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Partial wetting of thin solid sheets under tension

Benny Davidovitch∗a and Dominic Vellab

We consider the equilibrium of liquid droplets sitting on thin elastic sheets that are subject to a
boundary tension and/or are clamped at their edge. We use scaling arguments, together with a
detailed analysis based on the Föppl-von-Kármán equations, to show that the presence of the
droplet may significantly alter the stress locally if the tension in the dry sheet is weak compared to
an intrinsic elasto-capillary tension scale γ2/3(Et)1/3 (with γ the droplet surface tension, t the sheet
thickness and E its Young modulus). Our detailed analysis suggests that some recent experiments
may lie in just such a “non-perturbative" regime. As a result, measurements of the tension in the
sheet at the contact line (inferred from the contact angles of the sheet with the liquid–vapour
interface) do not necessarily reflect the true tension within the sheet prior to wetting. We discuss
various characteristics of this non-perturbative regime.

1 Introduction

1.1 Background

On rigid, thick solid substrates, partial wetting is governed by
the classic Young–Laplace–Dupré (YLD) law, which expresses the
contact angle, θY , in terms of the surface energies of the three
phases that meet at the contact line through the famous equation:

cosθY =
∆γs

γ
. (1)

Here γ ≡ γlv is the liquid-vapour surface tension, and ∆γs = γsv−
γsl , is the difference between the surface energies of the solid with
the surrounding liquid and vapour phases. Importantly, Eq. (1)
is unaffected by the presence (or lack thereof) of a tensile load
exerted on the rigid solid near its surface — the partial wetting
problem can be described as the minimization of surface energy,
Usurf, alone, subject to the constraint that the solid substrate re-
tains its original (i.e. dry), flat shape.

The burst of applications of elasto-capillary phenomena at
micro- and nano-scales has recently led to a renewed interest
in the partial wetting of ultra-thin solid sheets. The sheets used
experimentally are typically either glassy (with Young modulus
E ∼ 1 GPa and thickness t ∼ 100 nm) or elastomeric (with Young
modulus E ∼ 1 MPa and thickness t ∼ 1 µm). The stretching
modulus of such sheets, Y = Et, then typically lies in the range
1 Nm−1 .Y . 100 Nm−1 and so is usually much larger than the in-
terfacial tension of a deposited drop (γ ∼ 0.1 Nm−1), i.e. γ/Y � 1.
As a result, under characteristic capillary-induced loads, the sheet
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may be considered to be nearly inextensible.

As was noted by Olives 1 , who built upon previous work by
Shanahan 2 , the partial wetting of a thin solid sheet reflects the
simultaneous minimization of three energies: The surface en-
ergy, Usurf, as well as the elastic energies Ustrain and Ubend, as-
sociated, respectively, with the anisotropic, non-uniform distribu-
tion of strain and the curvature induced in the solid sheet by the
presence of the liquid drop. The nontrivial nature of the prob-
lem, in comparison with YLD law (1), emanates from the subtle
interplay between these three energies in solid sheets that are
“highly-bendable” yet “nearly inextensible". An intimately related
complication that has emerged in more recent applications3–5 is
the presence of a uniform isotropic tension, which typically exists
in the sheet prior to its wetting by the liquid drop.

In this paper, we introduce a comprehensive theory of this prob-
lem, building on and expanding previous work by Schroll et al. 6 .
A central result of our analysis is that the effect of the liquid drop
is generally non-perturbative: the presence of the drop is not a
small perturbation of the state of stress within the sheet prior to
wetting ∗. To give a first indication of why this might be the case,
we note that the capillary pressure of the drop causes a parabolic
bulge of the sheet. The presence of such a parabolic shape, with
non-zero Gaussian curvature, induces a tensile strain in the sheet,

∗ In this paper, we use the terminology of singular perturbation theory in which a
“non-perturbative effect" refers to a large, localized departure of a physical observable
(here, the stress within the sheet) from its value in the “unperturbed" state (here,
the uniformly-stretched, dry sheet). Using this terminology emphasizes that adding
an apparently small perturbation to the system can have a disproportionately large
effect: here, the drop surface energies, γsl ,γlv, may be smaller than the stress within
the dry sheet and yet the change in the stress due to the drop’s presence may be
large.

Journal Name, [year], [vol.],1–23 | 1

Page 1 of 23 Soft Matter



(a)

(b) (c)

Fig. 1 A droplet placed on a thin elastic membrane that is clamped at its
boundary, r = Rout. (a) Schematic showing the various dimensions of the
system, together with an illustration of the forces that act at the contact
line of the droplet. (b) Plan view of a Polystyrene membrane (thickness
t = 364 nm) clamped at its edges on the wall of a cuvette. (c) After a
small drop of water is deposited on the surface of the PS membrane,
wrinkling is observed around the periphery of the droplet. The droplet’s
volume is sufficiently small (V/`3

c � 1, where `c = (γ/ρg)1/2 is the
capillary length) and so the formation of wrinkles cannot be attributed to
the normal force exerted on the sheet by the drop’s weight 8,9; instead
wrinkling indicates a capillary-induced tensile force that is sufficiently
strong to pull the dry part of the sheet towards the contact line. The
radial wrinkles relax the consequent hoop compression. (Images in (b)
and (c) courtesy of Deepak Kumar, UMass Amherst.)

which can be approximated as ε ∝ φ 2 (with φ the angle of the
sheet at the interior of the contact line, see fig. 1). The stress at
the contact line may thus be approximated as TI ∼ Y φ 2. Vertical
force balance at the contact line, however, implies TI ∼ γ sinθY /φ

(where we assume for the moment that φ � 1 and that θ ≈ θY ,
so that the system is ‘close’ to the YLD law). Equating these two
estimates of TI , we find that

TI ∼ (sinθY γ)2/3Y 1/3 . (2)

Since the typical ratio Y/γ � 1, for many thin sheets including
graphene7, stiff polymers4, and most elastomers3, the scaling (2)
implies that γ� TI�Y . This tension may therefore dominate any
pre-existing tension and the presence of the drop is, in general,
not a small perturbation to the pre-tension. It is also noteworthy
that the effect of the drop is not related to its size, and thus occurs
even for arbitrarily small drops (although the spatial extent of the
effect is proportional to the drop size).

Our main concern in this paper is to place the theoretical un-
derstanding of recent experiments in this field on a firm footing.
In particular, we shall use more detailed scaling arguments to-
gether with calculations from first principles to remove the re-
liance on any assumptions underlying the derivation of Eq. (2)
and thereby identify the parameter regimes in which the capil-

lary effect is perturbative (with respect to pre-existing tension),
or non-perturbative (yielding the scaling (2)). Furthermore, we
will obtain quantitative expressions for the contact angles and
stress in a partially-wet sheet as a function of its elastic moduli,
interfacial tension, and any pre-tension associated with boundary
loads or clamping at the sheet’s far edge.

Our theoretical approach follows a recent study that addressed
this type of elasto-capillary mechanics for the partial wetting of
a thin, circular solid sheet, floating on a liquid bath6. In this ap-
proach, the mechanical equilibrium of the sheet is obtained by
minimizing the total energy of the system, Usurf +Ustrain +Ubend,
and is described through the Föppl-von-Kármán (FvK) equations,
accounting for a tensile load, Tedge, at its far edge (exerted by the
surrounding liquid bath), and to capillary pressures and forces
(exerted by the liquid drop). In that problem, solutions to the
partial wetting problem were described by two primary dimen-
sionless groups:

(capillary) bendability : ε
−1 ≡

γR2
drop

B
, (3)

(capillary) extensibility : γ̃ = γ/Y , (4)

where B ∼ Et3 is the bending modulus of the sheet. The bend-
ability parameter can be understood as the ratio between the
drop’s radius, Rdrop, and the elasto-capillary length, `BC =(B/γ)1/2

(called the “bendo-capillary” length by Style et al. 10); the exten-
sibility parameter is the characteristic tensile strain induced in
the sheet by capillary forces, as already discussed. The partial
wetting of a highly-bendable yet nearly-inextensible sheet is thus
described by a singular limit (ε� 1, γ̃� 1), of the FvK equations.

In parallel to the experimental and theoretical studies of partial
wetting on floating sheets6,8,11, several groups have addressed
the partial wetting problem in a different, but related, setup: a
sheet is suspended in vapour while subject to some unknown pre-
tension, Tpre, and clamped at its far edge. A small liquid droplet
is then placed on the (clamped) sheet3,4. Although the charac-
teristic values of the bendability and extensibility parameters (4)
in these experiments are similar to those in studies of floating
sheets6,8,11, the possibility that the capillary-induced stress might
exhibit a non-trivial scaling, such as that in (2), appears to have
been overlooked3,4. The potential impact of this neglect of the
non-perturbative nature of the problem is illustrated in fig. 2,
which shows the parameter regimes (in terms of the normal-
ized surface tension γ/Y and tension far from the drop, T∞/Y ) for
which the tension at the contact line is a small perturbation of the
far-field tension T∞ (TI ≈ T∞ to within an error of 10%) or rather
has a non-perturbative effect. (For sufficiently large sheets we
expect that Tpre ≈ T∞.) This figure also shows the values of the pa-
rameter γ̃ = γ/Y investigated experimentally3,4 as filled, coloured
columns. From this figure we see that partial wetting of both the
PnBMA sheets used by Schulman and Dalnoki-Veress 4 and the
PDMS sheets used by Nadermann et al. 3 may be described by a
perturbative theory only if the pre-tension is at least an order of
magnitude larger than γ. However, using data from Refs.3,4 com-
bined with our detailed FvK-based calculations (see §4) suggests
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Fig. 2 Diagram showing the regions of parameter space in which the
presence of a drop has a perturbative or non-perturbative effect on the
stress state within the sheet (defined as a change in the tension at
r = Rdrop of less than or more than 10%, respectively, from the uniform,
isotropic tension in the sheet prior to placing the drop, and shown by the
upper dashed line; the dash-dotted line shows the same concept but for
a 40% change). The rectangles show the parameter space that has
been explored experimentally for glycerol drops on polymeric sheets
(SIS, E ≈ 0.8 MPa) 4, glycerol drops on glassy sheets (PnBMA,
E ≈ 1 GPa) 4 or various drops on polymeric sheets (PDMS, for which we
take E ≈ 2.85 MPa here) 3. Our estimation of the associated far-field
tension T∞ in these experiments (using a methodology we describe in
§4) is given by points as follows: Glycerol drops 4 on PnBMA films (blue
circles) and SIS films (red right pointing triangles); experiments with
PDMS films 3 and drops of De-ionized water (cyan left pointing
triangles), Ethylene-Glycol (magenta upward pointing triangles) and
DMSO (green downward pointing triangles). Here the region where finite
size effects become important has been calculated with Rout/Rdrop = 100.

that the actual far-field tensions, T∞, (shown as green, cyan, ma-
genta, and blue symbols) may not reach such large values. This
places these experiments in the non-perturbative regime, requir-
ing one to account for the effect of a capillary-induced tension,
Eq. (2).

The potential importance of the elasto-capillary tension scale
γ2/3Y 1/3, and hence the non-perturbative character of the prob-
lem, is further emphasized in fig. 3. There we plot the value of
the tension in the vicinity of the contact line, TI , as a function
of the sheet thickness (using experimental data from Nadermann
et al. 3 and Schulman and Dalnoki-Veress 4). This replotting of
data also suggests that experiments with PDMS3 and PnBMA4

films may lie in the non-perturbative regime: the observed ten-
sion appears to be consistent with the non-perturbative scaling
TI ∼ (sinθY γ)2/3Y 1/3 (Eq. 2), suggesting that the role of any pre-
existing tension may be small. (Experiments with SIS films4 do
not exhibit this scaling and, hence, are likely to lie in the pertur-
bative regime.) We shall therefore argue that proper considera-
tion of the non-perturbative effect of the capillary-induced stress,
T ∗= γ2/3Y 1/3, should be given when interpreting the results of ex-
periments in such scenarios. In particular, rather than invoking a
constitutive relation for TI(t) (such as the linear relation assumed
in Ref.3), our FvK-based theory explains the measured values of
TI in Ref.3 as the non-perturbative, capillary-induced contribution
to the stress in the partially-wet sheet, TI ∼ T ∗.

In this manuscript we seek to bridge the studies of Refs6,8,11

and Refs3,4, analyzing the partial wetting of highly bendable,
nearly inextensible solid sheets in a general way, applicable to
sheets that are either clamped with pre-tension Tpre, or are sub-
ject to a fixed tensile load Tedge at their far edge. Correspond-
ingly, we extend the theoretical analysis of Schroll et al. 6 in three
key directions. First, we provide a qualitative, scaling-type anal-
ysis that elucidates the origin of the non-perturbative capillary-
induced stress (2) and demonstrates its relevance to any far-field
boundary conditions (BCs) in a particular experimental setting.
Second, we introduce the dry tension

Tdry =


Tedge (load controlled)

Tpre (clamping)
, (5)

which in turn leads to the definition of a ‘dry extensibility’:

T̃dry = Tdry/Y . (6)

To simplify the analysis,we introduce an ‘effective far-field ten-
sion’, T∞. In the case of large sheets, Rout/Rdrop� 1, we shall see
that T∞ ≈ Tdry. (The key observation for now, however, is that the
ratio γ/T∞ may take arbitrary values, in contrast to the analysis of
Schroll et al. 6 , which considered only γ/T∞ = O(1).) The third,
and final, difference with the work of Schroll et al. 6 is that we
show that the dominant behaviour of the capillary-induced stress,
Eq. (2), and contact angles, φ and θ , as γ/Y→ 0, may be predicted
without resorting to an explicit minimization of the total energy,
simplifying the computational method considerably. Our gener-
alized analysis allows us to identify the parameter regimes for
which the capillary-induced stress is either perturbative or non-
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Fig. 3 The dependence of the measured internal tension,
TI ≈ γ sinθY /φ , on the sheet’s thickness t. Here the results of
experiments performed by Schulman and Dalnoki-Veress 4 are
combined with the results of experiments of Nadermann et al. 3 . Data
are shown for Glycerol droplets 4 on PnBMA films (blue circles) and SIS
films (red right pointing triangles); other triangles show results for PDMS
sheets 3 with different liquid droplets as follows: De-ionized water (cyan
left pointing triangles), Ethylene-Glycol (magenta upward pointing
triangles) and DMSO (green downward pointing triangles). (Throughout
we use the same Values of Young’s modulus, E, as in Fig. 2.) We note
that results for PnBMA and PDMS sheets appear to be consistent, over
the range of values plotted, with the scaling TI ∼ t1/3, expected for a
material with a thickness-independent Young modulus E in the
non-perturbative regime — in this regime TI is dominated by the
capillary-induced stress, T ∗ ∼ γ2/3Y 1/3, which is much larger than the
pre-tension in the sheet. Furthermore, for the PDMS data, the
dependence of TI on the YLD angle θY (which takes different values for
the various types of liquid used in the experiments 3) appears to be
consistent with the scaling relation (2) predicted in the non-perturbative
regime. (Our quantitative solution of the FvK equations (§4) shows that
in the non-perturbative regime the actual value of TI exhibits a very
weak dependence, TI ∼ 1/ log(T ∗/Tpre), of TI on the pre-tension, Tpre.
Note that our analysis is unable to determine the source of the
pre-tension in the sheet, and thus cannot explain the noticeable vertical
shift between data sets that correspond to PnBMA 4 and PDMS
sheets 3. Since the pre-tension is generated upon clamping the dry
sheet (prior to placing the drop), it may be governed by nontrivial solid
chemistry and the preparation techniques used (see also the discussion
in §5.2). Note also that the x-axis here is the inverse of the capillary
strain, and so is required to be large for our analysis to be valid — this
may explain why the thinnest SIS sheets deviate from the linear scaling
TI ∼ t, expected in the perturbative regime (TI ≈ Tpre) for a
thickness-independent in-plane pre-strain.

perturbative, and thereby use our theoretical results to revisit the
assumptions made in recent experimental works and to reassess
the conclusions drawn from their experimental data.

