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s In silico Stress-Strain Measurements on Self-
assembled Protein Lattices

Rachel A. Baardaa, Tegan L. Marianchukb, Michael D. Toneyc, and Daniel L. Coxa

Due to their large mechanical strength and potential for functionalization, beta solenoid proteins
show promise as building blocks in biomaterials applications such as two- and three- dimensional
scaffolds. We have designed simulation models of two-dimensional square and honeycomb pro-
tein lattices by covalently linking a beta solenoid protein, the spruce budworm antifreeze protein
(SBAFP), to symmetric protein multimers. Periodic boundary conditions applied to the simulation
cell allow for the simulation of an infinite lattice. We use molecular dynamics to strain the lattice
by deforming the simulation cell and measuring the resulting stress tensor. We evaluate the linear
portion of stress-strain curves to extract the corresponding bulk and shear elastic moduli. When
strained at a rate of 0.3 nm/ps, the lattices yield a bulk modulus of approximately 3 GPa. This
large elastic modulus demonstrates that 2-dimensional structures designed from beta solenoid
proteins can be expected to retain the exceptional material strength of their building blocks.

1 Introduction
The development of materials and devices whose structures are
precisely controlled down to nanoscale dimensions is a key re-
search area in nanotechnology. In particular, many research
groups are currently working to develop so-called decorated scaf-
folds (molecular lattices bonded to functional structures) with a
variety of applications in mind. These applications include sac-
rificial templates, on which metals are deposited and then the
underlying template removed via degradation or dissolution1; bi-
ological sensors and probes2; and passive molecular sieves (see
Figure 1). Although scaffold-like nanomaterials can be made syn-
thetically through processes such as electrospinning, many groups
choose to utilize existing biological nano-structure and self-
assembly processes by constructing lattices from biomolecules,
especially DNA and proteins. Self-assembled DNA arrays have
been engineered to grow two-dimensional protein and nanopar-
ticle lattices3,4, but these are not as environmentally robust or in-
dustrially scalable as protein based arrays5. Several groups have
made progress in designing 2-dimensional protein scaffolds6–10.

We focus here on lattices constructed primarily of proteins be-
longing to a family known as beta-solenoids. The beta-solenoid
protein structure consists of a solenoid-like coil of parallel beta
sheets (see Figure 2). Because of their fibrillar shape and the
dominance of these beta sheets in their structures, these proteins
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1(530)752-4717; Tel: 1(530)752-1500; E-mail: rabaarda@ucdavis.edu
b Department of Physics, Arizona State University, Tempe, Arizona, USA.
c Department of Chemistry, University of California, Davis, California, USA.

can be described as amyloid-like, and bear similitude in structure
and strength to amyloid proteins such as Curli11. This structure
is reinforced by hydrogen bonding between beta-sheets and hy-
drophobic packing in the interior. Previous molecular dynamics
studies have shown that members of this family exhibit similar
behavior under mechanical stress12, and are able to sustain ex-
ceptionally large axial load13. These protein structures also quite
robust to a variety of perturbations that often cause less stable
proteins to unfold, including high temperatures, extremes of ba-
sic or acidic pH, high concentrations of protein denaturants, and
additive modifications to the original sequence14. This last point
is particularly crucial to their implementation as the basis for dec-
orated scaffolds, since many protein-based scaffolds are prone to
losing their well-folded structure upon the addition of functional
structures1. In addition, the hydrogen bonding network allows
individual proteins to self-assemble end-to-end into long fibrils.
Self-assembly is necessary for realistic production of supramolec-
ular structures from individual molecules.

We anticipate that 2-D lattices constructed from beta-solenoid
proteins would be both tunable (in length and functionality) and
robust to environmental perturbations. Because the beta-solenoid
sequence-to-structure map is regular and well-understood, the
length of each protein and therefore the scaffold dimensions can
be easily and reliably modified. In addition, the stability of the
beta-solenoid structure enhances the decorability of the scaffold
through the ability to mutate in functional molecules. Finally,
when complemented with other particularly stable proteins as
the multimeric junctions, such as those found in thermophilic
archea15, we expect that beta-solenoid-based materials will ex-
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Fig. 1 Cartoon illustration of a potential application of a nano-scale dec-
orated lattice as a passive molecular sieve. A protein lattice (red) is deco-
rated with a functional molecule (orange) that selectively binds to a partic-
ular target (green spheres) leaving other molecules (pink triangles, blue
squares) free to diffuse through the lattice. As a practical example, the
orange molecules could be antibodies and the green spheres antigens,
creating a medical assay.

