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dimensional microphase former†
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Both ordered and disordered microphases ubiquitously form in suspensions of particles that in-
teract through competing short-range attraction and long-range repulsion (SALR). While ordered
microphases are more appealing materials targets, understanding the rich structural and dynami-
cal properties of their disordered counterparts is essential to controlling their mesoscale assembly.
Here, we study the disordered regime of a one-dimensional (1D) SALR model, whose simplicity
enables detailed analysis by transfer matrices and Monte Carlo simulations. We first characterize
the signature of the clustering process on macroscopic observables, and then assess the equili-
bration dynamics of various simulation algorithms. We notably find that cluster moves markedly
accelerate the mixing time, but that event chains are of limited help in the clustering regime. These
insights will inspire further study of three-dimensional microphase formers.

1 Introduction
Controlling the mesoscopic assembly of particles with short-range
attraction and long-range repulsion (SALR) interactions remains
an open challenge for experimental soft matter.1 Although similar
interactions in diblock copolymers result in the robust formation
of both periodic and disordered microphases2–4, only the latter
have thus far been observed in colloidal suspensions.5–9 From a
theoretical viewpoint the situation is better controlled, thanks to
various theoretical and methodological advances.1,10–16 But even
then the formation of disordered microphases remains only par-
tially understood. Because equilibrating these structures is likely
key to ordering periodic microphases, elucidating their assembly
is an important hurdle to overcome.

Using numerical simulations to characterize the disordered mi-
crophase regime faces a couple of key difficulties. First, precisely
identifying the onset of microphase formation can be challeng-
ing. The assembly of disordered mesophases at low colloid den-
sity is akin to that of surfactants micelles, as suggested by their
shared Landau-Brazovskii free energy functional.10 Once the par-
ticle concentration exceeds the critical cluster density (ccd)17 in
the former, or the critical micelle concentration (cmc) in the lat-
ter, relatively regular aggregates spontaneously assemble. This
transformation, however, is not a phase transition but rather a
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crossover. Quantitatively locating of the ccd (or the cmc) is thus
observable dependent, and determining the optimal approach is
left to some degree of interpretation.17,18 A canonical simulation
approach for detecting the cmc involves identifying a marked
bend in the pressure equation of state.19,20 Recent simulations,
however, suggest that this signature can sometime go missing for
the clustering of systems with SALR interaction.17

Second, the assembly dynamics of disordered microphases can
be quite sluggish.21,22 In experimental microphase formers, dy-
namically arrested amorphous gels and clusters are commonly ob-
served.6–9 Numerical simulations display remarkably slow equi-
librium and out-of-equilibrium dynamics as well.12,23–26 In ad-
dition, a recent numerical study suggests that the dynamics of
disordered microphases is itself remarkably rich.16 Dynamical
crossovers were found to accompany the clustering and perco-
lation of both particles and voids. Sampling configurations of
the disordered microphase regime is thus challenging, and no ro-
bust simulation approach has yet been formulated. Ad hoc mix-
tures of local and global particle displacements27, collective clus-
ter moves28, and parallel tempering14,15 have been considered,
but the relative merits of one or the other remain unclear.

In this work, we consider a one-dimensional (1D) archetype of
SALR interactions. Although 1D models with finite-range inter-
actions cannot undergo phase transitions29,30, they can nonethe-
less display a ccd31–33. In addition, the thermodynamics of such
a model can be computed analytically by transfer matrices and its
assembly dynamics can be straightforwardly simulated. The 1D
model therefore captures the essential physics of the ccd, without
loss of generality, while bypassing many of the complexity of con-
sidering a three-dimensional SALR model, such as the sluggish
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dynamics and the reduced measurement precision. This partic-
ular 1D study is thus provides insight that are fully transferable
to higher-dimensional soft matter systems, as has been found in
other complex systems.34

We consider a square-well-linear (SWL) potential (Fig. 1). This
SALR interaction has a hard-core diameter, σ , that implicitly sets
the unit of length, an attraction strength, ε, that implicitly sets
the unit of energy and is felt up to λσ . Beyond this point a re-
pulsive ramp of strength ξ ε decays linearly up to κσ . This partic-
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Fig. 1 The SWL model has a hard core repulsion for r < σ , followed by
a square well attraction over σ < r < λσ and then by a linearly decaying
repulsion for λσ < r < κσ .

ular potential form has been extensively studied in three dimen-
sions,14–16,35–37 and a closely related form was also considered in
two dimensions38. This interaction potential is known to display
the same qualitative behavior as other SALR potentials, including
those with a Yukawa repulsive form.39–43

The rest of the paper is organized as follows. In Section 2, we
describe the transfer-matrix approach for deriving the thermody-
namic properties of the system, including the equations of state,
the cluster distribution function (CDF) and the gap distribution
function (GDF). Section 3 introduces the simulation approaches.
The thermodynamic results are then presented and analyzed in
Section 4, while the relaxation dynamics is discussed in Section
5. A brief conclusion follows in Section 6.