1.2 Outline

We commence, in §2, with a qualitative discussion of the subtle in-
teraction between pre-existing tension, the inherent resistance of
a solid sheet to stretching and the presence of a liquid drop. Using
energetic considerations and scaling arguments, we explain our
central conclusions concerning the drop-induced tension without
using the FvK equations. In §3 we discuss the full FvK model of
the problem, focusing on the BCs that are appropriate at the far
edge and in the vicinity of the contact line †. The axial symmetry
of the geometry leads us to seek an axially symmetric solution of
the FvK equations. Our solution of this problem reveals that in
some regimes radial wrinkles may form, though the system may
still be described in an axisymmetric setting using tension field
theory as the asymptotic limit of the FvK equations in the singu-
lar, high bendability limit (ε � 1)6,12,13. In §4 we discuss the
solution of the FvK equations, focusing on large sheets, and small
values of the extensibility parameters; our results are shown in
figs 4-8. In §5 we discuss some recent works3,4,14 that addressed
the partial wetting of solid sheets under tension, and the implica-
tions of our findings for the interpretation of experimental data.
We also highlight some unresolved questions.

A reader who is not familiar with the FvK theory, may skip §3 at
a first reading, focusing instead on the scaling analysis in §2 and
the discussion and critique presented in §4 and §5.

Nomenclature:
• A primary object of our study is the deviation of the angles

θ ,φ , together with the stress discontinuity, TO−TI (Fig. 1), from
the values assumed in the YLD law (1). As will be revealed in the
sequel, such an analysis requires us to distinguish between the
“geometry" (i.e. the contact angles), and the “mechanics" (i.e. the
stress discontinuity) underlying the YLD law (1). Hence, we will
use the terms “YLD contact geometry" and “YLD contact mechan-
ics" as handles for the following limits:

YLD contact geometry : θ → θY ; φ → 0 , (7a)

and:
YLD contact mechanics : TO−TI → γ cosθY , (7b)

where the symbol “→" refers to (various orders of) the asymptotic
limit, γ̃, T̃dry→ 0, of vanishing extensibility parameters, defined in
Eqs. (4) and (6), respectively.
• Throughout our analysis, we shall need to consider various

tensions within the elastic sheet, as well as interfacial tensions.
We shall adopt the convention that tensions within the sheet are
denoted T(·), while interfacial tensions are denoted γ(·). Simi-

†We note that Nadermann et al. 3 also employed an FvK-based analysis, which led
them to conclude that the stress in the partially-wet sheet is governed by a pre-
tension, as long as the sheet is “sufficiently thin”. We address the disagreement
between our theoretical approach and that of Nadermann et al. 3 in Appendix C.
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larly, in some circumstances it is the size of a tension compared to
the stretching modulus, Y = Et, that is important, while in other
circumstances it is its size relative to the capillary-induced ten-
sion, T ∗ = γ2/3Y 1/3, that is more pertinent; we shall therefore let
˜(·) = (·)/Y while ¯(·) = (·)/T ∗.

2 Qualitative discussion

2.1 Scaling analysis

To further elucidate the non-perturbative nature of a liquid drop
sitting on a solid sheet, we commence with a qualitative scaling
analysis, based on energetic considerations. For this purpose, we
assume that the dry portion of the sheet, Rdrop < r < Rout with
Rout � Rdrop, remains flat, while its wet part, 0 ≤ r < Rdrop, ap-
proximates a spherical cap with some radius of curvature Rcurv.
We further assume that the stress field in the wet portion of the
sheet (r . Rdrop) is characterized by some tensile scale Twet, which
must be larger than Tdry, and that in the dry portion of the sheet
the stress returns to the isotropic, spatially uniform value Tdry. As
we will show, defining:

∆Tcap ≡ Twet−Tdry , (8)

this simplified picture suffices to characterize the parameter
regime at which the scaling law (2) is valid.

Base state: Before introducing the drop, the dry sheet is subject
to a uniform tension Tdry. The elastic energy of this dry state is
then πR2

out(1−ν)T 2
dry/Y with ν the Poisson ratio of the sheet; the

combined surface energy of the dry sheet and the liquid drop is
2γsvπR2

out +4πγR2
drop.

We now evaluate the energetic benefit of the partially wet state
in comparison to this non-contacting “base" energy.

Surface energy of the wet state: The reduction in surface energy,
∆Usurf, is determined by the contact line radius, Rdrop, the surface
tension γ, and by the difference between the surface energies of
the solid surface when wet or dry, ∆γs = γsv− γsl . Hence, the gain
in surface energy can be written

∆Usurf = γR2
dropG(φ ,θ ;θY ) , (9)

where G(φ ,θ ;θY ) is a function of the two unknown angles, φ ,θ

(fig. 1b), and the dimensionless parameter θY = cos−1(∆γs/γ).
For our work, the key feature of the function G is that when the
solid surface is perfectly flat (i.e. φ = 0), then G(φ = 0,θ ;θY ) is
known to be minimized by θ = θY , to recover the YLD law.

Elastic energy of the wet state: While wetting reduces the sur-
face energy of the system, it introduces a Gaussian curvature, and
therefore increases the elastic energy of the sheet. This energetic
cost, ∆Ustrain, may be written in scaling terms as:

∆Ustrain ∼ R2
drop

T 2
wet−T 2

dry

Y
+ Y R2

drop

(
Rdrop

Rcurv

)4
(10)

To understand the difference between the two terms on the
RHS of (10) (and why considering their sum does not amount

to “double counting" a single cost), consider the problem of plac-
ing a disk-like sheet of radius Rdrop onto a rigid ball of radius
Rcurv by pulling the perimeter of the sheet with a radial tension
Twet

15,16. The strain can be written schematically as strain =

(Twet/Y ) + (Rdrop/Rcurv)
2, where the first term is a “mechanical"

contribution (which would exist even if the sheet remained pla-
nar), and the second term is a “geometric" contribution (which
would exist even if the sheet were forced to wrap the ball, with-
out pulling its edge). The RHS of Eq. (10) is then recognized as
the difference between the energy∼Y (strain)2R2

drop and the strain
energy of the disk in the base (dry) state ∼ Y (Tdry/Y )2R2

drop.

Finally, the direct cost of bending energy, Ubend, that the drop
imposes on the sheet, can be estimated as:

Ubend ∼ BR2
drop/R2

curv , (11)

which is much smaller than the energetic cost of straining the
sheet, and can thus be safely ignored. More precisely, the ra-
tio Ubend/Ustrain scales as a (negative) power of the bendability
parameter ε−1 defined in (3), and is thus negligible in our high-
bendability analysis. (More details on the scaling of Ubend/Ustrain

with ε−1 may be found in Appendix B.)

Recalling that we are assuming that the characteristic tensile
strains are small (i.e. γ̃, T̃dry� 1), we can compare the geometric
contribution to ∆Ustrain with ∆Usurf; one immediately sees that for
the energetic cost (due to strain) to not exceed the gain in surface
energy, requires (Rdrop/Rcurv)

2→ 0 as γ̃→ 0. Simple trigonometry
then shows further that, in this limit, sinφ ≈ Rdrop/Rcurv.

Our scaling analysis therefore reveals that the angle of the
sheet at the meniscus φ → 0 in the nearly inextensible limit,
γ̃ → 0. Finally, anticipating (and confirming below in a self-
consistent manner), that in such a contact geometry the decrease
in surface energy substantially exceeds the energetic cost of
strain (namely, ∆Usurf/∆Ustrain→ ∞ as γ̃ → 0), we are left with the
problem of minimizing the energy ∆Usurf, Eq. (9), subject to the
condition that φ → 0. We therefore conclude that:

In a partially wet solid sheet, the YLD contact geometry (7a) is
approached asymptotically in the nearly inextensible limit:

φ → 0,θ → θY as γ̃ → 0 .

The above result does not suffice to determine the exact “rate"
at which the YLD contact geometry is approached (namely, how
φ and θ − θY scale with γ̃). To determine this, and thereby the
tension in the wet portion of the sheet, Twet, we note that vertical
force balance at the contact line implies:

Twet = γ
sinθ

sinφ
. (12)

Hence, the smaller φ is, the larger is the tensile load induced
in the sheet and the energetic cost associated with the mechan-
ical strain, Twet/Y . If the mechanical and geometric sources of
strain (the two terms on the RHS of Eq. 10), were to balance
each other, then one obtains, with the aid of the geometric rela-

Journal Name, [year], [vol.],1–23 | 5

Page 5 of 23 Soft Matter



tion φ ∼ Rdrop/Rcurv, that φ ∼ (γ/Y )1/3� 1, and Twet ∼ T ∗ where:

T ∗(γ,Y )∼ Y 1/3
γ

2/3. (13)

The estimate, Twet ∼ T ∗ ignores the effect of Tdry; the size of
Tdry in comparison to T ∗ therefore determines two, qualitatively
different, regimes:

Non-perturbative regime (T ∗� Tdry):

If the tension within the dry portion of the sheet (away from the
contact line), Tdry, is sufficiently small in comparison to T ∗, the
first term on the RHS of Eq. (10) may be safely approximated as
R2

dropT 2
wet/Y . The balance just discussed then yields:

∆Tcap = Twet−Tdry ≈ Twet ∼ γ
2/3Y 1/3 ∼ T ∗� Tdry (14)

such that the YLD law is recovered asymptotically:

φ ∼ γ̃
1/3 = (γ/Y )1/3 ; θ → θY . (15)

Perturbative regime (T ∗� Tdry):

In contrast, if the tension within the dry part, Tdry, is sufficiently
large in comparison to T ∗, the tension Twet in the wet part may be
assumed to be only slightly larger than Tdry. In such a case, the
vertical force balance (12) yields:

φ ∼ γ/Tdry ; θ → θY . (16)

In this case, the capillary-induced stress is small in comparison to
the dry tension, and one obtains:

∆Tcap = Twet−Tdry ∼ γ � Tdry. (17)

This demonstrates the perturbative nature of partial wetting if
the tension in the dry part of the sheet is sufficiently large.

Inspecting the above results, a few comments are worth mak-
ing. First, the parameter that determines whether the drop-
induced stress, ∆Tcap, is large (non-perturbative) or small (per-
turbative) in comparison to the stress in the dry part, Tdry, is the
ratio Tdry/(Y 1/3γ2/3). Thus, even if the drop is extremely small in
comparison to the size of the sheet (Rdrop/Rout � 1), the drop’s
effect on the stress in the sheet in the vicinity of the contact line
may be very large. Second, the results of the scaling analysis are
insensitive to the method by which the tension Tdry is established
away from the drop (i.e. clamping or fixed load). Third, the YLD
contact geometry (7a) may be approached even if the tension Tdry

in the dry part is very small in comparison to the surface tension
γ, provided that γ/Y � 1. Note that this is another mechanism
through which the YLD contact geometry may be reached in thin
sheets, in addition to the limit Tdry/γ → ∞, which was pointed
out by Schulman and Dalnoki-Veress 4 . Finally, as the sheet ap-
proaches the inextensible limit (decreasing values of γ̃, T̃dry), the
minimal relative tension required for the effect of the drop to be
perturbative diverges, namely, T ∗/γ ∼ γ̃−1/3→ ∞.

2.2 Energetic hierarchy

Our scaling analysis relied on the assumption that as γ̃→ 0, the ra-
tio ∆Usurf/∆Ustrain→∞. The validity of this assumption can now be
verified self-consistently by substituting the scaling results for Twet

and φ ≈Rdrop/Rcurv into the RHS of Eq. (10). Using Eqs. (2,15) for
the non-perturbative regime (Tdry < T ∗), and Eqs. (16,17) for the
perturbative regime (Tdry > T ∗), we find ∆Ustrain ∼ R2

drop(γ
4/Y )1/3

and ∆Ustrain ∼ R2
drop[Tdryγ/Y + Y (γ/Tdry)

4], respectively. The rele-
vant asymptotic ratio in the non-perturbative regime is then

For Tdry < T ∗ :
∆Usurf

∆Ustrain
∼
(

Y
γ

)1/3
, (18)

whereas in the perturbative regime:

∆Usurf

∆Ustrain
∼


T 4

dry
Y γ3 , T ∗ < Tdry < T ∗

(
Y
γ

)1/15
,

Y
Tdry

, Tdry > T ∗
(

Y
γ

)1/15
.

Notwithstanding these various asymptotic limits, the key point
is that in each case the partial wetting of a highly-bendable,
nearly-inextensible sheet exhibits an energetic hierarchy:

∆Usurf � ∆Ustrain�Ubend . (19)

Similarly to the classical YLD law, for which the only energy of
relevance is Usurf, the energetic hierarchy of a partially wet thin
sheet under tension is characterized by dominance of the surface
energy, which underlies a geometric constraint (the asymptoti-
cally flat state of the sheet). However, the various asymptotic
regimes are spanned by two scales of residual tensile strain: γ̃

and T̃dry; the ratio between these two small, but crucially differ-
ent, scales give rise to distinct, nontrivial routes through which
the YLD contact of (7) is attained.