Fig. 2 Cartoon representation of the Spruce Budworm Antifreeze Protein
(SBAFP) 18, the beta-solenoid protein used throughout this study. Beta-
solenoid protein structure is characterized by parallel beta-sheets coiled
around a central axis. Left: side view, illustrating structural motif. Right:
front view, illustrating regular cross-section.

hibit exceptionally high material strength.
Where the present research differs from earlier design strategy

for two-dimensional protein arrays (c.f., Refs.7,9,10,16,17) is in the
following regards: (i) the use of modified beta-solenoid proteins
fused to archaeal extremophile multimers allows for the design
of arrays that can in principle be used in extreme environments.
Notably, modified beta-solenoid protein fibrils have been shown
to persist in a wide variety of solvent and temperature environ-
ments14. This could be of relevance to applications in nanoscale
filtration in, say, reverse osmosis. It is not clear whether this is
possible with other designs. (ii) Because it is easy to augment the
length of the modified beta-solenoid fibrils by adding additional
repeats, the present approach allows for the design of porous ar-
rays with readily tunable pore sizes, and the open faces of the
beta-solenoid proteins can be modified for binding organic or in-
organic ligands. (iii) To our knowledge, for no other designed lat-
tices have the two-dimensional elastic properties been simulated
and shown to be of a large magnitude.

As the field of engineered biomaterials continues to develop, it
is valuable to be able to predict mechanical properties of these
proposed novel materials. Although no model can perfectly re-

flect the real-world system, computer simulations are a useful
complement to wet bench work in developing these biomateri-
als. All-atom simulations such as those performed here allow for
more detailed knowledge of the system than is typically possible
in a wet bench experiment, since every atom is tracked for each
~femtosecond timestep of the simulation. The speed, ease of ac-
cess, and wealth of quantitative data provided by simulations can
be used to advise experimentalists with suggestions such as which
proteins to use, how to modify them for optimal performance,
and the approximate values to expect from quantitative measure-
ments. This paper describes a technique for measuring stress-
strain curves using molecular dynamics simulations with the goal
of characterizing the material properties that a nano-scaffold con-
structed from beta-solenoid proteins would be expected to ex-
hibit.

2 Methods

2.1 Construction of Protein Lattices

The beta-solenoid protein used in this work is the Spruce Bud-
worm Antifreeze Protein (SBAFP), which is available from the
Protein Data Bank under the code 1M8N18; see Figure 2. The
wild-type SBAFP contains a capping region of anti-parallel beta
sheets which prohibits fibrillization due to its disruption of the
otherwise continuous hydrogen bonding network between paral-
lel beta sheets. When this capping region is removed, it has been
shown that fibrillization can take place. Thus, all simulations used
the protein structure without this capping region.

We have designed a number of symmetric structures that can
form the basis of a protein lattice, including a simple fiber (1-D
lattice) and 2-D square and honeycomb lattices which are mea-
sured in this work. In the 2-D lattices, beta-solenoid proteins
comprise the lattice edges, which are linked together by symmet-
ric multimeric proteins that form the lattice vertices. The beta-
solenoid proteins and the symmetric multimers can be covalently
bonded together at the time of gene expression10.

The hydrogen bonding network at the face of each beta-
solenoid protein allows assembly between the N-terminus of one
protein and the C-terminus of another, and prohibits other config-
urations (N-to-N or C-to-C). This constraint necessitates a binary
alphabet of beta-solenoid building blocks in order to construct
a complete lattice: the N-termini of the beta-solenoid proteins
in one building block must be exposed with their C-termini cova-
lently bonded to the symmetric multimer, and the C-termini of the
other building block type must be exposed with their N-termini
covalently bonded to the symmetric multimer. This concept is il-
lustrated in Figure 3. For this reason, it is desirable to identify
multimers with both N-terminus and C-terminus close to the ex-
terior of the protein, facilitating covalent linkage (see Figure 4).
Complete lattice structures consisting of beta-solenoids bonded to
the symmetric multimers are shown in Figure 8.