2 Transfer-matrix Method
Continuous-space 1D models with finite-range interactions can
be solved using transfer matrices.44–46 Changing variables from
absolute particle positions, x, to relative distances between neigh-
boring particles, s, indeed transforms the configurational part of
the isothermal-isobaric partition function (with fixed number of
particles N, pressure p and inverse temperature β) into

ZG(p,β ) =
∫

∞

0

N

∏
i=1

dsie−βui(si,si+1,...)−β psi , (1)

where ui is the sum of pairwise interactions between particle i and
subsequent particles– i+1, i+2 . . . – along the chain. For interac-
tion potentials with a hard core and a finite interaction range,

this transformation is exact, because the maximal number of such
interactions is finite. In the SWL model (Fig. 1), for instance, up
to k = dκe−1 nearest neighbors can interact at once. By analogy
with the three-dimensional SWL models studied in Ref. 14 we set
κ = 4, hence particles can interact with up to their third nearest
neighbors. Under periodic boundary conditions, Eq. (1) can then
be written using the transfer matrix M

ZG = Tr(MN) = Λ
N
max, (2)

where each entry of M contains the Boltzmann weight for
a particular choice of (si,si+1, ...,si+k−1) along each row and
(si+1,si+2, ...,si+k) along each column. Note that only when a row
and a column have matching si+1, ...,si+k−1, is the entry nonzero,
i.e.,

Mab =

{
e−βui(si,si+1,...,si+k)−β psi δ si, si+1, . . . ,si+k−1 match,

0, otherwise,
(3)

where δ si denotes the interval of discretization. In the isothermal-
isobaric ensemble the Gibbs free energy is given by G=− 1

β
logZG,

hence the average number density, ρ ≡ N/V , follows as

ρ
−1 =− lim

N→∞

1
N

(
∂ logZN

∂β p

)

β ,N
=−

(
∂ logΛmax

∂β p

)

β

=−
q−1(∂M/∂ (β p))β q

q−1qΛmax
=− q−1M′q

q−1qΛmax
,

(4)

where M′ is a tangent matrix of M with entries M′ab =
(

∂Mab
∂β p

)
β

; q

and q−1 are the right and left eigenvectors for Λmax, respectively.

Formally, M is an infinite matrix, but different discretization
schemes can be used to reduce its size under a given numerical
accuracy.47 The first and the most intuitive implementation is to
use an m-part isometric discretization of si over the interval (1,κ).
Because particle overlaps, i.e., si < 1, are forbidden, the lower
integration boundary is set to unity; because nearest neighbors
do not interact if si > κ, then beyond that point only the ideal gas
contribution,

Ma(si>κ),b =
∫

∞

si=κ

e−β psi dsi =
e−β pκ

β p
, (5)

persists. We thus append this value to the end of the list of si. This
scheme results in a matrix that grows as (m+1)k−1× (m+1)k−1,
with (m + 1)k nonzero entries. Although observables formally
converge to their thermodynamic values as m→ ∞, the numer-
ical accuracy at finite m is affected by various aspects of the dis-
cretization scheme. For our discontinuous interaction potential,
for instance, observables can oscillate with m. Here, we choose
a two-part discretization scheme that minimizes such error (See
ESI† for details). In the end, Matlab’s iterative eigenvalue algo-
rithms48 are used to obtain the matrix largest eigenvalues, Λmax,
and corresponding eigenvector q.
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2.1 Cluster Distribution Function Calculation (CDF)

A 1D cluster is defined as a chain of n particles with nearest-
neighbor distances smaller than the SWL attraction range, i.e.,
1 < s < λ , with chain ends further than λ away from the rest of
the system. The CDF, K(n) ≡ nr(n), is then the fraction of parti-
cles that belongs to a cluster of size n, with r(n)≡ ρn(n)/∑

∞
i=1 ρn(i)

being the fraction of clusters of size n.

The CDF can be computed from a transfer matrix scheme anal-
ogous to that used to measure spatial correlations in the 1D Ising
model.49 Because every entry of M (Eq. (3)) corresponds to spe-
cific interparticle distances, (si,si+1, ...,si+k), a particle that is part
of a cluster has null entries for si > λ . Using this masked transfer
matrix, Mλ , the probability that any pair of neighboring particles
belongs to a same cluster is

Pclu(2) =
Tr(MMλ M...)

