1
4

β
(tr)(T̃rGreg)m4 , (37)

with

α
(tr)(T̃rGreg) =2nsin(2π/n)(T̃rGreg)2

−n2 sin2(2π/n)(T̃rGreg)4 ,

(38)

β
(tr)(T̃rGreg) = n2 sin2(2π/n)(T̃rGreg)4 , (39)

where we have shifted the energy by an overall constant, inde-
pendent of m. Eqs. (9) & (10) may now be recovered from the
above by setting T̃rGreg = s0(2nsinπ/n)−1, or equivalently P = P0.

An alternative approach consists of perturbing Greg while keep-
ing its determinant constant, implying constant area. The ∆̃(m)

that preserves this condition is given by

∆̃(m) = T̃r[Greg]

(
1√

1−m2
−1
)

. (40)

Using this, the single-cell energy may be written in terms of m and
the fixed (dimensionless) area Ã. This energy has the same form
as given in Eq. (37), but with coefficients now given by

α
(det)(s0) = κ̃Ã

[
8n tan

π

n
−4

s0√
Ã

√
n tan

π

n

]
, (41)

and

β
(det)(s0) = κ̃Ã

[
16n tan

π

n
−6

s0√
Ã

√
n tan

π

n

]
. (42)

Because this energy corresponds to a free cell, the fixed area is
expected to realize the target area which implies Ã = 1.

The value m̄ of m that minimizes the single-cell energy (37) for
α < 0 is m̄ =

√
−α/β , where α and β are given by Eqs (9,10)

or by Eqs. (41,42) for each of the two perturbations used. The
dependence of m̄ on s0 for pentagonal cells (n = 5) obtained using
the two perturbations shown in Fig. (6) demonstrates that the
behavior does not depend on the perturbation near the transition,
which is the region of interest in our work. In the main text we
use the results obtained with the perturbation that keeps the trace
constant.

B Linear Stability Analysis
The stability analysis follows a well-known procedure. We con-
sider the equations

∂tm+ν1p ·∇m+ν2m∇ ·p =−
[
α(s0)+β (s0)m2

]
m

+σ∇ ·p+D∇
2m ,

(43)

and
∂tp+λ1 (p ·∇)p =−

[
αp−am+βp p2

]
p

−ν∇m+λ2∇p2−λ3 (∇ ·p)p+Dp∇
2p ,

(44)

where we have included the ν2 term for generality. To recover
the results of the main text, one needs only to set ν2 = 0 in the
following equations. Equations (43,44) have the uniform, steady
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state solutions (mss,pss) enumerated in Table.(1). There are two
types of solutions: stationary or non-polarized ones with |pss|= 0
(a fluid and a solid) and moving or polarized ones with |pss| 6= 0
(flocking fluid). To evaluate the stability of these steady states,
we perturb the steady state solutions (m→ mss + δm,p→ pss +

δp) and examine the linear dynamics of the fluctuations (43,44).
By introducing Fourier transforms, the linear equations for the
fluctuations can be written as

∂t


mk(t)

px
k(t)

py
k(t)

= M(k)


mk(t)

px
k(t)

py
k(t)

 , (45)

where 
mk(t)

px
k(t)

py
k(t)

=
∫ dx

(2π)2 eik·x


δm(x, t)

δ px(x, t)

δ py(x, t)

 (46)

are the Fourier amplitudes and the explicit expression of the ma-
trix M(k) depends on the homogenenous state considered. We
seek solutions of the form

(mk(t), px
k(t), py

k(t)) = exp(zt)(mk, px
k, py

k) . (47)

The eigenvalues of M(k) then represent the growth rates of the
perturbations.

A homogeneous state is then linearly stable iff the real part of
each eigenvalue of M(k) is negative for all k. With this condition
satisfied, all small perturbations decay in time and the system
returns to the steady state. The lack of symmetry breaking in the
non-polarized regimes allows M(k) and the stability analysis to
be simplified greatly. We consider these solutions first.