The symmetric multimers (the "linker" proteins) were identi-
fied using the symmetry browser tool on the protein data bank.
A trimer with C3 symmetry from the foldon domain of a bacte-
riophage, pdb code 4NCV19, was used in the honeycomb lattice.
An archaeal proteasome activator tetramer from the extremophile
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Fig. 3 Binary alphabet of lattice building blocks, illustrated here for the
honeycomb lattice (top) and the square lattice (bottom). One block type
exposes the C terminal ends of its beta-solenoid proteins, while the other
exposes the N terminal ends, allowing for hydrogen bond formation be-
tween building blocks.

Fig. 4 Symmetric multimers used to join beta-solenoid proteins at lattice
vertices. A): tetramer used to form square lattice: archaeal proteasome
activator from Pyrococcus furiosus. B): trimer used to form honeycomb
lattice: foldon domain of Escheria coli virus T4. Left column: top view,
illustrating symmetry. Right column: front view, illustrating exposed ter-
minal ends.

Pyrococcus furiosus with C4 symmetry, pdb code 3VR015, was
used in the square lattice. These proteins are shown in Figure
4. As discussed above, these proteins were chosen both for their
symmetry and the ease of access to both terminal ends of each
protein monomer. Note that the tetramer used in the square lat-
tice belongs to a thermophile and is stable at 100◦ C.

2.2 Elastic Response to Deformation

As a gauge of the material strength of these protein lattices, stress-
strain simulations were performed under bulk and shear defor-
mation to determine the corresponding elastic moduli. This sec-
tion reviews the definition and properties of the stress, strain, and
elasticity tensors.

2.2.1 Strain

Strain describes the amount of displacement endured under a
given deformation with respect to the original configuration. For
example, a 1-D tensile deformation of a rod of length L that re-
sults in a displacement of ∆L corresponds to a strain of ∆L/L.
Since strain is unitless, it is often expressed in terms such as per-
cent and millimeters per meter.

A given deformation can be described using the deformation
map D, which describes the difference between the original con-
figuration S and the deformed configuration S′:

D = S′({x′,y′,z′})−S({x,y,z}) (1)

The strain tensor ε can then be defined in terms of the deforma-
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tion map as the symmetric sum of derivatives

εi j =
1
2

[
∂Di

∂ r j
+

∂D j

∂ ri

]
(2)

In the case of two-dimensional bulk (uniform) deformation, the
relationship between the deformed and original coordinates is
given by x′ = x(1+∆) and y′ = y(1+∆) where ∆ scales the de-
formation. The deformation map is then given by D = ∆(xx̂+ yŷ),
yielding the strain tensor εbulk

i j = ∆δi j:

ε
bulk =

(
∆ 0
0 ∆

)
(3)

Similarly, two-dimensional shear (volume-conserving) defor-
mation can be described by the relationship x′= x−∆ ·y and y′= y,
yielding D =−∆ ·yx̂. Thus the shear strain tensor will be given by
Equation 4:

ε
shear =

(
0 −∆/2
−∆/2 0

)
(4)

These modes of deformation are illustrated in Figure 5.

2.2.2 Stress

Stress describes a material’s response to applied strain. Stress is
defined as applied force per cross-sectional area, or equivalently
as energy per unit volume, and hence has units of pressure. The
energy density interpretation is applied when determining the
stress tensor for a microscopic ensemble by finding the derivative
with respect to strain of the total kinetic and potential energies
per unit volume, considering contributions from each individual
atom. This results in a kinetic energy term and a virial term.
Section 3.3 discusses the relative contributions of each of these
terms.

σ
α
i j =−

1
V

(
Mα vα

i vα
j +Σβ Fαβ

i rαβ

j

)
(5)

Here V is the volume of the simulation box. Other parameters in
this expression are illustrated in Figure 6.