Tr(MMMM...)
=

Tr(Mλ QDN−1Q−1)

Tr(MN)
=

q−1Mλ q
q−1Λmaxq

, (6)

where the eigenvalue decomposition M = QDQ−1 simplifies the
computation. In general, the probability that n particles belong to
a cluster is thus

Pclu(n) =
q−1Mn

λ
q

q−1Λ n
maxq

. (7)

The CDF can then be related to Pclu(n) as

1 =Pclu(1) = r(1)+2r(2)+3r(3)+ ... (8)

Pclu(2) = r(2)+2r(3)+ ... (9)

Pclu(3) = r(3)+ ... (10)

⇒ K(n) = nr(n) = n[Pclu(n)+Pclu(n+2)−2Pclu(n+1)]. (11)

2.2 Gap Distribution Function (GDF)

The distribution of gaps between neighboring particles,50,51 can
also be computed using transfer matrices

Pgap(si) =
q−1M(si)q

q−1Λmaxq
(12)

=
∑{(si+1,si+2)} q−1(si,si+1)M(si,si+1,si+2)q(si+1,si+2)

q−1Λmaxq
,

where M(si) is a masked transfer matrix with only nonzero entries
for a given nearest-neighbor distance si. From the cluster defi-
nition and the relationship between the total number of clusters
and the number of unbound nearest neighbors,52 the cumulative
GDF can be related to the cluster density

ρs = ρ

∫
∞

λ

Pgap(si)dsi = ρ

(
1−

∫
λ

0
Pgap(si)dsi

)

= ρCunbound = ρ(1−Cbound),

(13)

where Cunbound is the cumulative GDF for si ≥ λ , i.e., the fraction
of unbound nearest neighbors, and Cbound ≡ 1−Cunbound is the
fraction of bound nearest neighbors.
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Fig. 2 Comparison between the transfer-matrix calculations (lines), and
the MMC (circles) and CHMC (crosses) simulation results for SWL with
(λ ,κ,ξ ) = (2.5,4,1). (a) Equations of state at T = 0.5,0.3, and 0.2. (b)
CDF at T = 0.2 for ρ = 10−4, 10−3, 10−2 and 10−1.

3 Monte Carlo Simulations
This section describes the Monte Carlo simulation algorithms
used to study the equilibration of the SWL model: conventional
Metropolis Monte Carlo (MMC), Heatbath Monte Carlo (HMC),
their cluster-move versions (CMMC and CHMC), as well as Event-
Chain Monte Carlo (ECMC). Note that the numerical implementa-
tion was validated by comparing simulation and transfer-matrix
results (Fig. 2). Unless otherwise specified, all simulations are
run for systems with N = 1000 particles under a periodic bound-
ary condition.

3.1 Metropolis and Heatbath Monte Carlo
The main purpose of considering MMC here is as a generic local
algorithm, with which to compare the more elaborate schemes
described below. Our MMC implementation follows that of Kapfer
et al.53 More specifically, the trial move for a particle i, is x̃i =

xi± γ`free, where `free = V/N− 1 is the average free volume per
particle, and γ is a random number uniformly distributed within
[0,1). If a trial move changes the particle order, i.e. if x̃i < xi−1

or x̃i > xi+1, the move is automatically rejected. Otherwise, the
move is accepted using the standard Metropolis criterion

acc(o→ n)
acc(n→ o)

= max[1,exp{−β [U(n)−U(o)]}], (14)

where U(n) and U(o) are the total potential energy of the new
and old configuration, respectively.

HMC is a variant of MMC specifically tailored for 1D systems.53

Because SWL particles cannot interpenetrate, trial moves are con-
ducted with uniform probability within the space confined by
two nearest neighbors, and then accepted using the standard
Metropolis criterion.

In both cases, the pressure is then determined from the virial

β p−ρ

ρ2 =−β

∫
rg(r)

du(r)
dr

dr =
∫

rg(r)eβu(r) de−βu(r)

dr
dr (15)

= σg(σ+)+λσ [g(λσ
+)−g(λσ

−)]+
βξ ε

σ

∫
κσ

λσ+
rg(r)dr,

where the first term accounts for the hard-core repulsion, the sec-
ond for the discontinuity between the attractive and the repulsive
regimes and the third for the linear repulsion. The first two are
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evaluated by extrapolating the radial distribution function, g(r),
from the different sides of the discontinuity, denoted “+” and “−”,
while the third is obtained by standard numerical integration.

For both MMC and HMC, the simulation time, t, is expressed in
units of Monte Carlo sweeps, which include N trial displacements.
Note that this definition differs from that of Ref. 53 by a factor of
N.