Energetic hierarchies similar to (19) emerge in a host of prob-
lems in which a Gaussian curvature is imposed on a thin solid
sheet with the aid of tensile loads that pull on its edges. In such
problems, a separation of energy scales of the type signified by
Eq. (19) is interpreted as an “asymptotically isometric" response,
whereby the elasticity of the sheet only enters through various
types of asymptotic constraints on the value of a dominant en-
ergy (here the surface energy) that does not depend explicitly on
any of the elastic parameters of the sheet. Other examples of
the intricate mechanics associated with asymptotically isometric
response include the indentation of floating sheets9,17 and pres-
surized shells18,19, the wrapping of liquid volumes with “solid
surfactants”20, and the twisting of a pre-stretched ribbon21–23.

One must thus appreciate the crucial, intimate relation be-
tween the non-perturbative nature of the capillary-induced stress
∆Tcap and the Gaussian curvature imposed by the drop on the wet
part of the sheet. By ignoring or underestimating this geometric
source of strain (i.e. the second term on the RHS of Eq. 10), one
is misled to conclude that capillary-induced stress is necessarily
a small perturbation to a pre-existing tension (Tdry) in the sheet.
We emphasize that this is a feature of the two-dimensional nature
of this problem — in the one-dimensional, but otherwise identi-
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cal, versions of this phenomenon24–26, the Gaussian curvature is
identically zero, and this complexity does not exist.

3 Quantitative theoretical approach

3.1 The Föppl-von Kármán equations

Our starting point for a quantitative analysis is the Föppl-von Kár-
mán (FvK) equations, which describe the mechanical equilibrium
of solid sheets27,28. The FvK equations are a nonlinear set of par-
tial differential equations, but the axial symmetry of our problem
allows their reduction to a coupled pair of ordinary differential
equations (ODEs) for the vertical displacement of the membrane,
ζ (r), and a stress potential, ψ(r):

1
r

d
dr

(
ψ

dζ

dr

)
= p(r), (20)

r
d
dr

{
1
r

d(rψ)

dr

}
=−Y

2

(
dζ

dr

)2
. (21)

Here the loading p(r) is due to the capillary pressure within the
droplet (for 0 ≤ r ≤ Rdrop) and vanishes for Rdrop < r ≤ Rout. The
radial and hoop stresses in the sheet are related to the stress po-
tential ψ(r) through σrr = ψ(r)/r, and σθθ = dψ/dr, which en-
sures that the in-plane equilibrium of stresses holds automatically
‡. Equation (20) results from vertical force balance on the sheet,
in which we neglect the effects of the sheet’s bending stiffness
— our analysis therefore corresponds to “membrane theory"28,
or (see Appendix A) to “tension field theory" when the capillary
effect is strong enough to induce (hoop) compression in the radi-
ally stretched sheet6,12. The second equation, (21), expresses the
compatibility of strains.

Turning to the 1st FvK equation (20), we note that Laplace’s law
relates the pressure in the droplet to the curvature of the liquid-
vapor interface (see fig. 1), and hence:

p(r) =

{
2γ sinθ/Rdrop, 0≤ r ≤ Rdrop

0, Rdrop ≤ r ≤ Rout.
(22)

Integrating Eq. (20) once, we obtain:

ψ
dζ

dr
=


γ sinθ

Rdrop
r2, 0≤ r ≤ Rdrop

0, Rdrop < r ≤ Rout
(23)

‡Note that the FvK equations (20,21) determine the actual, thickness-integrated
stress (force/length) within the sheet: σi j(r)/t is the average force/area in the di-
rection ~ei (i ∈ {r,θ}), on the face of an infinitesimal solid volume element within
the sheet whose (outward) normal is in the direction ~e j ( j ∈ {r,θ}). Hence, we
need not consider the distinction (which appears often in the literature) between
“elastic" and “surface" contributions to the stress within the sheet 6. Note, however,
that Eqs. (20,21) are the Euler-Lagrange equations derived from the elastic energy
alone (which penalizes for bending and straining the sheet with respect to its rest,
planar, stress-free state, but does not account for the energetic cost of surface area).
Hence, since we pointed out already in §1.1 that the energetically-favorable state
of the system is obtained by minimizing the sum of energies, Ustrain +Ubend +Usurf

1,
the difference in solid surface energies, γsv− γsl = γ cosθY , does ultimately affect the
stress within the sheet, even though it does not appear explicitly in Eqs. (20,21).
As we explain in Appendix A (A.1.3), the term γ cosθY enters through a boundary
condition that is required to solve the set of ODEs (20,21).

where the constants of integration in both parts of Eq. (23) van-
ish: the first to ensure that the membrane is flat at the centre,
ζ ′(0) = 0, and the second since there is no net vertical force on
the sheet outside the drop, r > Rdrop.14

3.2 Eliminating membrane shape

Equation (23) allows us to eliminate the membrane slope, ζ ′,
from (21), to give equations for the stress potential ψ with no
explicit dependence on the membrane shape ζ (r). Equation (21)
becomes:

r
d
dr

{
1
r

d(rψ)

dr

}
=−Y

2

(
γ sinθ

Rdrop

)2
r4

ψ
−2, 0≤ r ≤ Rdrop (24)

and
d
dr

{
1
r

d(rψ)

dr

}
= 0, Rdrop ≤ r ≤ Rout . (25)

Equation (25) describes the Lamé problem29: a solid annulus
subject to a tensile load TO at its inner edge, Rdrop, and another
load at its outer edge, r = Rout; there are no stresses induced by
out-of-plane displacements. Writing the effective far-field tension
as T∞, we find:

ψout(r) = T∞r+(TO−T∞)
R2

drop

r
, Rdrop < r < Rout . (26)

For TO < 2T∞, this classical Lamé solution yields purely tensile (i.e.
positive) hoop and radial stresses; the sheet is therefore stable to
out-of-plane deflections. Note that at this stage the radial stress in
the sheet on the (dry) side of the contact line, TO, is not known;
it must be found by matching the solutions of the two equations
(24) and (25), as we will describe in the sequel.

A key limitation of the Lamé solution (26) and the reduced FvK
equation (24) is that they are valid only if σθθ > 0 everywhere.
For a range of parameters, we find that σθθ < 0 in an annulus
LI < Rdrop < LO around the contact line; wrinkles then emerge to
relax this compressive stress. The presence of wrinkles changes
the nature of the stress field qualitatively and requires special con-
sideration, as discussed in Appendix A.

3.3 Perturbative versus non-perturbative

In Appendix A we discuss the steps necessary to obtain a com-
plete solution to our problem. However, for the purposes of the
forthcoming discussion, it is useful to assess the physical nature
of the solution by re-writing the 2nd FvK equation (24):

r
d
dr

{
1
r

d[rψ/(RdropT∞)]

dr

}
=− 1

2 T̄−3
∞ sin2

θ
r4

(ψ/RdropT∞)2 (27)

for 0≤ r ≤ Rdrop, where the dimensionless parameter:

T̄∞ = T∞/(γ
2Y )1/3 (28)

compares the far-field tension, T∞, to the capillary-induced ten-
sion generated by the combination of elasticity and surface ten-
sion, T ∗ = γ2/3Y 1/3, which we encountered already in §2. Written
in this way, one may readily distinguish between two distinct lim-
its, demarcated by the value of the dimensionless parameter, T̄∞:
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(i) If T̄∞� 1, the nonlinear term on the RHS of Eq. (27), whose
origin is the “inhomogeneous source" term, (dζ/dr)2 in Eq. (21),
is negligible. One therefore expects ψ to be well approximated by
the homogeneous solution, ψ ≈ T∞r. In this case, the capillary-
induced stress has a perturbative effect on the in-plane stress in
the sheet. This is as might be expected, since in this case the
exerted tension, T∞, is significantly larger than that generated by
the combination of surface tension and elasticity, γ2/3Y 1/3.

(ii) In contrast, if T̄∞ � 1 the RHS of Eq. (27) cannot be ne-
glected. An elementary solvability condition is a balance between
the two sides of Eq. (27), which yields the scaling, ψ/Rdrop ∼
γ2/3Y 1/3. In this case, the tension, T∞, exerted on the sheet is sig-
nificantly smaller than that generated by the combination of sur-
face tension and elasticity, γ2/3Y 1/3, and so we expect the tension
in the sheet to be significantly modified by the drop’s presence.

Recalling the definition (28) of the dimensionless parameter
T̄∞, one may note that the above classification into perturbative
and non-perturbative responses (now based on the nature of the
solutions of the FvK equations), mirrors precisely the distinction
made in §2.1 on the basis of energy considerations.

4 Results
We now report the results of our solution of the FvK equations,
as formulated in §3 (with further details given in Appendix A). In
§4.1 we focus on the contact geometry and stress in the vicinity
of the contact line. To simplify this problem as much as possi-
ble, we first consider an infinitely large sheet, Rout/Rdrop = ∞, so
that the details of the boundary conditions (clamped versus load-
controlled) are not significant apart from the value of the far-field
tension, T∞, that is imposed. We then explain how our solution
can be used to properly extract the value of T∞ from the measured
angle φ , and identify the parameter regime in which the measure-
ment of the tension at the contact line, reported by Nadermann
et al. 3 and Schulman and Dalnoki-Veress 4 , gives a good estimate
of T∞. In §4.2 we discuss the conditions under which our neglect
of the finite size of the system is valid, and discuss the differ-
ences between clamping and load-controlled conditions. Finally,
in §4.3 we discuss the “phase diagram" (fig. 2) that character-
izes the parameter regimes in which the capillary-induced stress
is weak (perturbative) or strong (non-perturbative) when com-
pared to the pre-existing stress in the sheet. We illustrate the
differences between these regimes by discussing the nature of the
stress profiles induced by the presence of the drop.

4.1 Stress and angle in the vicinity of the contact line

4.1.1 Solution of FvK equations

We solved the FvK equations numerically (following the proce-
dure described in Appendix A) for a partially wet sheet, which is
large (i.e. Rout/Rdrop � 1), and nearly inextensible when subject
to capillary-induced loads (i.e. γ̃ = γ/Y � 1). In this regime the
physics is governed by a single dimensionless parameter:

τ∞ =
T̄∞

sin2/3
θY

= T∞/(γ
2Y sin2

θY )
1/3 . (29)

Since a direct measurement of stresses within a solid sheet is
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Fig. 4 The numerically-determined results of the leading order problem.
(a) The rescaled leading-order tension at the contact line,
T (0)

I /(γ2Y sin2
θY )

1/3, as a function of the imposed load,
τ∞ = T̄∞/sin2/3

θY . Plotted in this way, the numerical results (solid curve)
are universal in the singular limit γ̃ → 0. For τ∞→ ∞, TI ≈ T∞ (black
dashed line) and the tension at the contact line is only slightly perturbed
by the presence of the drop. However, as τ∞ becomes order unity, we
find a significant perturbation caused by the drop. (b) The rescaled
angle of inclination of the drop, φ1 ≈ φ/(γ/Y )1/3, as a function of the
applied tension, τ∞. Numerical results are shown (solid curve), together
with the approximate expression (31) (dash-dotted curve) and the large
τ∞ limit φ1 ≈ sinθY /T∞ (dashed line). Inset: The relative error in (31) as
τ∞ varies; this error remains less than 3% throughout. Note that the two
quantities T (0)

I and φ1 are ‘slaved’ by the leading order vertical force
balance at the contact line, (59), so that the product of the quantities on
the y-axes of (a) and (b) is unity.
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Fig. 5 The effect of the transition from perturbative to non-perturbative
behaviour on measurable quantities for different values of the capillary
extensibility γ̃: γ̃ = 10−4 (red), 10−3 (green) and 10−2 (blue). (a) The
tension on the wet side of the contact line TI and (b) the inclination angle
of the sheet on the wet side of the contact line, φ . In both plots, results
are shown for an infinite sheet, Rout = ∞, (so that clamping and applied
load boundary conditions are identical), and θY = 60◦. Plotting in this
way highlights that the degree of pre-tension, T∞/γ, required for the
presence of the droplet to be perturbative depends on the value of γ̃.
The boundary between wrinkled and non-wrinkled states is indicated by
triangles and a dashed line.

difficult, a primary purpose of experiments is to use measure-
ments of the inclination angle φ to infer the stress, TI , at the
contact line (see fig. 1), and hence the tension in the dry sheet
Tdry. Realizing that our solution of the FvK equations provides the
shape of the deformed sheet and the stress within it as functions
of the single parameter, τ∞, we can extract from this solution a
direct relationship between φ and T∞ ≈ Tdry, with which an exper-
imentalist can directly infer the latter by measuring the former.
Since our focus is on nearly inextensible sheets, namely, γ̃ � 1,
we expand these quantities in powers of γ̃1/3, so that

TI

γ2/3Y 1/3
= T̄I = T̄ (0)

I +O(γ̃1/3), φ = φ1γ̃
1/3 +O(γ̃2/3), (30)

with the exponent 1/3 rationalized in Appendix A.
Our numerical predictions for the leading order functions

T̄ (0)
I and φ1 are shown in fig. 4a and 4b, as the single dimen-

sionless parameter τ∞ varies. (Note that at leading order the
inclination angle φ is “slaved" to the tension at the contact line,
TI , through the relationship, φ ≈ sinθY × γ/TI , as one would
anticipate from a simple vertical force balance. At leading
order (in γ̃), this slaving is exact, i.e. φ1 = sinθY /T̄ (0)

I , and
so the curves in figs 4a and 4b are the reciprocal of one an-
other.) The analogous panels in fig. 5 show TI and φ as functions
of T∞/γ for a few values of the capillary extensibility parameter, γ̃.

Figure 4a exhibits a clear division into two regimes. For τ∞ >

O(1), TI ≈ T∞ (dashed line); in contrast, for τ∞ < O(1), TI � T∞.

These distinct types of mechanical response parallel our quali-
tative discussion of §2: For sufficiently large values of τ∞, the
capillary-induced stress is weak compared to the pre-tension and
hence TI ≈ T∞. However, for small values of τ∞ the capillary-
induced stress is strong compared to the pre-tension and there-
fore is responsible for the value of TI . One signature of the signifi-
cant change to the stress seen for ‘weak’ pre-tension is the onset of
radial wrinkles when the hoop stress becomes compressive in an
annular zone around the contact line, i.e. σθθ (r)< 0 for r≈ Rdrop;
we find that wrinkling occurs for τ∞ . 0.2297.