2.2.3 Elasticity

For small deformations, stress is linear in strain: this linear region
defines the material’s elastic response and is described by the ma-
terial’s elasticity tensor, C. Since both stress and strain are rank-2
tensors, the elasticity tensor must be rank-4 to connect them:

σi j =Ci jklεkl (6)

where i, j,k, l all index x,y, and z. Consequently, the elasticity
tensor contains 81 components; however, because all three ten-
sors are symmetric, only 21 of these components are indepen-
dent. Any symmetry or dimensionality reduction in the lattice
comprising the material further reduces the number of indepen-
dent components in the elasticity tensor: a 2-D square lattice has
only 3 independent components, while a 2-D honeycomb lattice
has only 2 (see Figure 7). The form of the elasticity tensors for
each of these lattices is given by the following (terms coupling to
the third dimension have been removed):

Fig. 5 Applied strain configurations. Left column: bulk (isotropic) strain.
Right column: shear (volume-conserving) strain. Honeycomb lattice de-
formation illustrated below diagrams. Dashed vertical lines in left column
illustrate expansion of the unit cell.
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Fig. 6 Illustration of contributions to the stress tensor from a given atom
α as expressed in equation 5. Mα : mass of atom α. vα : velocity of atom
α. β indexes over neighboring atoms; Fαβ describes the inter-atomic
forces acting at a distance rαβ . Figure modified from reference 20

Fig. 7 Symmetries of elasticity tensors of honeycomb and square lat-
tices. Red bars indicate couplings to the third dimension which are ig-
nored for 2-D lattices. The 2-D honeycomb lattice has two independent
components (C11 and C12 ) and the 2-D square lattice has three (C11, C12,
and C66). Tensor notation following reference 21.

Choneycomb =

 C11 C12 0
C12 C11 0

0 0 1
2 (C11−C12)

 (7)

Csquare =

 C11 C12 0
C12 C11 0

0 0 C66

 (8)

Note that the tensors are expressed using Voigt notation, which
contracts the four indices of the elasticity tensor into two indices
according to the convention in equation 9:

11→ 1

22→ 2

33→ 3

23,32→ 4

31,13→ 5

12,21→ 6

(9)

Knowing the form of both the elasticity tensor and the strain
tensor corresponding to a particular deformation allows for the
determination of the stress tensor that describes the response to
the deformation. Expanding Equation 6 in matrix multiplication
form (again, removing terms that couple to the third dimension)
yields the following: σ1

σ2

σ6

=

 C11 C12 C16

C21 C22 C26

C61 C62 C66


 ε1

ε2

2ε6

 (10)

Then for a deformation of the form ε11

ε22

2ε12

=

 α

α

2β

 (11)

where the diagonal elements α describe the amount of bulk strain
and the off-diagonal elements β describe the shear strain, the
stress response exhibited by each of the lattices can be found by
referencing Equations 7 and 8:

σhoneycomb =

 C11 C12 0
C12 C11 0

0 0 1
2 (C11−C12)


 α

α

2β

 (12)

σsquare =

 C11 C12 0
C12 C11 0

0 0 C66


 α

α

2β

 (13)

The bulk modulus, K, and shear modulus, G, for a two-
dimensional isotropic material are defined as follows:

2K ≡C11 +C12

2G≡C11−C12

(14)

This allows the stress tensors to be re-written as

σhoneycomb =

(
2Kα 2Gβ

2Gβ 2Kα

)
(15)

σsquare =

(
2Kα 2C66β

2C66β 2Kα

)
(16)

Hence the diagonal elements of the stress tensors are equal to
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twice the bulk modulus K times the amount of bulk strain α that
has been applied. Similarly, the off-diagonal elements of the hon-
eycomb lattice stress tensor are equal to twice the shear modulus
G of the lattice times the amount of shear strain β that has been
applied. Due to the lesser symmetry of the square lattice com-
pared to the honeycomb lattice (see Figure 7), the off-diagonal
elements of the square lattice do not contain the shear modulus
G. Nevertheless, since the C66 element describes coupling to the
shear deformation, it can be loosely interpreted as a shear modu-
lus. It is in this sense that we use it in this work.

2.3 Simulations

The molecular building and modeling suite YASARA22 was used
to remove the anti-fibrillizing cap, add covalent bonds between
the beta-solenoid proteins and the symmetric multimers, and
align the structures to correctly tile the lattice in two dimen-
sions. The Gromacs23–25 molecular dynamics software package
was used for all simulations.