3.2 Cluster Monte Carlo

At low temperatures, interparticle attraction results in a high re-
jection rate of attempted single-particle moves. The spontaneous
formation of aggregates, however, suggests that cluster displace-
ments might then facilitate sampling. In order to preserve micro-
scopic reversibility, clusters are here identified probabilistically.
Pairs of sufficiently close neighbors are linked with probability
Plink. In order to impose detailed balance, a trial displacement
of the cluster move is attempted, and the new configuration is
accepted with probability

acc(o→ n)
acc(n→ o)

= min[1,exp{−β [U(n)−U(o)]}∏
i j

1−Pr
link(i, j)

1−P f
link(i, j)

],

(16)
where i denotes particles within the cluster and j the others.
Superscripts f and r denote the forward and reverse moves, re-
spectively.54 Following the SWL model structure, the probability
of linking a particle pair is chosen to depend on the attraction
strength at that distance28

Plink(i, i
′)≡

{
1− e−βε , rii′ < λ

0, rii′ ≥ λ
. (17)

Clusters are then treated as quasi-particles with their collective
displacements akin to those of single particles. Because Plink thus
vanishes at high temperatures, hence the algorithm reduces back
to single-particle MC scheme.

This clustering scheme is applied to both MMC and HMC, thus
giving rise to Cluster Metropolis Monte Carlo (CMMC) and the
Cluster Heatbath Monte Carlo (CHMC), respectively. In CHMC,
for instance, a cluster trial displacement is conducted with uni-
form probability within the space contained by its two nearest
neighbors and then accepted using the criterion given in Eq. (16).
For the purpose of comparing algorithmic dynamics, one at-
tempted cluster displacement of n particles is deemed equivalent
to n attempted MMC or HMC displacements.

3.3 Event-chain Monte Carlo (ECMC)

ECMC uses an altogether different strategy to accelerate phase
space sampling.55 Unlike traditional MC, which first generates a
trial move and then accepts it probabilistically, ECMC introduces
sequential moves that resemble momentum transfer in Newto-
nian dynamics. The diffusion-like behavior of the Markov chains
generated by MMC and its variants is thus vastly superseded by
the ECMC dynamics.55,56 ECMC notably balances realistic dy-
namics with moves that help escape spatial traps in systems of
dense hard disks.57 For SALR potentials and other clustering
models, however, the performance of ECMC (and related algo-

Replusive

 collision

Attractive

 collision

Hardcore overlap

Fig. 3 Three types of ECMC collisions are possible for the SWL model:
hard core; from non-interacting to repulsing; leaving the attractive well,
from top to bottom. In the first two particles get closer, while in the third
they moves apart.

rithms) has not been specifically examined.
ECMC first assigns a moving direction, e, to particle i, and then

generates an admissible potential increase E∗i j = − logγi j with re-
spect to neighboring particle j, where γi j is a random variable
flatly distributed between [0,1). This random variable selects how
far particle i moves, yi j, before a collision happens. The collision
location of particle i is determined from the increase of its inter-
action with j,

E∗i j =
∫ E∗i j

0
d[Ei j]

+ =
∫ yi j

0

[
∂Ei j(r j− ri− s)

∂ s

]+
ds. (18)

If the energy increase is never higher than E∗i j, no real solution
for yi j exists and thus no collision between i and j takes place.
The collision distance between these two particles is then set to
infinity. The actual displacement of i is the shortest yi j to all other
particles, i.e., yi = min j({yi j}), and the particle to subsequently
move is argmin j(yi j). For the SWL model, three collision types
are possible (See Fig. 3). The event chain terminates when the
summation over all particle displacements equates a preassigned
value, l. It is here chosen to be 0.1N`free = 0.1(V −N).

Interestingly, the system pressure can be determined directly
for ECMC sampling – thus sidestepping the virial in Eq. (15) – by
averaging over all event chains

β p
ρ

= 1+
〈

∑(i, j)(x j− xi)

l

〉

event-chains
, (19)

where (x j− xi) is the distance between two particles at the colli-
sion point. It is negative for collisions that move particles apart,
and positive otherwise. For the purpose of comparing algorithms,
one collision event is deemed equivalent to one MMC or HMC at-
tempted move, even though an ECMC collision is about twice as
computationally demanding as a single MMC trial move.55

4 Clustering Thermodynamics
As mentioned in the introduction, even though long-range peri-
odicity is not possible for a 1D SWL model, a crossover directly
from a gas of particles to a gas of clusters (ρccd) can be observed
at sufficiently low temperature. (At low density, there exists a
corresponding critical clustering temperature, Tcct.) Because the
onset of clustering is but a crossover, its precise location is partly a
matter of definition. In this section, we examine various schemes
based on the equation of state and the CDF that have been pro-
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Fig. 4 Transfer-matrix results for the pressure, β p, and h(ρ;T ) for (a,
d) λ = 2.5, (b, e) λ = 2.2, and (c, f) λ = 2.0, in an SWL model with
(κ,ξ ) = (4,1) at T = 0.1,0.12,0.14,0.16,0.20,0.24, and 0.30, from bottom
to top. Crossovers in h(ρ;T ) (asterisks) can be observed for λ > 2 at
sufficiently low temperatures. Changes to the equations of state are suf-
ficiently pronounced to allow the identification of the crossover in (a) but
not in (b). The scheme based on h(ρ), by contrast, still detects the clus-
tering crossover in (e). Note that neither approach detects a crossover for
λ ≤ 2. Black dotted lines denote the cluster scaling, ρ−1, as described
in text.

posed to identify the onset clustering in SALR systems.

