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The precise control of assembly and packing of proteins and colloids on curved surfaces has fundamental
implications in nanotechnology. In this paper, we describe dynamical simulations of the self-assembly of coni-
cal subunits around a spherocylindrical template, and a continuum theory for the bending energy of a triangular
lattice with spontaneous curvature on a surface with arbitrary curvature. We find that assembly depends sensi-
tively on mismatch between subunit spontaneous curvature and the mean curvature of the template, as well as
anisotropic curvature of the template (mismatch between the two principal curvatures). Our simulations pre-
dict assembly morphologies that closely resemble those observed in experiments in which virus capsid proteins
self-assemble around metal nanorods. Below a threshold curvature mismatch, our simulations identify a regime
of optimal assembly leading to complete, symmetrical particles. Outside of this regime we observe defective
particles, whose morphologies depend on the degree of curvature mismatch. To learn how assembly is affected
by the nonuniform curvature of a spherocylinder, we also study the simpler cases of assembly around spherical
and cylindrical cores. Our results show that both the intrinsic (Gaussian) and extrinsic (mean) curvatures of a
template play significant roles in guiding the assembly of anisotropic subunits, providing a rich design space for
the formation of nanoscale materials.

I. INTRODUCTION

Achieving molecular-scale control over the surface mor-
phology of nanoscale particles is essential for many nano-
materials and drug delivery applications. A promising route
to this end is self-assembly, in which local interactions be-
tween subunits drive the emergence of particular large-scale
morphologies [1–16]. However, assembly can be frustrated
when the subunit-subunit interactions are incompatible with
the surface geometry. For example, the densest 2D packing
of spheres or discs, a six-fold coordinated hexagonal lattice,
requires a minimum of 12 five-fold coordinated disks to cover
a spherical surface [17, 18]. This frustration is metric in ori-
gin, arising because a hexagonal lattice is incompatible with
the positive intrinsic (Gaussian) curvature of a sphere. Intrin-
sic curvature frustration has been the subject of intense ex-
perimental and theoretical investigation [17–45]. In contrast,
there has been much less attention on extrinsic (mean) curva-
ture, since it plays no role in the assembly of subunits that are
isotropic (e.g. spheres) or live entirely in the surface tangent
plane (i.e. a film of zero thickness). However, finite-thickness
layers of flexible ligands undergo microphase separation or
ordering on surfaces with mean curvature [5, 6, 10, 46–52].
Similarly, anisotropic subunits such as proteins or aspherical
colloids have a preferred (spontaneous) mean curvature, and
their assembly can be frustrated when the spontaneous curva-
ture differs from that of the substrate on which they assemble
[53].

In this article we computationally investigate assembly
when both forms of geometric frustration occur simultane-
ously, during the assembly of anisotropic subunits on a sphe-
rocylindrical template. The inhomogeneous curvature of a
spherocylinder ensures that the preferred subunit curvatures
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(mean and Gaussian) cannot globally match those of the tem-
plate. Moreover, we show that anisotropy between the two
principal curvature directions provides an additional source of
frustration, even on surfaces such as cylinders for which the
Gaussian curvature is zero.

Our study is motivated by recent experiments in which the
capsid proteins of brome mosaic virus (BMV, a small, single-
stranded RNA, icosahedral plant virus) assembled around
spherocylindrical nanorods [1]. The assembly of viral capsid
proteins around spherical cores has been studied for several
systems [12–14, 54–57], including the assembly of BMV pro-
teins around spherical charge-functionalized gold nanoparti-
cles [3, 4, 58–62]. The experiments on spherical cores showed
that the core size influences the protein organization, since as
the core size increased, the proteins assembled larger icosahe-
dral shells [4]. Yet, relatively little is known about viral pro-
tein assembly around nanoparticles with lower symmetry such
as spherocylinders. Bancroft and coworkers [63] showed that
BMV proteins form bacilliform particles around calf-thymus
DNA, while Mukherjee et al. [64] showed that the capsid
proteins of cowpea chlorotic mottle virus (CCMV, closely re-
lated to BMV) form tubular structures around double-stranded
DNA. However the detailed arrangements of proteins in these
complexes is unknown.