B.1 Stability of stationary (non-polarized ) states

First, we analyze the region in which mss = |pss|= 0. Here, M(k) is
simplified by considering pk = pL

kk̂+ pT
k k̂⊥ as shown in Eq. (48).

This form, for later convenience, applies to both the fluid and
solid.

Miso(k) = −α−3βm2
ss−Dk2 −iσ(mss)k 0

iνk −αp(mss)−Dpk2 0
0 0 −αp(mss)−Dpk2

 ,
(48)

where αp(mss) ≡ α0
p − amss and σ(mss) ≡ σ − ν2mss. We see that

fluctuations pT
k in the transverse polarization, describing bend de-

formations, are decoupled and always stable, and decay at the
rate z⊥ = −αp(mss)−Dpk2. The other two eigenvalues control
coupled fluctuations in shape and longitudinal polarization pL

k,
corresponding to splay deformations and are given by the solu-
tions of a quadratic equation,

2z±(k) =−[α(mss)+αp(mss)]− (D+Dp)k2

±
√[

α(mss)−αp(mss)+(D−Dp)k2
]2
+4k2νσ(mss) ,

(49)

Fig. 7 Dispersion relation of the eigenvalue zsolid
+ (k) in the stationary

solid phase as a function of k. Lines correspond to points in the ν = 1
phase diagram from Fig.5. The blue curve then corresponds to a stable
homogeneous state, while yellow and green represent unstable states.

where α(mss) = α + 3βm2
ss. The stability is always controlled by

the mode z+(k).

B.2 Stability of Stationary Solid

In the solid mss = 0, hence αp(mss) = α0
p and σ(mss) = σ . Insta-

bilities in the homogeneous stationary solid will arise (z+(k)> 0)
when

σν >
(√

α0
pD+

√
αDp

)2
(50)

in a band of wavectors k− < k < k+. The wavevectors k± are
solutions of a quadratic equation

αα
0
p +
[
αDp +α

0
pD−σν

]
k2 +DDpk4 = 0 (51)

and are given by

k2
± =−

[
α

2D
+

α0
p

2Dp
− σν

2DDp

]

±

√√√√[ α

2D
+

α0
p

2Dp
− σν

2DDp

]2

−
αα0

p

DDp
.

(52)

These solutions are real provided Eq. (50) is satisfied. The dis-
persion relation of the mode z+(k) in the stationary solid phase is
shown in Fig. (7) for a few parameter values. Note that an insta-
bility can only occur provided σν > 0. Near the onset of instability
the wavelength of the fastest growing mode is given by

`solid =

(
DDp

αα0
p

)1/4

, (53)

which is the geometric average of the length scale lm(mss) =√
D/α(mss) governing variation in m and the length scale

lp(mss) =
√

Dp/αp(mss) controlling spatial variation of the po-
larization p. The lengths lm and lp represent the characteristic
distances over which diffusion balances the decay rate. In the
solid phase, we find emergent patterns as s0 is increased. Fur-
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ther increase of s0 increases the characteristic scales of such pat-
terns. Because α(s0) is roughly linear in s0 in the range of inter-
est, we may deduce the critical scaling as l ∼ (s0− s∗0)

0.25, where
s∗0 = 3.812.

B.3 Stability of Stationary Fluid
In the fluid, we have m2

ss = −α/β , αp(mss) = α0
p − amss and

σ(mss) = σ −ν2mss. When

νσ(mss)>

(√
αp(mss)D+

√
2|α|Dp

)2
(54)

the mode z+ is unstable for a band of wavevectors k− < k < k+.
The wavevectors k± are again solutions of a quadratic equation

ααp(mss)+
[
αDp +αp(mss)D−σ(mss)ν

]
k2 +DDpk4 = 0 (55)

and are given by

k2
± =−

[
αp(mss)

2Dp
− α

D
− νσ(mss)

2DDp

]

±

√[
αp(mss)

2Dp
− α

D
− νσ(mss)

2DDp

]2
+2

ααp(mss)

DDp
.