4.1 Equation of State
A drastic change to the aggregation behavior of a system is ex-
pected to leave a trace on its macroscopic properties, such as
its pressure. The simplest proposed observable of this type de-
rives from the long-established methods used for studying the
cmc.19,20 Typically, a micelle forming system transforms abruptly
from a nearly ideal gas of particles to a nearly ideal gas of mi-
celles. It was thus suggested that the point of largest curvature in
the isothermal equation of state, β p, should be used to identify
the ccd.17

Because systems with SALR interactions can display large devi-
ations from ideality both in the single-particle and in the cluster
regimes, however, a direct application of this approach does not
always clearly identify the ccd. It was thus proposed that one
should instead consider

h(ρ;T ) =
β p−ρ

ρ2 = B2(T )+B3(T )ρ +O(ρ2), (20)

which specifically measures the deviation of the equations of state
from ideality.14 As can be seen from the corresponding expansion
in terms of virial coefficients, Bα (T ), if B3(T ) is negative then
h(ρ;T ) displays a minimum at a finite density. This minimum
captures the onset of clustering.

The above two approaches are compared for various SWL mod-
els in Fig. 4. At low temperatures, the two schemes coincide (See
panel a, d). At higher temperatures or smaller λ , changes to
the equations of state, however, become fainter. Pinpointing a
crossover then becomes markedly more arduous than in h(ρ;T ).
A similar ambiguity was also reported in Ref. 17, where it was
noted that the equation of state may not noticeably respond to
clustering. The approach based on h(ρ;T ) thus appears slightly

1 3 5 7

0

0.2

0.4

0.6

0.8

1

1 10 20
10

-10

10
-5

10
0

(a)

1 3 5 7

0

0.2

0.4

0.6

0.8

1

(b)

1 3 5 7

0

0.2

0.4

0.6

0.8

1

(c)

1 3 5 7

0

0.2

0.4

0.6

0.8

1

1 10 20
10

-10

10
-5

10
0

(d)

Fig. 5 The CDF obtained from transfer matrices at ρ = 10−4 (blue),
10−3 (red), 10−2 (yellow) and 10−1 (purple), for (λ ,ξ ) = (2.5,1) at (a)
T = 0.2 and (b) T = 0.4, (c) for (λ ,ξ ) = (2,1) at T = 0.2, and (d) for
(λ ,ξ ) = (2.5,0.1) at T = 0.2. Insets in (a) and (d) present the same data
on a lin–log plot.

more robust.
Like the equation of state, h(ρ;T ) also provides microscopic in-

sights into the clustering process. At densities above the crossover,
but far from the harshly repulsive regime, we find that h(ρ;T ) ∼
ρ−1 for all T . In this regime, the system thus effectively behaves
as an ideal gas of clusters, with β p ≈ ρ/n̂ for an average cluster
size n̂ > 1, and hence h(ρ) ≈ −(1− 1/n̂)/ρ. This linear regime
is especially clear at low temperatures for λ > 2 (Fig. 4), where
trimers (n̂ = 3) form preferentially. Note that for systems with
no detectable crossover in h(ρ;T ) a linear regime can also be ob-
served, but it is less clear and its intercept suggests that n̂ . 2.

4.2 Cluster Distribution

We now consider a scheme that detects the onset of clustering
directly from the CDF. According to the criterion proposed in
Ref. 17, a separate peak in the CDF can sometimes be observed
even in the absence of thermodynamic signatures. This is espe-
cially likely for small clusters. Here, the limited typical cluster
sizes in 1D system enable a finer assessment of the situation.

Figure 5 presents the CDF for systems in different clustering
regimes. Panel (a) shows that a separate peak at n = 3 appears
in the CDF between ρ = 10−4 and 10−3, which is consistent with
ρccd = 4.7× 10−4. By contrast, panel (b) shows that no separate
peak at n = 3 appears when temperature is high, while panel (c)
shows that for λ = 2 a peak at n = 2 (instead of at n = 3) emerges.
Monomers then become dimers with no hint of additional clus-
tering. We already know that this process is smooth and gradual,
and it leaves no thermodynamic signature in h(T ;ρ). Hence, even
though clustering does take place, no detectable ccd ensues. The
distinction between dimer and trimer formation is thus reminis-
cent of that between submicellar clusters and micelles in higher-
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dimensional systems.18

Panel (d) shows that at low frustration ξ the size distribution
of aggregates is much broader (see inset). In this case, assem-
bly is the 1D echo of condensation, which is also a crossover
(in absence of thermodynamic phase transitions) but is qualita-
tively distinct from the ccd. Although condensation and cluster-
ing leave similar signatures to the 1D equations of state, they
affect the CDF quite differently. For the sake of comparison,
we locate the condensation-like aggregation at the density where
K(3) = K(4). (In higher-dimensional systems, condensation is a
first-order phase transition, with sharp features that easily distin-
guish it from ccd.) As proposed by Ref. 31, condensation is here
also accompanied by a crossover in the growth of the correlation
length. By contrast to lattice models, however, trimer clustering
leaves no such signature (See ESI† for details).