Importantly, the borderline between “strong" and “weak"
pre-tension is not, T∞ ∼ γ, as one might naively guess, but rather,
τ∞ ∼ O(1)⇒ T∞ ∼ T ∗ = γ2/3Y 1/3 � γ. While this prediction was
already anticipated through the qualitative arguments of §2,
figs 4 and 5 show that in the non-perturbative regime, T∞ < T ∗,
the value of TI is not constant; instead, as we discuss below,
our solution to the FvK equations exhibits a weak, logarithmic
dependence of TI on T∞ in the non-perturbative regime.

To facilitate the use of our numerical results in data analysis, it
would be helpful to provide an explicit approximant for the curve
in fig. 4b, so that an experimenter can extract the pre-tension
in the sheet (T∞) from measurements of either the inclination
angle of the sheet at the contact line, φ , or the measured ten-
sion in the vicinity of the contact line, TI , without needing to
solve the FvK equations numerically. It is possible to determine
an asymptotic result for φ in the limit τ∞ � 1, as shown in Ap-
pendix A (see, in particular, eqn (76)). Similarly, for τ∞ � 1,
we expect to recover (16), or, equivalently, φ ∼ (γ̃ sinθY )

1/3τ−1
∞ .

For simplicity, we suggest that the asymptotic result for τ∞ � 1
be used whenever τ∞ . 0.2297 (i.e. whenever wrinkling occurs).
For τ∞ & 0.2297 (with no wrinkling), we suggest using a func-
tional form φ = (γ̃ sinθY )

1/3[(τ∞+A3)/(τ
2
∞+A1τ∞+A2)

]
which re-

produces the expected behaviour for τ∞� 1; here, the constants
A1 ≈ 0.839, A2 ≈ 0.351 and A3 ≈ 1.069 are chosen so that this ex-
pression joins smoothly to the result for τ∞ . 0.2297 at this critical
point. This yields a suitable approximation for the membrane in-
clination (measured in radians):

φ

(γ/Y )1/3 sin1/3
θY
≈

(C−10logτ∞)
1/3, τ∞ . 0.2297

τ∞+A3
τ2

∞+A1τ∞+A2
, τ∞ ≥ 0.2297.

(31)

while the internal tension at the contact line is simply given by
TI ≈ γ sinθY /φ . In eqn (31), the constant C ≈ −4.394 emerges
from a detailed asymptotic analysis of the wrinkled problem (see
Appendix A) and the logarithm is natural. The expression in (31)
is accurate to within 3% for all τ∞ (see inset of fig. 4(b)).

4.1.2 Extracting T∞ from measured angles

In the experimental studies of Nadermann et al. 3 and Schulman
and Dalnoki-Veress 4 , the authors measured the angles at the con-
tact line of a droplet sitting on a suspended sheet. From these
measurements, they extracted the value of the stresses TI and TO

using force balance at the contact line. In §5.2 and §5.4 we ad-
dress some subtleties in both versions of this proposal that appear
not to have been appreciated previously. Here we focus instead
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on a separate assumption, which we believe was made implicitly
by both groups of authors: that the extracted tension (TI or TO)
gives a reliable estimate for the tension within the sheet prior to
wetting, Tdry≈T∞

§.

At this stage of our discussion, it should be clear that the va-
lidity of the approximation, T∞ ≈ TI , is limited to the parame-
ter regime, T∞ � T ∗ ∼ γ2/3Y 1/3, for which the capillary-induced
stress is sufficiently weak. The results of our FvK model (to lead-
ing order in γ̃) allows us to extract the actual far-field tension T∞,
that would lead to a given inclination angle, φ — if the values of
the sheet’s thickness and Young’s modulus (t,E, respectively), the
liquid–vapour surface tension (γ), and the Young angle (θY ) are
all known, then the inclination angle φ is enough to determine T∞.
The measured values of this angle for several systems were kindly
provided to us by Nadermann et al. 3 and Schulman and Dalnoki-
Veress 4 ; fig. 6 shows our determination of the corresponding val-
ues of T∞ in each case, based solely on the reported measurement
of the angle φ and the material properties of the sheets involved¶.
Table 1 reports each set of data and compares the value of T∞/γ

determined via our method with the corresponding value of TI/γ,
which were previously reported3,4. Two observations are imme-
diately apparent from fig. 6:

• For several systems (specifically, drops of glycerol on SIS4),
the approximation TI ≈ T∞ gives a good estimate of the true ten-
sion within the sheet. However, for glycerol drops on PnBMA4

(the blue circles in fig. 6), the value of TI exceeds our estimate
of the actual T∞ by more than an order of magnitude. Further-
more, for some of the thinner PDMS sheets (e.g. the sheets with
t = 5− 15 µm and drops of De-ionized water or DMSO, see table
1) there can be a smaller, but still substantial difference, O(50%)

or more, between the perturbative approach3 and the FvK-based
solution. (Note that two values of T∞ are given for PDMS in ta-
ble 1, corresponding to the range of values of Young modulus,
0.57 MPa ≤ E ≤ 3.7 MPa30; for a given measured angle φ , the
larger value of E leads to larger discrepancies between our FvK-
based calculations and the perturbative approach.)

The question then arises of whether one can know which of the
two regimes (perturbative or non-perturbative) an experiment
lies in. Without knowing the tension in the dry sheet (denoted
Tdry and defined in (5) dependent on the boundary conditions)
such knowledge is not possible. However, once the angle φ has
been measured (and assuming the values of γ̃ and θY are known)
it is possible to test whether the droplet lies in the perturbative
or non-perturbative regime. Our numerical solution shows that if

§ We emphasize that in this paper TI ,TO, and T∞, refer to values of the tension in the
sheet in the vicinity of the contact line (TI ,TO) and away from it (T∞ ≈ Tdry) for a
given sheet thickness t. Our results are thus akin to an individual experiment in
Fig. 3 of Ref. 3 and Fig. 2 of Ref. 4), and not to any extrapolations of TI(t),TO(t),T∞(t)
as t→ 0, which are shown in Tables 1-3 of Ref. 3. We do not discuss here the possible
meaning of such an extrapolation, which was proposed by Nadermann et al. 3 as a
means to determine solid surface energies.
¶Note that fig.6 shows how to employ FvK theory to extract a far-field tension, τ∞,

from measured angles in the absence of a priori knowledge of this tension; it should
not be interpreted as an experimental validation of our theory.
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Fig. 6 Analysis of previously published experimental measurements of
the membrane angle φ for different droplets on suspended elastic
membranes of different thickness and material properties 3,4. (a)
Measurements of φ may be used to infer the appropriate value of T∞/γ

according to the leading order theory presented here. (b) Rescaling the
membrane angle φ in the expected way collapses data onto the
theoretical prediction (solid curve). The deviation of the data from the
perturbative prediction, φ = γ̃1/3 sin1/3

θY /τ∞, (dashed line) shows the
extent to which experiments fall into the perturbative regime. The inset
highlights the region in which the transition from perturbative to
non-perturbative occurs. In all plots circles represent data for PnBMA
films 4 (the large error bars in the non-perturbative regime stem from the
weak (logarithmic) dependence of TI and φ on the pre-tension). Right
pointing triangles show data for SIS 4 . Other triangles show results for
PDMS sheets 3 with different liquid droplets as follows: De-ionized water
(left pointing triangles), Ethylene-Glycol (upward pointing triangles) and
DMSO (downward pointing triangles). In the calculation of the
associated pre-tension, T∞, we use values of the Young moduli as
follows: E = 0.8 MPa (SIS, as communicated by Kari Dalnoki-Veress),
E = 1 GPa (PnBMA, as communicated by Kari Dalnoki-Veress) and
E = 2.85 MPa (PDMS, based on the value used for numerical
simulations by Nadermann et al. 3 ).
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the measured value of φ (in radians) satisfies

φ . 1.18
(

γ sinθY

Y

)1/3
, (32)

then the value of TI (inferred from vertical force balance) is within
10% of the value of the far-field tension T∞. We propose (32)
as a rule-of-thumb to determine whether experiments lie in the
perturbative or non-perturbative regimes; we used this criterion
in potting the perturbative and non-perturbative regions in fig. 2.
• In the non-perturbative regime, the weak (logarithmic)

dependence of TI (and consequently the inclination angle φ) on
the pre-tension, gives rise to large “signal-to-noise" ratio. Hence,
even an extremely precise measurement (e.g. 2% accuracy), gives
rise to a large uncertainty in inferring T∞ from the value of φ . One
should bear this sensitivity in mind when using “drop-on-sheet"
as a set-up for determining pre-tension in suspended sheets.

4.2 Finite size and boundary conditions

In the analysis presented above, it has been assumed that the
sheet can be considered infinitely large in comparison to the
drop’s radius, such that a uniform, isotropic stress, σrr = σθθ = T∞

is attained sufficiently far from the contact line. In practical sit-
uations, one has to relate the effective far-field tension T∞ that
appears in eqn (31) and figs 4,5 to the actual boundary condition
imposed at r = Rout. The two most common boundary conditions
in experiments are a fixed tensile load Tedge or an imposed hor-
izontal displacement (corresponding to a pre-tension, Tpre, with
subsequently clamped boundary condition). These two tensions
are both specific cases of the tension in the dry sheet, Tdry, which
we defined in (5). In the first part of this subsection, we consider
briefly the different mechanisms through which T∞ is determined
under these two types of BCs. We will see that in both cases, one
can safely ignore any effect of finite size (so that T∞ ≈ Tdry) for
practical purposes, provided that the sheet is sufficiently large,
Rout/Rdrop & 10. In the second part, we briefly address the differ-
ences we would expect to observe in the elasto-capillary response
of multiple drops on a suspended sheet, in comparison to the sin-
gle drop model assumed throughout our study.

4.2.1 Boundary conditions

Prescribed load: This has been achieved experimentally by
using sheets floating on a liquid bath6,8,11,31, and variants
thereon13,32,33. In this case, σrr = Tedge is prescribed at r = Rout;
using the axisymmetric Lamé solution (26) gives

Tedge = T∞ +(TO−T∞)
R2

drop

R2
out

. (33)

Note that TO is a function of T∞ (at this order in our asymptotic ex-
pansion TO = TI , with T̄I(τ∞) plotted in fig. 4a). We see therefore
that (33) gives us an implicit equation for T∞(Tedge).

Clamping with pre-tension: If the sheet is initially subject to
some (isotropic) pre-tension, Tpre, and then clamped in this state
then the horizontal displacement at the edge is fixed: ur(Rout) =

(1− ν)TpreRout/Y . Any subsequent stress field must also satisfy

(a)

(b)
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Fig. 7 The effect of finite size (hence different boundary conditions) on
the leading order tension at the contact line, T (0)

I = T (0)
O . Solid curves

show numerical results computed with various sheet sizes:
Rout/Rdrop = 5 (red), 10 (green) and 15 (blue). The corresponding results
for an infinite sheet are shown for comparison (dash-dotted curve),
together with the perturbative prediction, TI = T∞ (dashed line). (a)
Results for a sheet clamped while under a pre-tension Tpre. Squares
indicate where the value of Tpre for a given TI differs by 10% from the
infinite sheet result. (b) The case of a controlled load Tedge applied at
r = Rout. In this case, wrinkles ultimately reach the edge of the sheet,
and the droplet is wrapped by the sheet if the applied tension falls below
a critical value, indicated by circles. In both plots γ̃ = 10−3 and θY = 60◦.

this condition on the radial displacement at r = Rout; the (axisym-
metric) Lamé solution (26) then gives that:

Tpre = T∞−
1+ν

1−ν
(TO−T∞)

R2
drop

R2
out

. (34)

Equations (33) and (34) suggest that, as long as Rout/Rdrop� 1,
the far-field stress T∞ is very close to the tension within the dry
sheet i.e. T∞ ≈ Tdry, up to corrections of O(Rdrop/Rout)

2. From
our numerical solutions of the FvK equations (see figure 7), we
find that these approximations are highly accurate as long as
Rout/Rdrop & 10, and Tdry is not too small. For practical purposes,
therefore, the two types of boundary conditions (clamped and
load-controlled) are likely to be almost indistinguishable, imply-
ing that Tdry ≈ T∞.

This result comes with a proviso, however: the axisymmetric
results (33) and (34) also demonstrate that when TO becomes suf-
ficiently large in comparison to the dry tension Tdry (which may
occur only when T̄∞ is extremely small and the system is deeply
in the non-perturbative regime) a better estimate is required. In-
deed, fig. 7a shows that even with Rout/Rdrop = 15, the effect of
finite size may be observed once Tpre/γ . 0.1. In this ‘ultra-weak
tension’ regime, one needs to be careful to account for wrinkling
(which occurs with τ∞ . 0.2297); careful consideration shows that
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Table 1 A summary of previous experiments on sheets of SIS and PnBMA (data taken from Schulman and Dalnoki-Veress 4 ) and PDMS (data taken
from Nadermann et al. 3 ). The raw values of the measured angle φ in our notation are given, together with the calculated tension at the contact line,
TI . We also give the calculated value of the far-field tension T∞ based on the analysis presented in this paper. Values for PnBMA (SIS) use the
estimate E = 1 GPa (E = 0.8 MPa), as communicated to us by Kari Dalnoki-Veress. The value of Young’s modulus for PDMS is known 30 to vary in the
range 0.57 MPa≤ E ≤ 3.7 MPa. Since Nadermann et al. 3 do not include values of E for the samples used in their experiments, we calculated the
pre-tension T∞ that correspond to the measured angles for each sheet thickness using the extreme values given by Wang et al. 30 as lower and upper
bounds of E, these correspond to the upper and lower bounds of T∞, respectively.