(56)

From this equation we are able to isolate the stability condition as
well as the characteristic wavevector of the fastest growing mode
near the stability-instability boundary. This gives us a lengthscale

` f luid =
√
−DDp/2α(α0

p−amss) (57)

expected to govern emerging patterns. Again this may be thought
of as the geometric average of the length scales `m(mss) and
`p(mss) controlling spatial variation in the decoupled fields.

B.4 Stability of Flocking Fluid
In this case there is special direction in the system, which is the
direction of the broken-symmetry pss 6= 0, and all modes are cou-
pled. The stability matrix is given by

Mpol(k) =

2α + iν1 psskx −iσ(mss)kx −iσ(mss)ky

−Dk2

iνkx +apss 2αp(mss) iλ3 pssky

+iλT psskx−Dpk2

iνky −2iλ2 pssky iλ1 psskx−Dpk2


,

(58)

where we have chosen a coordinates system with the x axis along
the direction of broken symmetry, so that pss = pssx̂. We have de-
fined λT = λ1−2λ2+λ3. To avoid solving a cubic equation for the
decay rates, we only estimate stability along special directions.

B.4.1 Banding Instability

We first examine the behavior of the modes for k along the direc-
tion of broken symmetry, k= kx̂. Fluctuations in py

k then decouple
and are always stable. The quadratic equation for the remaining

two modes is easily solved, with the result

2z(band)
± =2(α +αp(mss))+ ipss(ν1 +λT )k− (D+Dp)k2

±

[[
2(α−αp(mss))+ ipss(ν1−λTOT )k− (D−Dp)k2

]2

+4σ(mss)(νk2− ikapss)

]1/2

.

(59)
Close to the mean-field transition between stationary and flock-
ing liquid (αp(mss) = 0) a small wavevector expansion yields an
instability for

νσ(mss)> 2|α|Dp > 0 . (60)

The instability boundaries shown in our phase diagram are ob-
tained, however, through a more general analysis carried out with
Mathematica. The wavelength of the fastest growing mode can
also be calculated. In the limit αp(mss)→ 0 it is given by

`band ∼
π

|α|

√
2σ(mss)ν |α|(Dp−D)−σ(mss)2ν2

|α|Dp− 1
2 σ(mss)ν

. (61)

This instability is analogous to the banding instability of Toner-
Tu models, as it describes the onset of bands of alternating or-
dered and disordered regions preferentially aligned in the direc-
tion transverse to that of broken symmetry.

B.4.2 Instability of Splay Fluctuations

We now analyze the stability deep in the ordered polar state. In
this region, fluctuations in pss always decay on short time scales.
For this reason we neglect ∂t px and eliminate px in favor of py and
m, obtaining again a quadratic equation for the dispersion relation
of the modes that can be solved analytically. For simplicity we
only examine the modes for ~k = kxx̂ and ~k = kyŷ. These decay
rates of the hydrodynamic mode are then given by

z( f lock)
+ (kx) = iAxkx−Dpk2

x +O(k3
x) (62)

and
z( f lock)
+ (ky) = iAyky−De f f

y k2
y +O(k3

y) . (63)

The mode is always stable for~k = kxx̂. In contrast,

De f f
y = Dp−

λ2λ3

βp
− σ(mss)

2|α|

(
ν− aλ2

βp

)
(64)

changes sign, resulting in the coupled instability of shape
anisotropy and splay fluctuations of the polarization for

σ(mss)ν >
σ(mss)λ2a

βp
+2|α|

(
Dp−

λ2λ3

βp

)
. (65)
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Our continuum model for a confluent tissue of motile cells provides a mechanical view 

for the formation of biological patterns. 
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