In summary, as density increases from the gas regime, in
which the CDF monotonically decreases with increasing cluster
size, three different clustering types can be distinguished: (i)
condensation-like aggregation, marked by K(3)=K(4); (ii) trimer
formation (ccd), marked by K(2) = K(3); and (iii) dimer forma-
tion, marked by K(1) = K(2).

4.3 Terminal Clustering Temperatures
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Fig. 6 (a) Temperature evolution of the onset of clustering extracted from
h(ρ;T ) (as in Fig. 4) for systems with different repulsion strengths, ξ = 0
(blue), 1 (red) and 2 (yellow). For later reference, note that clustering
takes place at T < Tcct = 0.26 for ρ = 0.001. Ttc−h (asterisks) is estimated
as the disappearance of the local minimum of h(ρ;T ). (b) Clustering
crossovers determined from the CDF under the same conditions. Three
types of clustering are then observed: (i) condensation-like aggregation
(dotted line); (ii) particles to trimers (solid lines); and (iii) particles to
dimers (dashed lines). Ttc−CDF (asterisks) is estimated as described in
text. (c) Ttc estimated from h(ρ;T ) (Ttc−h, solid line), B3 = 0 (Ttc−B3 , dash
line) and the CDF (Ttc−CDF). A dotted line identifies the clustering as being
of type (i) to type (iii), and a dash-dotted as being of type (ii) to type (iii).
The cross denotes the λ transition from condensation to trimer clustering
(See in text).

Clustering disappears with increasing temperature, thus defin-

ing a terminal clustering Ttc−X , where the subscript X denotes the
observable from which Ttc estimated. The disappearance of the lo-
cal minimum of h(ρ;T ) thus defines, Ttc−h. Both trimer clustering
and condensation-like aggregation also only exist for T < Ttc−CDF.
For T > Ttc−CDF dimers first form as density increases. The onsets
of clustering given by these two measurements, when it exists,
qualitatively agree with one another, as shown in Figure 6a and
b.

From Eq. (20), we further have that a minimum in h(ρ) can
only be observed if B3(T ) < 0 (See ESI†). The sign change of
B3(T ) with temperature for λ > 2 thus also provides an estimate,
Ttc−B3 (Fig. 6c). For λ < 2, however, next-nearest neighbor inter-
actions cannot be attractive, hence B3(T ) ≥ 0, ∀T . This explains
why no crossover in Fig. 4f is ever observed. Whatever clustering
might take place in this case leaves no thermodynamic signature.
Note that for the limit case, λ = 2, we have Ttc−B3 = 0. Note also
that in the large ξ limit Ttc in all cases tend a constant. Although
in that case the thermodynamic cluster distribution can be sam-
pled by transfer matrices, it would then be impossible for an un-
bound particle to cross the repulsive barrier using local dynamics,
such as MMC.

The change from condensation-like to trimer clustering is con-
trolled by ξ (Fig. 6c). In higher-dimensional or mean-field sys-
tems this transition is known as the λ transition58–60. Using
the above definitions from one process and the other, we obtain
ξλ = 0.51 for λ = 2.5 and ξλ = 0.46 for λ = 2.2. In short, while
Ref. 17 found that clustering may or may not be accompanied by
a detectable change to equation of state in 3D, the presence of a
crossover in h(ρ;T ) in 1D seems tightly controlled by the size of
the clusters (dimers vs trimers) that assemble.

5 Relaxation Dynamics
Having identified the regime in which thermodynamic clustering
takes place, we can examine the clustering dynamics using var-
ious MC algorithms. Two different initial conditions are consid-
ered: (i) all particles forming a compact chain, as in Ref. 53;
and (ii) equally-spaced particles, which is akin to instantaneously
quenching a typical high-temperature configuration. We then ex-
amine the relaxation to equilibrium of the fraction of bound near-
est neighbors, Cbound, which is related to the total cluster density
(Eq. (13)). Note that other preparations could be devised and
that the equilibrium mixing time could also be considered, but
their results are expected to be qualitatively similar to what is
measured here.