Sheet t (µ m) Liquid `BC (µm) φ (◦) TI/γ T∞/γ

PnBMA 0.065 Glycerol 0.64 22 2.50 0.020
PnBMA 0.1 Glycerol 1.21 18.5 2.99 0.041
PnBMA 0.14 Glycerol 2.01 15.5 3.61 0.12

SIS 0.27 Glycerol 0.17 46 1.20 1.10
SIS 0.35 Glycerol 0.24 43.5 1.26 1.15
SIS 0.97 Glycerol 1.13 34 1.62 1.41
SIS 1.3 Glycerol 1.75 31 1.77 1.55
SIS 2.45 Glycerol 4.52 21 2.61 2.45
SIS 3.5 Glycerol 7.72 17.5 3.15 2.99

T∞/γ T∞/γ

(E = 3.7 MPa) (E = 0.57 MPa)
PDMS 5 De-ionized Water 7.5−19.0 21.8 2.6 1.2 2.4
PDMS 9 De-ionized Water 25.2−64.2 13.3 4.3 3.0 4.1
PDMS 11 De-ionized Water 34.0−86.7 12.4 4.7 3.2 4.4
PDMS 15 De-ionized Water 54.2−138.1 12.8 4.5 2.6 4.1
PDMS 18 De-ionized Water 71.2−181.5 11.3 5.1 3.3 4.8
PDMS 25 De-ionized Water 116.6−297.0 9.6 6.0 4.1 5.6
PDMS 5 Ethylene Glycol 9.3−23.8 18.3 2.6 1.4 2.6
PDMS 9 Ethylene Glycol 31.5−80.3 12.0 4.0 2.8 4.1
PDMS 11 Ethylene Glycol 42.6−108.5 10.7 4.5 3.3 4.6
PDMS 15 Ethylene Glycol 67.8−172.7 11.0 4.5 2.6 4.4
PDMS 18 Ethylene Glycol 89.1−227.1 10.2 4.9 2.8 4.7
PDMS 25 Ethylene Glycol 145.9−371.7 8.5 6.0 4.0 5.8
PDMS 5 DMSO 9.7−24.6 21.5 2.3 0.4 1.7
PDMS 9 DMSO 32.6−83.0 13.8 3.5 1.4 3.0
PDMS 11 DMSO 44.0−112.2 12.4 3.9 1.6 3.3
PDMS 15 DMSO 70.1−178.6 13.0 3.8 0.9 3.0
PDMS 18 DMSO 92.1−234.8 12.1 4.1 1.0 3.2
PDMS 25 DMSO 150.8−384.3 9.4 5.4 2.3 4.4

the effect of finite size become relevant when Rout/Rdrop ∼ TO/T∞,
rather than the critical scale Rout/Rdrop ∼ (TO/T∞)

1/2 that might
be expected from (33),(34). Since TO ∼ γ2/3Y 1/3 in the non-
perturbative regime (up to logarithmic corrections) we find that
the finite size of the system, and hence the details of the boundary
conditions become important when

Tdry . γ
2/3Y 1/3 Rdrop

Rout
. (35)

For ‘ultra-weak’ tensions, i.e. those satisfying (35), the two
types of BCs give rise to qualitatively different responses. If the
edge is clamped, the sheet remains nearly planar, but the far-field
tension, T∞, is far larger than the pre-tension, Tpre (see fig. 7a
and 8a). If the sheet is subject to a controlled load, with Tedge

satisfying (35), the drop “pulls" the whole sheet, and a transition
from partial wetting to a complete wrapping is expected; such a
mechanism underlies the wrapping of liquid drops by sheets and
the geometry-induced transition from wrinkles to folds in floating
sheets, both of which have been reported recently20,33.

4.2.2 Placing multiple drops on a sheet

An interesting question, triggered by various experiments, per-
tains to the effect of placing multiple drops on a suspended4

or floating34 sheet. Clearly, if the system is in the perturbative
regime, where the capillary–induced stress is weak in comparison
to the stress at the far edge, there is little interaction between

the drops, even if their mutual distance is comparable to or even
smaller than a drop’s radius. However, in the non-perturbative
regime, where each drop induces a non-uniform, anisotropic
stress around itself (see dashed green curves in Fig. 8), one may
expect a mutual interaction between drops; this may affect a net,
density-dependent contribution to the far-field stress. Since the
capillary-induced stress decays with distance from the contact
line (unless the system is in the ultra-weak tension regime, de-
fined by Eq. 35), we expect the mechanics to still be described
by our single-drop model if the density of drops is sufficiently
small. A simple estimate for the minimal density of drops, ρmin,
above which drop-drop interactions prevail ‖, may be obtained
by noting that interactions must certainly occur when the wrin-
kle patterns of isolated drops start to overlap. Since the wrinkle
length L∼ TORdrop/T∞,6 we expect that:

ρmin . (Rdrop/L)2 ∼ (T∞/TO)
2 ∼ τ

2
∞ (36)
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Fig. 8 Stress profiles within the sheet as the pre-tension and system
size vary. Here results are shown for Tdry/γ = 10 (red, solid curves) and
Tdry/γ = 0.1 (green, dashed curves and blue, dash-dotted curves), all
with θY = 60◦ and γ̃ = 10−2. Results for Tdry/γ = 0.1 are shown for an
infinite system (green, dashed curves) and a clamped system with
Rout/Rdrop = 10 (blue, dash-dotted curves). (a) The radial stress, σrr, and
(b) hoop stress, σθθ , are shown. We note that the stress profile within
the sheet is highly anisotropic, σrr 6= σθθ , unless Tdry/γ is large.
Furthermore, the hoop stress becomes relaxed, σθθ ≈ 0, for some
region in response to the appearance of radial wrinkles. Finally, note
that the combination of a finite clamped boundary and ultra-low tension
means that the stress within the sheet is significantly perturbed from the
value of the pre-tension everywhere within the sheet, not merely in the
vicinity of the droplet (compare the finite case with Tdry/γ = 0.1 to that
with the same value of Tdry but an infinite system size).

4.3 A “phase diagram" for a partially wet solid sheet

Figure 2 provides a succinct summary of our results in terms of
the different behaviours of the system that are observed in differ-
ent regimes of the capillary and dry extensibility parameters, γ̃

and T̃dry (defined in (6)). Figure 2 is thus a “phase diagram" for
partial wetting of a large (Rout� Rdrop), highly bendable (ε � 1)
sheet. The diagram distinguishes between three asymptotic
regimes: “perturbative", “non-perturbative", and “ultra-weak
tension" (where the tension is weak enough that finite size
effects, e.g. the precise boundary condition applied at r = Rout,
plays an important role). The qualitative differences between
these “wettability phases" stem from the distinct mechanism by
which the capillary-induced stress affects the isotropic, uniform
stress, σrr = σθθ = Tdry in the sheet prior to wetting.

Perturbative regime, T̄∞� 1: (Equivalent to: T̃dry� γ̃2/3)
In this parameter regime, the stress in the partially-wet sheet is
only very slightly perturbed from the isotropic, uniform stress of
the dry sheet. This is demonstrated in fig. 8, where the solid red
curves show the stress components, σrr(r) (fig. 8a) and σθθ (r)
(fig. 8b) for a sheet with T̃dry = 0.1 and γ̃ = 0.01.

The implications of this perturbative effect on the vicinity of
the contact line are rather obvious — indeed, the deviations of
the solid red curves from the uniform tension state are barely
visible on the scale of fig. 8. In the vicinity of the contact line,
the stress TO = σrr(R+

drop) ≈ T∞, and the stress discontinuity
(which, to leading order in γ̃, is given by the YLD contact me-
chanics (7b) and is unaffected by elasticity, see §A.1.3) implies
TI = σrr(R−drop) ≈ T∞ + γ cosθY ≈ T∞ (where the last equality
follows since T∞� T ∗� γ).

Non-perturbative regime, Rdrop/Rout < T̄∞� 1 (Equivalent to

γ̃2/3Rdrop/Rout < T̃dry� γ̃2/3)
In this parameter regime, the stress in the partially-wet sheet
exhibits an anisotropic and non-uniform profile around the drop.
The stress deviates strongly from the uniform, homogeneous
stress state prior to wetting, as is demonstrated in fig. 8 for a
sheet with T̃dry = 0.001 and γ̃ = 0.01 (dashed green curves). In
this case, both stress components return to their dry states far
from the droplet, i.e. σrr,σθθ → Tdry as r/Rdrop → ∞. However,
each stress component demonstrates a significant change in the
vicinity of the drop: firstly, the hoop stress vanishes, σθθ = 0, in
some region that spans the contact line. (This plateau heralds the
formation of radial wrinkles, which relax compressive stress up
to a residual value that vanishes6,12 with the inverse bendability
ε, see Appendix B.) Secondly, the radial stress is substantially
larger than the stress prior to wetting, σrr � Tdry, near the
drop. In particular, the tension in the vicinity of the contact line
TO ∼ T ∗ = γ2/3Y 1/3 (up to logarithmic corrections). Recall also

‖At the qualitative level, such a transition between weak and strong interaction
regimes was explored in chapter 4 of Huang 34 . There, multiple drops were placed
on a floating sheet and substantial drop-drop interactions (evidenced through wrin-
kle patterns of various shapes), were observed when the drop separation was com-
parable to their radii.
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that the stress discontinuity across the contact line is given to
leading order in γ̃ by γ cosθY ; therefore the tension in the sheet is
continuous at leading order in γ̃, i.e. TI ≈ γ2/3Y 1/3 also.

Ultra-weak tension regime, T̄∞ < Rdrop/Rout (Equivalent to T̃dry <

γ̃2/3Rdrop/Rout)

In the perturbative and non-perturbative regimes, the effect
of the capillary-induced stress is restricted to a finite zone
around the contact line and approaches the uniform, isotropic
stress of the pre-wetted state a distance L � Rout from the
contact line. (In the perturbative regime, L is proportional to
Rdrop, while in the non-perturbative regime L ∼ Rdrop/T̄∞, see
Ref. 6). In contrast, in the ultra-weak tension regime, the drop
produces a strong, global effect: the stress is significantly altered
(compared to the pre-wet state) throughout the sheet. If the
sheet is clamped, it remains nearly planar, but the radial stress is
amplified substantially, reaching a value σrr(r) ≈ T ∗ = γ2/3Y 1/3

as r→ Rout. (This is shown as the blue, dash-dotted curves in figs
8a,b, for the same parameters as in the perturbative regime just
discussed but with the addition of a clamped boundary condition
at r = Rout = 10Rdrop.) If the far edge is not clamped, the exerted
tensile load is not sufficient to stabilize the planar state, and the
sheet wraps around the drop20.

5 Discussion and critique

In this section, we point out the limitations of our FvK-based
theoretical approach before discussing some central assumptions
made in previous studies, and new insights into the validity of
these assumptions suggested by our analysis.

5.1 Limitations of our FvK-based theoretical framework

The FvK equations describe solid sheets whose local stress-strain
relation is characterized by an isotropic, Hookean response27; as
such this approach is typically valid only if strains are small. Since
the scales for strain are set by γ/Y and Tdry/Y , the small strain as-
sumption is compatible with our asymptotic analysis when both
extensibility parameters, defined in eqns (4) and (6), are small.
Furthermore, by using a single planar coordinate system (Monge
representation), it is implicitly assumed that the deformed shape
represents a small deviation from the planar state, so that, in
particular, the slope of the membrane remains small everywhere.
Since the largest slope of the deformed sheet is given by the in-
clination angle φ , which is found to vanish with the extensibility
parameters, the small-slope assumption too is self-consistent.

A further limitation on our results is that they are only valid if
the sheet is highly bendable, namely ε � 1; combining this with
the above small strain requirement, γ̃ = γ/Y � 1, we find that our
analysis is limited to sheets whose thickness satisfies6

`m� t� R2/3
drop`

1/3
m , (37)

where the length `m = γ/E is known in the soft capillarity com-
munity as the “elastocapillary length"10. Equation (37) may al-

ternatively be written:

t� `BC� Rdrop , (38)

where the length `BC = (Et3/γ)1/2 (also called an “elasto-capillary
length” in the geometry-elasticity community35–37), has recently
been termed the “bendo-capillary length” for clarity10. For `BC�
t � `m, the response of the sheet may no longer be assumed to
be Hookean since then the capillary-induced strain, γ/Et� 1. For
drops that are much smaller than `BC, the bending energy (Ubend,
see §2.3 and §3.1) is no longer small in comparison to the sur-
face energy and strain. Indeed for such small drops, the effect
of resistance to bending has a considerable effect on the mechan-
ics6,10,24,25,38. (We note that the inequalities above should be
slightly modified to account for the fact that the relevant tension
scale in the bendo-capillary length `BC is TI , not γ; in reality, this
represents a small modification of these conditions, as discussed
in Appendix B, and so we present the simpler versions here.)

As discussed already in §1, the value of the capillary strain is
generally small in the experiments reported to date: with γ =

72 mN/m, glassy films (E ∼ 1 GPa, t & 100 nm)4,6,11 have `m ∼
0.1 nm� t while polymeric films (E ∼ 1 MPa, t & 1 µm)3,4 have
`m ∼ 10 nm� t. The first condition in (37) therefore holds in such
systems. The second condition of (37) holds provided that the
droplets are sufficiently large compared to the length `BC, values
of which are given in table 1. We see that most sheets (except
perhaps the t = 18 µm and t = 25 µm PDMS sheets3) satisfy this
constraint for droplets of radius Rdrop & 500 µm.

We also point out that the upper limit on the film thickness,
t�R2/3

drop`
1/3
m , in (37) is strictly different from that of Style et al. 10 ,

who proposed to distinguish between the partial wetting of “thin"
and “thick" films through the ratio γ/Et alone, regardless of the
droplet’s size. Instead, the double inequality in (37), and the
analysis in our paper suggest (at least) three qualitatively-distinct
types of response for sheets that are free to bend in response to
contact with a liquid drop: A non-Hookean response (t < `m); a
Hookean, high-bendability response (if both inequalities in (37)
are satisfied), which has been the subject of this paper (and may
be perturbative or non-perturbative depending on the value of
τ∞); and a Hookean low-bendability response (`BC >Rdrop), which
has been the subject of numerous papers24,25.

5.2 An elasto-capillary probe for pre-tension?

We now consider the implications of our results for understanding
the contact between a droplet and a thin solid sheet. The question
of most interest is whether the measured value of TI can be used
to infer the state of stress in the dry film, Tdry — it is this applica-
tion that has motivated recent studies3–5. For simplicity, we shall
assume a large sheet, i.e. Rout/Rdrop� 1, and a given Young’s an-
gle: θY = cos−1(∆γs/γ). The assumption of a large sheet ensures
that the far-field tension, T∞ ≈ Tdry, as discussed in §4.2.

Our analysis suggests that the dimensionless membrane
inclination angle φ × (Y/γ sinθY )

1/3 gives a simple indication
of whether a sheet is in the non-perturbative regime or the
perturbative regime. In particular, if relationship (32) is satisfied,
then we expect that TI ≈ T∞ to within 10%. Otherwise we expect

14 | 1–23Journal Name, [year], [vol.],

Page 14 of 23Soft Matter



that the experiments lie in the non-perturbative regime, for
which TI ∼ T ∗(γ,Y ) = γ2/3Y 1/3 (up to a logarithmic dependence
on T∞). Using the criterion in (32) suggests that the membrane
angles measured by Schulman et al.4,5 for PnBMA sheets and
by Nadermann et al. 3 for some PDMS sheets are large enough
that they lie in the non-perturbative regime. As such, the
measured tensions TI ,TO, in the vicinity of the contact line
are affected mainly by the capillary-induced stress, ∼ T ∗(γ,Y ),
up to a correcting factor that depends only logarithmically
on T∞. One consequence of this conclusion is that we should
expect the measured values of TI ,TO to be proportional to t1/3

(again, up to logarithmic corrections). A plot of the experi-
mentally reported values of TI/γ was shown in fig. 3 and, as
already discussed, is consistent with such a scaling. (However,
we emphasize again that for the experiments of Schulman and
Dalnoki-Veress 4 on SIS membranes, the criterion (32) is satisfied,
indicating a perturbative response; as such, the t1/3 scaling is not
expected to be observed for SIS membranes, just as seen in fig. 3.)