Pressure coupling was performed with the anisotropic
Parrinello-Rahman barostat26. The isothermal compressibility in
the directions along which strain was applied (i.e., in the plane
of the lattice) was set to zero so that this direction would not be
coupled to the pressure bath. The compressibility in the direc-
tion transverse to the strain were set to that of water (4.5×10−5

bar−1 ). The reference pressure was set to 1 bar. The Nose-Hoover
thermostat algorithm27,28 was used to maintain a constant tem-
perature of 300 Kelvin.

The Charmm27 force field29 was used for all simulations.
Protein images were produced using the visualization software
VMD30. The protein was solvated in explicit water molecules
using the TIP3P (transferable intermolecular potential with 3
points) potential.

The protein was placed in a simulation box with a sidelengths
and angles calculated to tile the lattice in the x- and y-directions.
Periodic boundary conditions were applied to all boundaries of
the box, making the system effectively infinite in the plane of the
lattice (see Figure 8). The box height was made to be sufficiently
large as to avoid interactions between the protein’s periodic im-
ages in the out-of-plane directions (i.e., larger than the long-range
interaction cut-off radii).

Prior to the production runs, steepest descent and L-BFGS min-
imization were performed to relax the system into a low poten-
tial energy configuration. Temperatures were instantiated by ran-
domly prescribing values from a Boltzmann distribution to each
atom. Temperature was then allowed to equilibrate under the
velocity-rescale thermostat. Finally, pressure was allowed to equi-
librate under the Parrinello-Rahman barostat.

Strain was applied to the system by deforming the simulation
box at a constant rate throughout the simulation using Gromacs’
built-in molecular dynamics parameter option "deform". In each
integration timestep, the atomic coordinates were first updated
according to the leapfrog force integration algorithm. Velocities
and atomic coordinates were then updated according to tempera-
ture and pressure coupling, respectively. The atomic coordinates
and box lengths were then rescaled according to the specified

Fig. 8 Simulation box geometries used to periodically tile unit cell onto
lattice. A): square lattice. B): honeycomb lattice. Note that in each case
the unit cell consists of one representative of each of the two building
blocks discussed in Figure 3.

deformation (either bulk or shear). These simulations were per-
formed at several deformation speeds for each lattice.

After each production run, the relevant elements of the stress
tensor were calculated using Gromacs’ "gmx energy" program.
Stress-strain curves were plotted, and a linear regression with
a fitting constraint of zero intercept was applied to points cor-
responding to less than one percent strain (see Figure 9). The
slope of this curve was used to find the lattice’s elastic modulus:
K for bulk strain and G for shear strain, according to equations
15 and 16. These elastic modulus values are plotted against the
logarithm of the strain rate in Figure 11.

3 Results and Discussion
3.1 Small-Strain Regime
As expected, the lattice’s initial stress response is linear in strain,
as emphasized in the right column of Figure 9. We examine the
mechanisms that produce the elasticity values exhibited by this
material, and find that predominant contribution during small-
strain bulk deformation arises from contraction and lengthening
of the solenoids that compose the lattice. This section illustrates
the dominance of this mechanism through the Cauchy-Born ap-
proximation and a comparison of bulk moduli across the two lat-
tices, makes general comments about trends in the elastic moduli,
then briefly comments on shear strength. Finally, a comparison to
some other materials is made.

In order to apply the Cauchy-Born approximation to this sys-
tem, we formulate it as an idealized lattice composed of com-
pressible rods with spring constant k, allowing the bulk modulus
to be found using purely geometric means. In the case of the hon-
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Fig. 9 Stress-strain curves measured under each deformation mode for
a range of strain rates as indicated by colorbar. Left column: stress-
strain behavior over the duration of each simulation. Right column: detail
of curve during initial linear response region, showing simulation data
(points) and linear fits (solid lines). Plots shown measured on honeycomb
lattice.

eycomb lattice whose rods each have equilibrium length s and are
stretched to a length s′ = s(1+α), the internal energy U in each
unit cell will be given by

U = 6 · 1
2

k(sα)2 (17)

where the factor of 6 refers to the number of rods per unit cell (see
Figure 8 B). The unit cell has sidelengths L = 2