Figure 7 depicts the equilibration dynamics from both initial
conditions for a state point that falls within the trimer clustering
regime (cf. Fig. 5a)). Similar to the micelle formation dynam-
ics18,61, the structure of Cbound relaxes in two steps. The first cor-
responds to fast single-particle exchanges on a scale τ1, and the
second to slow cluster turnovers on a scale τ2. Because τ1 � τ2,
the relaxation (mixing) time τmix ≈ τ2. For t� τ1, the decay is in-
deed exponential, which suggests the following long-time fitting
form

Cbound =Cbound,eq−C0e−t/τmix , (21)

where Cbound,eq is the equilibrium result, and C0 is a fitting con-
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Fig. 7 The relaxation of Cbound to equilibrium (black dotted line) from (a) a
compact chain and (b) equally-spaced particles, at T = 0.22 and ρ = 10−3,
averaged over 20 runs, using MMC (blue solid line), CMMC (blue dotted
line), HMC (red solid line), CHMC (red dotted line), and ECMC (black
solid line).
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Fig. 8 Evolution of the relaxation time, τmix, at (a) ρ = 0.1, T = 0.5 and (b)
ρ = 0.001, T = 0.22 for MMC (blue solid line with asterisks), CMMC (blue
dotted line with asterisks), HMC (red solid line with circles), CHMC (red
dotted line with circles), and ECMC (black solid line with crosses). The
relaxation time of compact chains increases with system size, but that of
equally-spaced particles is independent.

Reference 53 showed that the relaxation of a compact chain of
hard spheres with both MMC and HMC has an algorithmic com-
plexity of τmix ∼ O(N2 logN), while ECMC has O(N logN). For
a system with the SWL interaction, however, the scaling rela-
tion is more complex (See Fig. 8a). As expected, at high tem-
peratures ECMC has a linear time complexity, while both single-
particle and cluster-move MC scale as O(N2) (including a loga-
rithmic correction fits the data equally well). However, in the
low-temperature clustering regime while the results of the clus-
ter and single-particle algorithms still scale as O(N2), the mix-
ing time of ECMC remains nearly constant (Fig. 8b). The linear
scaling comes with such a high prefactor that ECMC is far from
optimal in this size regime.

For a compact chain, the extent of the slowdown depends sensi-
tively on the MC scheme. Single-particle algorithms experience a
marked slowdown for T < Tcct, but cluster algorithms show noth-
ing comparable (Fig. 9a), which is consistent with the dynamical
observation of Ref. 16. As expected, for high temperature hard-
sphere like system53, ECMC has the shortest relaxation time, but
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Fig. 9 Temperature evolution of the relaxation time, τmix, from (a) a com-
pact chain and (b) an equally-spaced configuration at density ρ = 0.001.
Colors and symbols as in Fig. 8. For this density, Fig. 6a gives Tcct = 0.26
(vertical dotted line). Note the difference in scale between (a) and (b).
Data for T ≥ 0.24 in (b) are obtained from N = 10000 particles to ensure
the numerical accuracy for small Cbound,eq cases.

at low temperatures CHMC wins the palm. For this initial con-
dition, cluster cleaving reaches the equilibrium CDF more effi-
ciently than single-particle moves, which must produce a series
of monomer exchanges to achieve a comparable result. Heat-
bath moves further accelerate sampling avoiding overlaps and
efficiently (yet unphysically) surmounting the barriers to rear-
rangement. In higher dimensional systems, global trial moves
of this sort are not easily designed, but simpler versions have
also been used to accelerate equilibration. In Ref. 14, for in-
stance, aggregation-volume bias Monte Carlo27 are used to en-
able surface-to-surface particle moves that sidestep the repulsion
barrier.

For equally-spaced particles, the relaxation time is generally
several orders of magnitude shorter than for the compact chain.
Because τmix remains constant with system size (Fig. 8), we con-
clude that equilibration is controlled by local processes. Because
limited cluster cleavage is needed, heatbath and collective moves
are here less significant, hence the relaxation dynamics of the
advanced algorithms is within one order of magnitude of MMC
even at low temperatures (Fig. 9b). CHMC is nonetheless still the
fastest, although only by a small margin.

At low temperatures, ECMC dynamics gets increasingly slug-
gish for both initial conditions (Fig. 9). The onset of slowdown
roughly coincides with Tcct, but not as closely as for single-particle
moves. The nature of the event-chain algorithm underlies this
effect. Because the admissible climb in energy at each step is
set by the Boltzmann weight of barrier,55 the probability of leav-
ing the attraction range is e−β (ξ (κ−λ )+1), which for Fig. 8b gives
≈ 1×10−5. Hence, because bond breaking is rare, the relaxation
time is large, e.g., τmix ≈ 107 at T = 0.22. As a result ECMC then
mainly translates the system, which is a rather ineffective path to
thermalization. For a similar reason, at high temperatures ECMC
relaxes equally-spaced particles more than an order of magnitude
slower than the other schemes. (Strangely, τmix increases with
temperature for over a brief temperature interval, 0.3≤ T ≤ 0.36.)
In short, while ECMC is effective to equilibrate a compact chain
through rapid long-range transport, it is far from optimal when
equilibration mostly entail local processes.
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6 Conclusions
By studying the thermodynamics and dynamics of a 1D SALR
model, we have clarified the clustering assembly behavior of mi-
crophase formers. The model simplicity enabled the considera-
tion of various proposals for detecting the onset of clustering and
for evaluating the efficiency of different sampling algorithms. In
both cases, these observations translate into a clearer grasp of
the algorithmic ambiguities previously encountered. In particu-
lar, we conclude that the function h(ρ;T ) characterizes the pres-
sure response to the onset of clustering more finely than earlier
macroscopic approaches. We have also determined the extent to
which different types of collective Monte Carlo moves can acceler-
ate sampling in these systems. We expect these insights to apply
to a broad range of SALR models, and thus inform subsequent
simulation efforts.
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33 A. Ciach and J. Pękalski, Soft Matter, 2017, 13, 2603–2608.
34 S. Herrera-Velarde, G. Pérez-Angel and R. Castañeda-Priego,