Of the experimental data sets discussed in our paper, that for
PnBMA sheets4 appears to exhibit the strongest non-perturbative
response: for the sheet thicknesses and Young’s modulus reported
in Table 1 (and captions of Fig. 2,3,6), the measured angles, φ , re-
ported in Ref.4 are large in comparison to (γ/Y )1/3 (see Fig. 6b).
Such large values may be observed only if the pre-tension, Tpre,
differs greatly from the value of TI in the vicinity of the contact
line (see table 1). From this perspective, a simultaneous mea-
surement of these large values of the angle φ , corroborated by an
independent measurement of the values of Tpre reported in Ref.4,
seems possible only if the FvK theory of elastic sheets is not valid
for thin PnBMA sheets. According to our discussion in §5.1, a fail-
ure of FvK theory may occur if an amorphous sheet is not a solid
phase (i.e. it has a vanishing shear modulus), or if the material ex-
hibits a strongly non-Hookean response even under the very small
strains expected in those experiments, (since here γ/Y < 10−3).

It is thus interesting to note that Schulman and Dalnoki-
Veress 4 rationalized their measurement of TI by comparison with
an independent measurement of Tdry using the indentation of the
sheet without any drops present4, as well as another estimate of
Tdry that uses the thermal expansion coefficients of Polystyrene
membranes39. These results all suggest that TI ≈ Tdry (or at least
that the discrepancy is relatively small, and not an order of mag-
nitude as we would expect for PnBMA based on analysis of FvK
equations). Yet another indication that the pre-tension, Tdry, is
substantially larger than the small values obtained by FvK the-
ory (Table 1) is the reported absence of radial wrinkles, which
FvK theory predicts for τ∞ < 0.23 (see also §5.3) ∗∗. These ob-
servations raise the surprising possibility that thin PnBMA sheets
(which are believed to be in a glassy state) exhibit a strong non-
Hookean response, invalidating the predictions of FvK theory.

∗∗We should note also that a claim made in Ref. 3 and echoed in Ref. 4, on which we
will elaborate elsewhere, suggests that a lower bound on the pre-tension in a dry
suspended sheet is 2γsv; such a putative bound is certainly well above our FvK-based
estimates of the pretension in the PnBMA experiments.

5.3 Capillary-induced wrinkles

As is indicated in fig. 4, for τ∞ . 0.2297, our calculations pre-
dict that the capillary stress induces hoop compression. Sim-
ilarly to observations made in the study of a floating sheet by
Huang et al. 8 and Toga et al. 11 , such a compression is expected
to be relieved through a pattern of radial wrinkles in a “corona"
around the contact line. The extent of this corona has been the
object of much study6. The number of radial wrinkles, N, sat-
isfies the scaling law: N ∼

√
Rdrop/`BC ∼ t−3/2E−1/2, and is thus

expected to be substantially larger in the PnBMA sheets4 than in
the PDMS sheets3, while the amplitude of wrinkles is inversely
proportional to N and is thus expected to be larger in PDMS
sheets than in PnBMA. However, we note that neither Schulman
and Dalnoki-Veress 4 nor Nadermann et al. 3 reported any ob-
servations of such capillary-induced wrinkles. According to our
analysis (see Fig. 6), the absence of capillary-induced wrinkles is
plausible for most experiments with PDMS sheets, but certainly
not for the experiments with PnBMA sheets, where the corre-
sponding value of τ∞ is much smaller than 0.23. Nevertheless, to
verify that hoop compression (and consequently radial wrinkles)
may emerge also in a suspended sheet with a clamped boundary,
our colleague D. Kumar (UMass Amherst) conducted the demon-
stration shown in fig. 1(b),(c): an ultra-thin Polystyrene sheet
(t ≈ 364 nm, E ≈ 3.4 GPa) is lifted from a liquid-vapor interface
with the aid of a cylindrical cuvette. The two panels fig. 1b,c
show a plan view of the suspended sheet (which is believed to
be effectively clamped to the cuvette’s edge with some unknown
pre-tension), before and after a small liquid drop is placed at its
center. Kumar’s demonstration is clear evidence that capillary-
induced wrinkles (and therefore a significant drop-induced per-
turbation of the pre-stress) are not only a feature of floating
sheets, but also emerge in the partial wetting of suspended sheets
(for sufficiently small pre-tension).

5.4 Geometry at the contact line and membrane shape

Notwithstanding the crucial distinction between the perturbative
and non-perturbative regimes, the underlying idea of extracting
the tension in the vicinity of the contact line from the measured
contact angles, θ and φ , remains a sound one. However, there are
some important subtleties concerning the measurement of angles
in the system, which we now discuss. Specifically we seek to
elucidate the following questions: what do we actually mean by
the angle φ , and how should it be measured experimentally?

5.4.1 The angle φ at different scales

While the definition of the angle φ seems clear, in practice it is
not necessarily easy to measure: in our (membrane-theory) ap-
proach, the angle φ is defined to be the angle between the sheet
and the horizontal when viewing the droplet on a scale that is
much larger than the bendo-capillary length `BC = (B/γ)1/2 yet
much smaller than the drop’s radius, Rdrop

††. On such an “in-

††The horizontal scale over which the corner at the contact line is smoothed out by
bending stiffness depends on the tension at the contact line, and hence is actually a
multiple, `∗, of `BC given in (77) of Appendix B.
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PDMS sheet
liquid-vapour interface

Fig. 9 Distinction between the different length scales at which the
droplet may be observed, and the different angles that result. At an
intermediate scale (`BC � `inter� Rdrop), the angle of inclination at the
contact line is well-defined, φout. However, when the contact line is
observed at a scale comparable to the bendo-capillary length,
`BC ∼ (Et3/γ)1/2, the inclination angle will take a different value, φin.

termediate" scale, both the effect of small-scale curvature (due to
bending) and large-scale curvature (due to the spherical shape of
the bulged sheet beneath the drop) can be neglected such that
there is a clearly defined angle, φ = φout (see fig. 9). However, at
a scale comparable to `BC, the membrane bends noticeably (since
bending stiffness matters at this scale), and the angle between the
tangent to the sheet and the horizontal is modified from the angle
observed at the outer scale i.e. φin 6= φout in the notation of fig. 9.

The distinction between the angles φin and φout appears to have
caused some confusion in the literature. It is our understand-
ing that Nadermann et al. 3 measured φin and inferred the an-
gle θ between the liquid-vapor surface and the horizontal from
θ = θY − φin — a relationship that is expected to be valid when
inspecting the contact line at scales < `BC.25 (Note that the sym-
bol “θ " is used in3 to denote the whole angle between the sheet
and the liquid–vapor interface in the vicinity of the contact line
(fig. 1d of3), namely, their "θ " is θ +φin in our notation.) In con-
trast, Schulman and Dalnoki-Veress 4 measured both θ and φout

(in our notation) and observed that θ +φout 6= θY .
To further demonstrate the equivalence of the two approaches

we now show that both sets of experiments are consistent with
the theoretical prediction of Schroll et al. 6 who found that

θY −θ

φout
≈ φin

φout
→ 1

2
as γ̃ → 0 (39)

using a numerical minimization of the total energy in the prob-
lem. Fig. 10 shows that the experimental measurements of both
Nadermann et al. 3 and Schulman and Dalnoki-Veress 4 are in very
good accord with this prediction. In particular, note that the ap-
parent contact angle θ + φout 6= θY in both sets of experiments.
One may also note that any deviations of the LHS in Eq. (39)
from the value 1/2 implies deviations of the forces in the vicinity
of the contact line from the YLD value (i.e. TO− TI 6= γ cosθY ).
To see this formally, one needs to consider the higher-order stress

0 10 20 30 40 50
0

5

10

15

20

25

Fig. 10 Experimental data from Nadermann et al. 3 and Schulman and
Dalnoki-Veress 4 replotted to show the deviation from the Young angle,
θY −θ as a function of the inclination of the membrane at the contact
line (denoted φout = φ here). The purely geometrical prediction, (39), is
shown by the dashed line. Experimental results are shown for Glycerol
drops 4 on polymeric films of SIS (red right pointing triangles) and glassy
films of PnBMA (blue circles); other experimental results are for a variety
of droplets on PDMS films 3 as follows: De-ionized water (cyan left
pointing triangles), Ethylene-Glycol (magenta upward pointing triangles)
and DMSO (green downward pointing triangles).

terms, T̄ (2)
I , T̄ (2)

O , in the γ̃-expansion (see Appendix A.1.4), and

note that θY −θ 6= φout/2⇒ T̄ (2)
O − T̄ (2)

I 6= 0. Equations (57,58) in
Appendix A.1.4 shows that this reflects deviations from the YLD
contact mechanics (7b), that vanish asymptotically as γ̃ → 0.

Finally, let us note that while the computation of the tension
TI (σII in the notation of Nadermann et al. 3) from the angles
φin and φout is consistent, we believe that their computation of
TO (σI in their notation), is not precise, since it ignores an incli-
nation in the dry part of the sheet (βin in fig. 9), which, when
observing the vicinity of the contact line at scales < `BC, must
be taken into consideration. A consistent computation of TO

in their approach (from measured φout,φin) is simply the YLD
law: TO = TI + γ cosθY (as was done in4), or, equivalently, TO =

γ cos(θY −φin)+TI cosφout, but not TO = γ cos(θY −φin)+TI cosφin

(Eq. 2 of ref.3, expressed in our notations).

5.4.2 Membrane shapes

The angle φout is typically measured by fitting the membrane
shape beneath the drop to a spherical cap4. While this is observed
to be a very good description of experimental data, one would
expect it only to be strictly valid when the stress in the sheet is
very close to being uniform and isotropic, which corresponds to
the case of extremely high pre-tension, or the perturbative regime
τ∞� 1. However, our numerical solutions of the full FvK problem
(see fig. 11) show that, in fact, the shape remains very close to a
spherical cap even as τ∞ decreases well into the non-perturbative
regime, where the stress state is neither uniform nor isotropic. For
all but the very smallest values of τ∞, it seems that the spherical
approximation is likely to be a good one.

6 Conclusions
In this paper we have addressed the partial wetting of a thin solid
sheet under tension, following Schroll et al. 6 . Our analysis fo-
cuses on the limit of nearly inextensible (γ̃� 1) yet highly bendable
(ε � 1) sheets. This parameter regime, defined by the inequali-
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Fig. 11 The numerically determined membrane shape beneath the drop
is very close to a spherical cap. (a) The dimensionless shape for three
different values of τ∞: τ∞ = 0.01 (red curves), 0.1 (green curves) and
τ∞ = 1 (blue curves). (b) Plotting the rescaled deformation from the
centre as a function of r2 highlights how close to spherical caps the
membrane shapes in (a) are (a spherical cap corresponds to the line
y = x, black dashed line). Nevertheless, note that the discrepancy does
increase as the pre-tension decreases.

ties t � `BC � Rdrop (see §5.1), corresponds to most experiments
reported recently on floating6,8,11 and suspended sheets3–5. Our
main result, motivated by energetic scaling arguments (§2) and
confirmed by a detailed solution of the FvK equations (§3,§4),
is the presence of two qualitatively distinct types of response:
perturbative (in which placing a drop only affects the uniform,
isotropic pre-tension slightly) and non-perturbative (in which the
capillary-induced stress in the vicinity of the drop is much larger
than the pre-tension, and hence depends only weakly on the pre-
tension). The borderline between these two regimes is demar-
cated by the ratio T̄∞ (Eq. 29), between the far-field tension, T∞,
and the characteristic capillary-induced stress, T ∗ ∼ γ2/3Y 1/3.

One counter-intuitive feature of the non-perturbative response
in a nearly inextensible sheet (i.e. γ̃ � 1), is that the capillary-
induced stress may dominate a pre-tension Tpre, even if the latter
is very large in comparison to γ (i.e. γ � Tpre � γ2/3Y 1/3). A
second counter-intuitive feature is that, even though the stress
fields are markedly different in each case, the solid-liquid contact
in both parameter regimes differs only slightly from the classical
YLD law (Eq. 1); the small deviations of the contact angles from
YLD contact geometry (7a) are characterized by (distinct) powers
of the capillary and dry extensibility parameters, γ̃, T̃dry (see fig. 4
and Eq. 31).

A further unusual feature of the partial wetting of a drop of
surface tension γ on a sheet with thickness t is that the capillary-
induced stress, T ∗ ∼ γ(t/`m)

1/3, increases as the elasto-capillary
length, `m = γ/E, decreases. This is the opposite trend to that
found in the partial wetting of thick (or non-bendable) solids,
where the effect of solid elasticity on liquid contact vanishes as `m

gets sufficiently small. This sharp contrast reflects the nontrivial
interplay by which solid geometry and elasticity affect partial wet-

ting phenomena; such an interplay between geometry and elastic-
ity may affect solid-liquid interactions in more complex systems,
e.g. a drying colloidal drop that rests on a stretched sheet31.

Our FvK-based analysis led to a one-to-one relationship be-
tween the measured contact angle (φ) and the far-field tension,
T∞, in a large sheet. To facilitate the use of this relationship in ex-
periments, we proposed an expression for this relationship, (31),
that is uniformly valid (up to small errors). We also critically ex-
amined the level of accuracy of previous works3,4,39, which over-
looked the possibility of a non-perturbative effect due to capillary-
induced stress and instead suggested that the value of any pre-
tension in the sheet can be extracted from the contact angle with
the aid of local force balance alone. Our analysis of raw data from
these works showed that only for a subset of the studied sheets is
such a method reliable (in the sense that the inferred value of the
pre-tension is correct to within 10% accuracy); in most instances,
the error in the extracted value of pre-tension from local force
balance consideration alone (i.e. without using Eq.(31)) is 50%
and may even be much more. Furthermore, Eq. (31) and figs. 4–
6 show that extracting a value of the pre-tension from measure-
ments of the angle φ is liable to be rather inaccurate if the pre-
tension is low enough to lie in the non-perturbative regime (since
there φ depends only very weakly on the pre-tension).
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A Details of theoretical approach

In this section we discuss more completely the full solution of the
FvK equations that we developed in §3.