√
3s and inscribed

angle 60◦, yielding an area A = L2 sin(60◦) = 6
√

3s2. Hence the
areal energy density will be

u =
U
A

=
kα2

2
√

3
(18)

Finally, differentiating the areal energy density with respect to the
applied strain yields the resultant stress:

σ =
∂u
∂ε

=
∂u
∂α

=
1√
3

kα (19)

Comparing this result to equation 15, we see that in terms of the
bulk modulus the equivalent deformation would yield

σ = 2Kα (20)

Hence, in this idealized lattice, the relationship between the
spring constant of the individual rods and the elastic modulus
of the entire lattice will be

K =
1

2
√

3
k (21)

In order to make this comparison, a single beta-solenoid was
subjected to tensile extension and analyzed in the same manner
as the lattice∗ in order to extract its effective spring constant.
The results are plotted in Figure 10 A). Circular data points indi-
cate the bulk modulus as derived from this spring constant (i.e.,
multiplied by the geometric factor 1

2
√

3
). Triangular data points

indicate the bulk modulus as derived from expansion simulations
of the entire lattice; both of these moduli are plotted against the
logarithm of the speed at which the structure was deformed. Al-
though the single beta-solenoid produced a more erratic curve,
its similitude to the lattice’s curve indicates that the idealized
rod-lattice is a reasonable model for the honeycomb lattice under
small-strain bulk deformation, and therefore that the predomi-
nant elasticity mechanism of the lattice in this case is determined
by the spring-like behavior of the constituent beta-solenoids.

The dominance of the mechanism of individual beta-solenoids
is further indicated in Figure 11, which shows that the honeycomb
lattice and square lattice exhibit nearly identical bulk moduli in
the range of strain rates tested. This would not be expected if a
mechanism other than beta-solenoid stretching dominated at low

∗The stress-strain curves produced from the single beta-solenoid simulations were
found to have a slight non-zero offset, seemingly indicating that the starting struc-
ture was somewhat out of equilibrium. For this reason, these linear fits were not
constrained to yield zero intercept. Correspondingly, the lattice stress-strain curves
were re-fit without a zero-intercept constraint in order to yield a more consistent
comparison. This results in some slight differences in the shape of the bulk modulus-
strain rate curve compared to Figure 11 .
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Fig. 11 Elastic modulus for bulk and shear deformation plotted against
the logarithm of the strain rate, demonstrating increasing stiffness as
strain rate increases.

strain values, such as linker protein deformation, since the linker
proteins differ substantially between the two lattices.

At small deformation speeds, stress-strain curves exhibited
large noise (see Figure 9), especially in the case of the square
lattice. Hence, these curves were measured in a smaller range
of strain rates in the neighborhood of 50 per nanosecond. Note
that in all cases, the material becomes less compliant (stiffer) at
faster deformation speeds, consistent with the results of many
other material studies31,32 (see Figure 11). Note also that expan-
sion and compression of the honeycomb lattice yield quite similar
bulk modulus values, indicating local symmetry in the potential
around equilibrium.

Although the lattices’ bulk moduli benefit from the large in-
trinsic strength of the beta-solenoid proteins, the shear moduli
depend to a large degree on the linker proteins’ resistance to
torsion. Figure 11 shows that the bulk modulus is significantly
greater than the shear modulus, especially in the case of the hon-
eycomb lattice. In order to further optimize these structures, it is
desirable to reinforce these weak links. One approach considered
in this work was inserting cysteine residues to the symmetric mul-
timers in order to form disulfide bonds near the lattice vertices.
Curiously, this did very little to impact the elastic modulus of the

Material K? or E† (GPa) Pulling speed (m/s)

Honeycomb lattice? 2.9 300

Square lattice? 3.2 300

Suffolk sheep wool† 34,35 0.5 - 1 5×10−3

Collagen fibers† 36 0.3 - 0.5 1.7×10−4

Silkworm silk† 37 8 - 18 8.5×10−5

Glass-epoxy composite† 38 6.2 4.2

Carbon-epoxy composite† 39 7.3 - 8.2 2.8

Graphene† 40 1,000.0 2.3 ×10−7

Table 1 Elastic modulus values of protein lattices compared with select
other materials for context. Star (?) superscripts indicate the bulk modu-
lus, and dagger (†) superscripts indicate the material’s Young’s modulus;
Young’s modulus data are more readily available in the literature.