Soft Matter, 2016, 12, 9047–9057.
35 S. Shen and B. C.-Y. Lu, Fluid Phase Equilib., 1993, 84, 9–22.
36 E. Sanz, K. A. White, P. S. Clegg and M. E. Cates, Phys. Rev.

Lett., 2009, 103, 255502.
37 G. Cigala, D. Costa, J.-M. Bomont and C. Caccamo, Mol. Phys.,

2015, 113, 2583–2592.
38 M. D. Haw, Phys. Rev. E, 2010, 81, 031402.
39 J.-P. Hansen and H. Löwen, Annu. Rev. Phys. Chem., 2000, 51,

209–242.
40 V. Lobaskin, A. Lyubartsev and P. Linse, Phys. Rev. E, 2001,

63, 020401.
41 S. Schneider and P. Linse, Macromolecules, 2004, 37, 3850–

3856.
42 F. Carlsson, M. Malmsten and P. Linse, J. Am. Chem. Soc.,

2003, 125, 3140–3149.

8 | 1–9Journal Name, [year], [vol.],

Page 8 of 10Soft Matter



43 The Yukawa form is a common model of screened electrostat-
ics interactions. In colloidal suspensions, it has been exten-
sively studied by Per Linse and coworkers62.

44 D. A. Kofke and A. J. Post, J. Chem. Phys., 1993, 98, 4853–
4861.

45 M. Kardar, Statistical physics of particles, Cambridge Univer-
sity Press, 2007.

46 Y. Kantor and M. Kardar, Phys. Rev. E, 2009, 79, 041109.
47 M. Godfrey and M. Moore, Phys. Rev. E, 2015, 91, 022120.
48 I. The MathWorks, MATLAB and Statistics Toolbox Release

2017a, 2017.
49 R. J. Baxter, in Exactly Solved Models in Statistical Mechanics,

World Scientific, 2013, pp. 5–63.
50 S. Torquato, B. Lu and J. Rubinstein, Phys. Rev. A: At., Mol.,

Opt. Phys., 1990, 41, 2059.
51 S. Torquato, Phys. Rev. E, 1995, 51, 3170.
52 G. Lee-Dadswell, N. Barrett and M. Power, Phys. Rev. E, 2017,

96, 032144.
53 S. C. Kapfer and W. Krauth, Phys. Rev. Lett., 2017, 119,

240603.
54 D. Frenkel and B. Smit, Understanding molecular simulation:

from algorithms to applications, Academic press, 2001, p. 403.
55 M. Michel, S. C. Kapfer and W. Krauth, J. Chem. Phys., 2014,

140, 054116.
56 E. P. Bernard, W. Krauth and D. B. Wilson, Phys. Rev. E, 2009,

80, 056704.
57 E. P. Bernard and W. Krauth, Phys. Rev. Lett., 2011, 107,

155704.
58 K. Khanna and A. Phukan, Physica, 1972, 58, 263–276.
59 A. J. Archer and N. B. Wilding, Phys. Rev. E, 2007, 76, 031501.
60 F. Körmann, A. A. H. Breidi, S. L. Dudarev, N. Dupin,

G. Ghosh, T. Hickel, P. Korzhavyi, J. A. Muñoz and I. Ohnuma,
Phys. Status Solidi B, 2014, 251, 53–80.

61 E. Aniansson and S. N. Wall, J. Phys. Chem., 1974, 78, 1024–
1030.

62 P. Linse, in Advanced computer simulation approaches for soft
matter sciences II, ed. C. Holm and K. Kremer, Springer, 2005,
vol. 185, pp. 111–162.

Journal Name, [year], [vol.], 1–9 | 9

Page 9 of 10 Soft Matter



table of contents entry 
 

we consider a one-dimensional model of short range attraction and long range repulsion interactions 

whose simplicity enables detailed analysis. 

 

 

Page 10 of 10Soft Matter