A.1 Full statement of the problem (unwrinkled version)

For simplicity, we begin by describing in detail our full solution of
the FvK equations in the case where the sheet remains unwrinkled
throughout.
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A.1.1 Non-dimensionalization

The discussion of §3.3 highlights the qualitatively different be-
haviours that can be observed in the limits T̄∞ � 1 and T̄∞ � 1.
However, for a detailed quantitative analysis of these behaviours,
as well as the behaviour for intermediate T̄∞, we must first non-
dimensionalize the problem (23)–(25). To do this, we recall the
scaling analysis of §2 and in particular the natural tension scale
T ∗ = γ2/3Y 1/3 introduced in (13). We therefore introduce the di-
mensionless variables:

ψ̄ =
ψ

T ∗Rdrop
; r̄ =

r
Rdrop

(40)

Eq. (24) then becomes:

r̄
d
dr̄

[
1
r̄

d(r̄ψ̄)

dr̄

]
=− 1

2 sin2
θ

r̄4

ψ̄2 0≤ r̄ ≤ 1 . (41)

Outside the drop, 1 ≤ r̄ ≤ Rout/Rdrop, Eq. (25) immediately gives
the dimensionless version of (26), namely

ψ̄ = T̄∞r̄+(T̄O− T̄∞)/r̄, (42)

where
T̄∞ = T∞/T ∗ (43)

and the dimensionless tensile stresses in the immediate vicinity of
the contact line are:

T̄I =
σrr(r = R−drop)

T ∗
, T̄O =

σrr(r = R+
drop)

T ∗
. (44)

A.1.2 Local boundary conditions

The equation for the stress in the sheet beneath the droplet, (41),
is a second order differential equation, requiring two BCs. One
BC is that the horizontal displacement vanishes at the centre of
the drop, i.e. ur(r→ 0) = 0 or, in terms of the stress potential,

lim
r̄→0

[r̄ψ̄
′−νψ̄] = 0. (45)

The second BC is that the tension at the contact line (approached
from within the drop) is TI , i.e.

T̄I = ψ̄(1−) , (46)

defining T̄I as a first unknown. We denote the solution of Eq. (41)
subject to the two BCs (45) and (46) by ψ̄in(r̄; T̄I ,θ). The func-
tion ψ̄in(r̄; T̄I ,θ) must be determined numerically13,14 as we will
describe below.

For a given T̄∞, the stress within the dry part of the sheet (r̄ > 1)
is given, in terms of a single unknown T̄O, by the dimensionless
Lamé solution, (42). To contrast with the solution for the wetted
portion of the sheet, we denote this by the function ψ̄out(r̄; T̄O, T̄∞)

(We emphasize that the stress associated with ψ̄out remains ten-
sile (i.e. positive) everywhere provided that T̄O < 2T̄∞; otherwise
this solution must be replaced by an analogous result, which in-
corporates the effect of wrinkles, see eqn (67) below.)

The stress potential beneath the drop, ψ̄in, depends on two un-
knowns, T̄I and θ ; together with the angle of the sheet at the
contact line, φ , and T̄O, we have four unknowns in total. The two

(normalized) tensions T̄I , T̄O, and the two angles θ ,φ , are related
by force balance equations at the contact line:

T̄O = γ̃
1/3 cosθ + T̄I cosφ , (47)

T̄I sinφ = γ̃
1/3 sinθ , (48)

respectively, where we recall the definition γ̃ = γ/Y , (4). (Note
that Eq. (48) is merely an evaluation of (23) as r→ R−drop.)

A further equation connecting the four unknowns is the conti-
nuity of radial displacement at the contact line,

uin
r (r̄; T̄I ,θ)|r̄→1− = uout

r (r̄; T̄O)|r̄→1+ , (49)

where uin
r ,u

out
r are functions that determine the radial displace-

ment, respectively, within the wet and dry zones of the sheet.
These functions may be determined in terms of ψ̄in and ψ̄out since
(in axisymmetry) the radial displacement ur = rεθθ and the hoop
strain εθθ = (σθθ −νσrr)/Y (from Hooke’s law). Hence, relating
stress to the potentials ψ̄in and ψ̄out, we may write (49) as

dψ̄in

dr

∣∣∣∣
r̄=1
−νψ̄in(1; T̄I ,θ) = 2T̄∞− (1+ν)T̄O (50)

Equations (47), (48) and (50) comprise three equations for the
four unknowns T̄I , T̄O, θ , and φ . We therefore require another
condition to close the problem; we address this missing equation
next.

A.1.3 Non-local effects at the contact line

Since the YLD angle θY does not appear explicitly in any of the
equations (47)–(50), it is tempting to propose a fourth equation
by analogy with the classical YLD contact limit (7). Two propos-
als for this missing link are: (i) that θ = θY (Ref.14), and (ii)
T̄O− T̄I = γ̃ cosθY (Ref.4 and an analogous assumption in Ref.3).
We discuss the practical value of these proposals in §5.4; how-
ever, let us note that the mere search for a simple rule overlooks
an important conceptual aspect of the partial wetting problem.
As was pointed out by Olives 1 , a complete characterization of
the contact requires a global minimization of the energy, namely,
Ustrain +Ubend +Usurf (see §2.3), and cannot be determined from
considerations of local force balance alone.

Olives’s insight was taken up by Schroll et al. 6 , who used the
three equations (47), (48) and (50) to eliminate three of the four
unknowns and then computed the total energy, Ustrain +Usurf (ex-
ploiting the negligibility of Ubend in the high bendability regime),
as a function of the single remaining variable, which was taken
for convenience to be the angle φ . They then minimized this en-
ergy as a function of the angle φ to obtain their final solution.

To avoid the need for a numerical minimization of the total en-
ergy, and to shed some light on the underlying physics, we employ
here an analytical approach to the problem, by expanding around
the YLD limit (7). Namely, we assume that the contact angles φ
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and θ , are described by a power series:

φ = φ1γ̃
β + · · · (51)

θ = θY +∆θ1γ̃
β + · · · (52)

such that the YLD contact geometry, φ → 0,θ → θY is approached
asymptotically as γ̃ → 0, with some (as yet undetermined) ex-
ponent β and coefficients φi and ∆θi. The existence of such an
expansion is motivated by the qualitative discussion in §2, and by
experimental and numerical results6 (see Appendix A.3).

In the current paper, we will focus on the leading order be-
haviour of this expansion, which provides the numerical accuracy
necessary for a reliable prediction of the far-field tension, T∞, from
the measured angles in the parameter regime studied in recent ex-
periments on suspended sheets3,4. As we will discuss below, such
a leading-order analysis is insufficient to identify the deviations
of the stress jump at the contact line, TO−TI from the YLD con-
tact mechanics (7b). Such corrections can emerge only as higher
powers of the parameter γ̃ — a conceptually important issue that
will be addressed in a future publication, where we will proceed
to compute higher orders in this expansion.

A.1.4 Computational scheme

To translate the solution of (41) with Eqs. (47)–(52) into a com-
putational scheme, we extend the expansion in powers of γ̃ used
in Eqs. (51,52), to express the stresses, T̄I , T̄O also:

T̄I = T̄ (0)
I + γ̃

β T̄ (1)
I + .. (53)

and
T̄O = T̄ (0)

O + γ̃
β T̄ (1)

O + ... (54)

Substituting the expressions (53) and (54) into the force bal-
ances at the contact line, Eqs. (47) and (48), we consider terms
up to O(γ̃β ) to find that:

T̄ (0)
O + γ̃

β T̄ (1)
O = γ̃

1/3 cosθY + T̄ (0)
I + γ̃

β T̄ (1)
I +O(γ̃2β ) (55)

and
γ̃

β T̄ (0)
I φ1 = γ̃

1/3 sinθY +O(γ̃β+1/3). (56)

Inspection of (55) and (56) implies that β = 1/3, and hence
that:

T̄ (0)
O = T̄ (0)

I , (57)

T̄ (1)
O = T̄ (1)

I + cosθY (58)

and
T̄ (0)

I φ1 = sinθY . (59)

To proceed, we let

ψ̄in(r̄) = ψ̄
(0)
in (r̄)+ γ̃

1/3
ψ̄
(1)
in (r̄)+O(γ̃2/3) (60)

with a similar expansion for ψ̄out(r̄). The leading-order of (41) is
easily seen to be

r̄
d
dr̄

[
1
r̄

d
(
r̄ψ̄

(0)
in
)

dr̄

]
=− 1

2 sin2
θY

r̄4(
ψ̄
(0)
in
)2 0≤ r̄ ≤ 1 . (61)

Substituting (60) into Eq. (50), and making use of (57) we
obtain a boundary condition for (61):

dψ̄
(0)
in

dr̄

∣∣∣∣∣
r̄=1

+ ψ̄
(0)
in (1) = 2T̄∞. (62)

Together with the leading-order term of (45), i.e.

lim
r̄→0

[
r̄

dψ̄
(0)
in

dr̄
−νψ̄

(0)
in

]
= 0, (63)

we then have two boundary conditions for the second-order ODE
(61). At leading order in γ̃ the problem in 0 ≤ r̄ ≤ 1 is then com-
pletely specified and can be solved for given T̄∞ and θY . Com-
bining this solution with Eq. (57) and (59), the contact is then
characterized at leading order in γ̃. (Note that the leading-order
behaviour of the angular deflection of the membrane at the con-
tact line, φ = γ̃1/3φ is slaved to the leading-order stress at the
contact line through (59).)

A few comments are in order:

• Note that the deviation ∆θ of the upper angle from θY is not
determined by this leading order calculation — its evaluation re-
quires carrying out the expansion of Eq. (50) to higher orders in γ̃.
Similarly, the deviation of TO−TI from its YLD value (γ cosθY ), oc-
curs at O(γ̃2/3) and hence is beyond the leading order calculation
presented here. This observation (and more generally, the struc-
ture of the leading order equations (57-59)), mirrors our qualita-
tive analysis in §2, which required only the assumption ∆θ → 0 as
γ̃ → 0 to find the leading terms in φ and TI .
• Recall that the parameter T̄∞ is assumed to take a fixed value

in the expansion (51)–(54), and thus the solution of the lead-
ing order equations yields the angle φ(T̄∞,γ) ≈ φ1(T̄∞)γ̃

1/3. The
numerically-determined function φ1(T̄∞), reported in §4, does
exhibit the scaling rules that were anticipated by the qualita-
tive analysis of §2, i.e. eqns (15) and (16) are recovered, up to
some logarithmic corrections, in the expected parameter regimes
(T̄∞� 1 and T̄∞� 1, respectively).

A.2 Membrane theory versus tension field theory

In general, the problem of a drop sitting on an elastic sheet for
γ̃ � 1, can be divided into two regimes depending on the value
of the dimensionless parameter T̄∞, which in turn determines the
nature of the “membrane theory" solution (i.e. the solution of the
FvK equations (20,21) neglecting the explicit, high-order effect of
bending terms). These two regimes are:

(a) A parameter regime in which membrane theory yields a
stable solution, i.e. both the radial and hoop stresses of the mem-
brane solution are purely tensile (i.e. positive) everywhere. This
solution is obtained by solving (61) subject to (62) and (63).

(b) A parameter regime in which membrane theory, i.e. the so-
lution of Eqs. (61-63), predicts a state with a negative hoop stress,
σθθ (r)< 0, in an annular zone that includes the contact line; such
a solution is unstable to the formation of radial wrinkles.

In §A.2.1 we describe the membrane theory solution, while in
§A.2.2 we discuss the “tension field” solution that characterizes
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the wrinkled state in the limit of high bendability, ε � 1 (Eq. 3).

A.2.1 Axisymmetric deformations (membrane theory)

We consider Eqs. (41) and (42) in their respective intervals, 0 ≤
r̄ ≤ 1 and 1 ≤ r̄ ≤ Rout/Rdrop. In the first region (the wet tensile
region beneath the drop) the leading–order problem (61)–(63)
may be rescaled by letting ¯̄ψin = ψ̄in/sin2/3

θY to give

r̄
d
dr̄

[
1
r̄

d
dr̄

(r̄ ¯̄ψin
(0))

]
=− 1

2
r̄4[

¯̄ψin
(0)]2 (64)

subject to the boundary conditions

lim
r̄→0

[
r̄

d ¯̄ψin
(0)

dr̄
−ν ¯̄ψin

(0)]= 0,
d ¯̄ψin

(0)

dr̄

∣∣∣∣∣
r̄=1

+ ¯̄ψin
(0)(1) = 2τ∞ (65)

with τ∞ = T̄∞/sin2/3
θY , as defined in (29).

The problem (64) subject to (65) contains only the single pa-
rameter τ∞ and may readily be solved numerically using, for ex-
ample, the MATLAB routine bvp4c. Once this numerical solu-
tion in the wetted region 0 ≤ r̄ ≤ 1 has been determined for a
given value of τ∞, the value of T̄O = ¯̄ψin

(0)(r̄ = 1)sin2/3
θY can be

determined for a given θY , and the solution in the dry region
1 ≤ r̄ ≤ Rout/Rdrop read off from (42). We find numerically that
the stress remains tensile everywhere, σrr,σθθ > 0, provided that
τ∞ & 0.2297. This defines the parameter regime for which the
solution provided by membrane theory is stable.

A.2.2 Wrinkled state (tension field theory)

For τ∞ . 0.2297, membrane theory yields σθθ < 0 somewhere in
the sheet; in reality such a compression would be relaxed, σθθ ≈ 0
in some region LI < r < LO (where the ≈ sign indicates terms that
vanish as the bendability, defined in (3), ε → 0). Such an asymp-
totically compression-free solution to Eqs. (24,25), is described
by tension field theory6,12,13.

To obtain the tension field theory solution, the sheet must be
divided into four spatial regions that are each treated differently:
a wet tensile region (0≤ r ≤ LI), a wet wrinkled region (LI ≤ r ≤
Rdrop), a dry wrinkled region (Rdrop ≤ r ≤ LO) and a dry tensile
region (LO ≤ r ≤ Rout). These regions must be joined together by
appropriate matching conditions where they meet. The equations
that are relevant in each region (at leading order in γ̃), together
with the appropriate matching conditions are the subject of this
subsection.