lattice (see supplemental materials). Another option for strength-
ening these lattices is choosing symmetric multimers with large
inherent strength. Comparing the trimeric protein used in the
honeycomb lattice to the tetrameric protein used in the square
lattice (Figure 4), it is clear that the tetramer is much larger and
has more internal hydrogen bonds reinforcing its structure. Cor-
respondingly, the shear modulus of the square lattice is noticeably
larger than that of the honeycomb lattice, even though the bulk
modulus of the square lattice is roughly equal to that of the hon-
eycomb lattice (see Figure 11). This appears to indicate the ef-
ficacy of strengthening the overall lattice by choosing inherently
stronger constituent proteins.

For context, the elastic moduli of the simulated protein lattices
tested here are compared against that of other materials, both
natural and man-made, in Table 1. Due to the difficulty in finding
measurements of the bulk modulus (K) of materials in which the
strain rate was stated, the values listed in the table indicate mate-
rials’ Young’s modulus (E) except in the case of the two simulated
lattices.

In the interest of providing a more direct comparison, strain
rates that were listed as 1/s were multiplied by the sample gauge
length to yield a result in m/s. In the case of the sheep wool
measurement, the elastic modulus was measured in grams per
grex (g/gx); grex is a unit of linear density used in textile science.
To convert g/gx to Pa, one must multiply by the mass density of
the sample and the gravitational acceleration g = 9.8m/s2 (see
e.g.33). A wool density of 1 g/cm3 was assumed for this conver-
sion.

3.2 Large-Strain Regime

When the amount of applied strain is large enough, the structure
of the protein lattices begins to visibly deform, as shown in Fig-
ure 12. Under bulk compression, the beta-solenoids are forced
to bend out of the plane of the lattice. This transverse degree of
freedom allows compression to continue while keeping the over-
all folded structure of the lattice intact. In contrast, under bulk
expansion and shear deformation, large strains cause the lattice
to unravel.

As these unfolding events occur, stabilizing forces such as hy-
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drogen bonds between beta-sheets are removed. This results in
a plateau in the strength of the inter-atomic restoring forces that
contribute to the stress tensor, as seen in the left column of Figure
9. Conversely, the bulk compression stress-strain curve lacks such
a plateau by virtue of the continuous presence of inter-atomic re-
pulsion forces.

3.3 Contributions to Endured Stress
Figure 10 B) illustrates the contributions of each term in equa-
tion 5, namely the virial density and the kinetic energy density,
in the case of bulk expansion of the honeycomb lattice. The xx
element of both the virial tensor and the complete stress tensor
were used in this comparison. Note that both the virial and the
kinetic energy are multiplied by a factor of two when they appear
in equation 5; this factor was included in this comparison. Also
note that the shape of the "full stress equation" curve differs from
Figure 11 because the linear fit in this case was not constrained
to have zero offset to be more consistent with the other ensem-
ble variables (similar reasoning was applied to the analysis of the
single beta-solenoid simulations - see footnote in section 3.1).

The virial density term nearly exactly reproduces the curve
formed from the full stress equation, indicating that this term is
by far the majority contributor to the elastic modulus, producing
only a slight under-estimate. Hence, kinetic energy is a negligi-
ble contribution to the stress endured by the lattice during these
simulations.

4 Conclusion
We have demonstrated a method of using the molecular dynam-
ics package GROMACS to perform stress-strain simulations on
atomic systems to find values for the system’s bulk and shear elas-
tic moduli. Through this method, we have shown that these beta-
solenoid-based protein lattices exhibit large mechanical strength,
supporting the premise that these are promising candidates for
use in robust biomaterials. Without optimizing the strength of
the multimeric linkers, we already achieve respectable values for
the bulk and shear modulus. Thus, the combination of tunable,
highly functionalizable beta solenoid proteins possessing known
structure/sequence maps with robust physical and mechanical
properties with natural symmetric oligomers evolved to survive
severe conditions in extremophiles opens a new avenue for de-
signed biomaterial self-assembly.
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