Relaxing the compressive stress associated with wrinkling, i.e.
setting σθθ ≈ 0, we find that σrr = C/r throughout the wrinkled
region LI ≤ r ≤ LO. (In particular, the same constant C holds for
LI . r . Rdrop and Rdrop . r . LO by the condition T̄ (0)

I = T̄ (0)
O .) We

may therefore write that the stress potentials are

ψ̄in(r̄) =

{
ψ̄t(r̄;LI ,τ∞), 0≤ r̄ < LI/Rdrop

T̄O, LI/Rdrop < r̄ < 1 ,
(66)

and

ψ̄out(r) =


T̄O, 1 < r̄ < LO/Rdrop

T̄∞

(
r̄+

L2
O/R2

drop
r̄

)
, LO/Rdrop < r̄ < Rout/Rdrop .

(67)

The stress potential in the inner tensile region, ψ̄t(r̄;LI ,τ∞) that
appears in (66) solves (61) but with boundary conditions

lim
r̄→0

[
r̄

dψ̄t

dr̄
−νψ̄t

]
= 0 ,

dψ̄t

dr̄

∣∣∣∣
r̄=LI/Rdrop

= 0 , ψ̄t |r̄=LI/Rdrop
= T̄O (68)

where the last two express continuity of stress and displacement
fields at r = LI

12.

Matching the radial stress at r̄ = LO/Rdrop, we find that

T̄O = 2T̄∞LO/Rdrop. (69)

(Note that continuity of the hoop stress at r̄ = LO/Rdrop was used
already in writing down the specific Lamé form of (67).) Match-
ing the stresses at r̄ = LI/Rdrop we find that

τ3
∞L3

OR2
drop

L5
I

= k, (70)

where k≈ 0.012 is a constant that emerges from solving the inner
tensile problem numerically13.

For a given τ∞ < 0.2297, we therefore have three unknowns (TO,
LI and LO) with two equations relating them, (69) and (70). A fi-
nal condition is obtained by requiring that ur(L+

I ) = ur(L−O). (This
result follows from continuity of the radial displacement across
the edges of the wrinkled zone, i.e. ur(L−I ) = ur(L+

I ) and ur(L−O) =
ur(L+

O), combined with the vanishing of the hoop stress within
the wrinkled zone, which gives that ur(L−I ) =C/Y = ur(L+

I ).) We
therefore have that

0 = [ur]
LO
LI

=
∫ LO

LI

∂u
∂ r

dr =
∫ LO

LI

σrr

Y
− 1

2

(
dζ

dr

)2
dr, (71)

which, upon using σrr = TORdrop/r and the membrane shape6,13

ζ (r) =


γ sinθY R2

drop
6T∞LO

(r̄3−1), LI/Rdrop ≤ r̄ ≤ 1

0, 1≤ r̄ ≤ LO/Rdrop,

gives a final (closing) relationship

τ
3
∞

L3
O

R3
drop

log
LO

LI
=

1
80

(1−L5
I /R5

drop). (72)

This transcendental equation provides a closing equation, and
the system of equations (69), (70) and (72) can readily be solved
numerically to give, for example, T̄O(T̄∞).

To make further progress, it is useful to note that (70) can be
used to eliminate LO in favour of LI:

80k
3

log

(
kL2

I
τ3

∞R2
drop

)
=

R5
drop

L5
I
−1. (73)

This expression can readily be inverted to give the value of τ∞
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Fig. 12 The dependence of the angle φ on the parameter γ̃ for two
different values of the pre-tension T̄∞ = 1/2 (red curves) and T̄∞ = 2 (blue
curves) for θY = π/2. The full numerical results of Schroll et al. 6 (solid
curves) are well approximated by the leading order of our perturbation
expansion (dashed curves), provided that γ̃ . 10−2.

that would lead to a given wrinkle inner position LI/Rdrop

τ∞ = k1/3 (LI/Rdrop
)2/3 exp

[
1

80k
(1−R5

drop/L5
I )

]
. (74)

The expression in (74) is used to calculate the behaviour plot-
ted in figures in the main text. However, of particular interest is
the limit τ∞→ 0. In this limit, we further expect that LI/Rdrop� 1
and hence find that

LI

Rdrop
≈
[
80k
( 1

3 logk− logτ∞

)]−1/5
, (75)

which can then be combined with (69) and (70) to give

TI ≈ γ
2/3Y 1/3 sin2/3

θY (C−10logτ∞)
−1/3 (76)

where C = (8k)−1 +(10logk)/3 ≈ −4.394. Although this asymp-
totic result is formally only valid for τ∞ � 1, we find that in fact
this expression is accurate to within 3% of the true, numerically
computed value, for all τ∞ . 0.2297. We therefore suggest that
this should be used in all wrinkled cases, τ∞ . 0.2297; Eq. (76)
motivates (31).

A.3 Validity of asymptotic expansion

Being the leading-order term in an expansion, the solution of
(64)–(65) (and the equivalent in the wrinkled case) is expected
to be rather accurate at sufficiently small values of γ̃. A quan-
titative estimate for the accuracy is provided by comparing the
value of φ ≈ φ1(T̄∞)γ̃

1/3 obtained from the leading-order solution,
with the full energy minimization analysis of Schroll et al. 6 . Plot-
ting the two solutions as a function of γ̃, see fig. 12, we find that
our leading-order approach provides very good accuracy provided
that γ̃ . 10−2, which is the parameter regime of most of the ex-
periments that we address in §4.

B Neglecting bending rigidity
Our analysis and results do not include any explicit dependence
on the bending modulus, B, since our study addresses the limit of
high capillary bendability, ε � 1 (Eq. 3). Here we briefly explain
the perturbative (yet singular) effect of bending rigidity on the
mechanics in this parameter regime (the interested reader is
referred to earlier work6,12,13,19,40 for an expanded discussion
of the effect of bending rigidity in this class of elasto-capillary
problems).

Boundary layer: As the schematic drawing fig. 9 shows, the
sheet appears to have a sharp corner at the contact line when ob-
served at scales larger than some length scale, `∗. However, in
reality this corner is smoothed by the small (but finite) bending
stiffness of the sheet — an effect that is visible at scales compara-
ble to `∗. The scale `∗ can be determined by balancing the term
that would represent bending stiffness in the vertical force bal-
ance (20), Bd4ζ/dr4, with the tensile term in the vicinity of the
contact line, ∼ TI d2ζ/dr2. The width, `∗, of the “boundary layer"
that results from this balance is:

`∗ = (B/TI)
1/2 ∼ `BC ·

(
γ

TI

)1/2
∼ `BC[

max{ T∞

γ
,
(

Y
γ

)1/3
}
]1/2

. (77)

Our analysis is valid under the assumption that the scales are
suitably well-separated, i.e. t� `∗� Rdrop. One may easily verify
that if the two inequalities in (38) are satisfied then the above
inequalities are also satisfied.

Within a typical horizontal distance, `∗, of the contact line, the
bending energy (and the consequent force) is non-negligible, im-
plying substantial deviations of the shape, ζ (r), and stress po-
tential, ψ(r), from the sharp-corner solution described by §3 and
§4 (which arose from the minimization of the surface and strain
energies, but neglecting bending energy). The energetic cost of
bending, ∆Ubend, can be estimated as ∆Ubend ∼ 2πRdrop`∗ ·B/`2

∗ ∼
ε1/2 ∆Usurf � ∆Usurf, justifying the energetic hierarchy, Eq. (19)
invoked in §2.4.

Furthermore, we expect the effect of the boundary layer on the
stress field or shape to be a perturbation of the solutions shown
in fig. 8 and fig. 11, entering at O(`∗/Rdrop) ∼ O(ε1/2); as such,
this perturbation can be safely ignored (see also page 1 of supple-
mentary information in Ref.3). In a purely tensile (unwrinkled)
state (i.e. where the axisymmetric, membrane theory solution
is stable), this boundary-layer effect is the primary contribution
of bending energy, hence the above argument implies that one
can safely ignore any effect, explicit or implicit, of the bending
rigidity on the mechanics.

Wrinkled state: If the stress obtained by membrane theory has
a compressive zone then the sheet is unstable to the formation
of wrinkles, which act to relax compression (see Appendix A).
Naively, one may assume that the bending rigidity, which clearly
governs the wavelength of wrinkles, affects also the stress field.
However, the basic premise of tension field theory41–43 is that
if the bending modulus is sufficiently small the stress field ap-
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proaches a well-defined compression-free profile (see e.g. fig. 8),
which is independent on the bending modulus. Refs.12,13,16,19,44

describe the energetic hierarchy in this limit (and consequent
force balance) as a “far from threshold” expansion in the inverse
bendability parameter, ε (rather than the familiar post-buckling
approach, which is a Landau-type expansion in the wrinkle am-
plitude, around the compressed (unstable) planar state solution).
The crucial point is that the energetic hierarchy (as well as the
stress field) retain a structure similar to (19), whereby the bend-
ing energy is sub-dominant (i.e. ∆Ubend/∆Ustrain → 0 as ε → 0).
Hence, although the presence of a small bending rigidity has in
this case an implicit effect on the mechanics, enabling the for-
mation of a compression-free stress field (and correspondingly
lower values of ∆Usurf +∆Ustrain than the unwrinkled, compressed
state12) any explicit effect of the bending rigidity on the energy
or stress field is perturbative, and can be ignored, as long as one
is careful to properly employ tension field theory (rather than
membrane theory) in solving the FvK equations (24),(25) (as de-
scribed in Appendix A).

C On the limit of vanishing thickness
Nadermann et al. 3 proposed a model to support their reliance on
“.. the intuitive assumption that the stretch contributions vanish
as the film’s thickness reduces to zero". Furthermore, they made
a constitutive assumption that the tension TI is linear in sheet
thickness, with intercept TI = 2γsv at t = 0. Notwithstanding some
differences, their model (page 2 of Supplementary Information
(SI)3) is conceptually similar to our analysis of the FvK equations
in §3 (and in refs.6,14), exploiting axial symmetry and neglecting
any explicit dependence of the stress on the bending modulus.
Since we showed in §2 that the characteristic capillary-induced
stress, T ∗, and its non-perturbative effect can be understood
conceptually through energetic scaling arguments (i.e. without
even needing to solve the FvK equations), a careful reader
may wonder which of the assumptions and approximations of
Nadermann et al. 3 led to such different conclusions to those
presented here. We thus include here a summary of the key
differences between the analysis of Nadermann et al. 3 and
ours. Each bulleted point explains a difference, and assesses its
implications; note that the discussion of the third point parallels
the energetic considerations in §2.1, as well as §3.3.

• Spherical cap: In FvK-based theory, one obtains Eqs.(24,25) –
a coupled set of nonlinear ODEs for the deflection, ζ (r), and the
stress potential, ψ(r), subject to appropriate BCs (§3.2 and Ap-
pendix A.1.2). These equations are solved numerically, yielding
the radial profiles of the deflection (fig. 11) and stress (fig. 8).
In contrast, Nadermann et al. 3 assume that the deflection can
be approximated by a spherical cap, simplifying considerably the
analysis.

Significance: As we discussed in §5.3.2, our solution shows
that, unless the system is deeply in the non-perturbative regime
(i.e. pre-tension much smaller than capillary-induced stress,
T̄∞� 1), the spherical cap assumption is well justified.

• Membrane theory versus tension-field: As explained in detail

elsewhere (see Schroll et al. 6 as well as Appendix B), neglecting
an explicit dependence of the stress on bending modulus (in the
limit of high capillary bendabilty, Eq. (3), akin to Eq. S3 in Na-
dermann et al. 3), must be done with care. A membrane theory
solution (akin to Vella et al. 14), such as that sought by Nader-
mann et al. 3 (having argued that the effect of the bending force
in the boundary layer is negligible, see page 1 of supplementary
information3), is valid only if the result is a purely tensile stress.
A (partially) compressive solution signals that the actual stress
profile is described by tension field theory, yielding an asymptotic
compression-free stress field (fig. 8); this stress state is markedly
different from the membrane theory solution.

Significance: Our energetic scaling analysis in §2, which
is indifferent to the exact stress field in the sheet, indicates
that the conceptual distinction between perturbative and non-
perturbative effects of the capillary-induced stress, T ∗ ∼ γ2/3Y 1/3,
can be realized also by a membrane theory calculation. Indeed,
while the tension-field calculation is crucial for making any
quantitative predictions, the mere distinction between perturba-
tive and non-perturbative effects of the capillary-induced stress
can be realized also by a membrane theory calculation; such an
(albeit unstable) solution would yield a plateau TI/γ ∼ T ∗ as
T∞/γ → 0, rather than the slow logarithmic decay observed in
fig. 5.

• The limit of “vanishing thickness”: Carrying out a membrane
theory-like calculation, Nadermann et al. 3 obtain an equation
(Eq. S13 of ref.3) that expresses the stress in the vicinity of the
contact line as a sum of pre-tension (T∞ in our notation, or surface
energy terms in the interpretation of3), and another contribution
due to the stretching induced by the drop. This second contri-
bution is expressed (using the notations of our paper) as a prod-
uct of the stretching modulus, Y , and the terms, ur(Rdrop)

Rdrop
,sin2

φ ,
reflecting, respectively, contributions to radial strain due to in-
plane and out-of-plane displacements. Arguing that these strain
terms “remain bounded”, Nadermann et al. 3 conclude that, upon
multiplying by Y ∼ Et, the capillary-induced contributions can be
ignored in the limit of “vanishing thickness" t→ 0.

Significance: As we emphasized (see specifically §5.1), a de-
scription using membrane/tension-field theory (i.e. the FvK equa-
tions with no explicit dependence on bending modulus) is valid
only in an intermediate parameter range, which does not include
the regime t� γ/E (where capillary-induced tensile strains imply
a highly non-Hookean response). Hence, one should be careful
not to consider the unconditional limit t → 0, but rather use the
two dimensionless parameters that involve the sheet’s thickness
(ε� 1 and γ̃� 1, Eqs. (3,4)), such that the system remains in the
parameter regime defined by the two inequalities (37). In this pa-
rameter regime (which we showed in §5.1 to characterize essen-
tially all experimental systems in Refs.3,4,6,8,11), the mechanics is
governed by τ∞ (29), namely, the ratio between the pre-tension,
T∞, and the characteristic capillary-induced stress, T ∗ ∼ γ2/3Y 1/3.
As our energetic arguments in §2 already showed (and our
quantitative solution of the FvK equations confirmed) capillary-
induced terms (specifically, Y φ 2) may be larger or smaller than
the pre-tension (or any scale proportional to surface energy), de-
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pending on the value of τ∞. Overlooking this subtle, intermediate-
asymptotic nature of the “vanishing thickness" limit, seems to un-
derlie the conclusion of Nadermann et al. 3 that capillary-induced
stretching can be ignored in analyzing their data.
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