Zeng et al. [1] showed that BMV proteins can assemble
closed shells around spherocylindrical gold nanorods whose
surfaces are functionalized with negative charge. Using AFM,
they visualized the arrangement of protein capsomers (pen-
tamers or hexamers of the capsid protein) on the nanorod
surfaces. While pentamer and hexamer capsomers formed
partial icosahedral shells on the endcaps, particles exhibited
hexagonal packing of capsomers on the cylindrical region of
nanorods. Different alignments of the hexagonal lattice rela-
tive to the cylinder axis were observed, including both achiral
geometries and a range of chiral angles. In addition to closed
shells, the experiments identified particles with a variety of
defects, several examples of which are shown in Fig. 1. The
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presence of defects was correlated to the nanorod dimensions.

While insightful computational and theoretical studies have
modeled the packing of spherical subunits on spherical [65–
68] or spherocylindrical templates [69–71], spherical subunits
do not possess a preferred mean curvature. In studies that
did consider the effects of mean curvature, Yu et al. [53]
showed that rodlike particles, with a preferred mean curva-
ture of zero, form faceted structures on a spherical template,
while other studies modeled the assembly of anisotropic sub-
units into icosahedral shells on spherical templates [72–78].
However, to our knowledge none have yet considered assem-
bly around templates with inhomogeneous curvature.

In this article we examine the effect of preferred sub-
unit curvature on assembly around templates with inhomo-
geneous curvature. We have developed a minimal coarse-
grained model in which conical subunits with short-range lat-
eral subunit-subunit attractions assemble on the surface of a
spherocylindrical nanorod (Fig. 2). The preferred curvature of
the assemblage is controlled by the subunit cone angle. De-
pending on the relative values of the subunit preferred curva-
ture and the template curvature, our simulations predict a rich
array of particle morphologies, including many of the struc-
tures observed in experiments such as complete shells and
particles with circular vacancies, or ring defects (Fig. 1). To
understand the physics underlying these results, we develop
a continuum-theory description for the assembly of a triangu-
lar lattice with spontaneous curvature on a surface with arbi-
trary curvature. The theory shows that the assembly outcomes
depend on mismatches between the mean curvatures of the
subunits and nanorod, as well as the curvature anisotropy of
the nanorod (i.e. difference between the two principal curva-
tures) even when the Gaussian curvature is zero. These results
highlight the key role played by extrinsic curvature incompat-
ibilities in the assembly of proteins and colloids on curved
substrates.

a b

coordination 

number

<6 6

FIG. 1. Comparison between AFM images of BMV capsid proteins
assembled around gold spherocylindrical nanoparticles and simula-
tion outcomes. The images show typical examples of (a) complete
particles and (b) particle with defects, with red arrows indicating de-
fects. Parameters for the simulation outcomes are: nanorod radius
R′scyl = 11nm, nanorod length Lcyl = 45nm, and subunit sponta-
neous curvature radiusRcone = 14.0 (top) andRcone = 9.5 (bottom).
In all figures, capsomers with six neighbors are shown in orange, and
capsomers with 5 or fewer neighbors in purple.

II. COMPUTATIONAL METHODS

Capsomer model

We seek a minimal, general, model capable of investigating
the relationship between template curvature, subunit sponta-
neous curvature, and assembly morphologies. Motivated by
these objectives and the limited resolution of the AFM ex-
periments in Ref. [1], we employ a model in which the ba-
sic assembly unit corresponds to a protein capsomer (either a
hexamer or pentamer). The model is sufficiently general to
describe anisotropic colloidal subunits as well as proteins.

We have adapted the model from the conical subunits de-
scribed in Chen et al. [69], which showed that conical sub-
units can self-assemble into monodisperse aggregates. Each
subunit consists of a linear array of six beads with increas-
ing radius, characterized by the cone angle α (Fig. 2b). For
certain magic cone angles, the equilibrium structures exhibit
icosahedral symmetry.

We modify the Chen et al. model by truncating the cones,
so that in bulk (with no nanorod present) they assemble into
empty shells with geometries that closely resemble viral cap-
sids. We index the beads within a given capsomer by n =
0 . . . 5, with n = 0 corresponding to the bead with the small-
est radius, which sits at the inner surface of an assembled cap-
sid. Each of the four interior beads (n = 1 . . . 4) in a capsomer
interacts with its counterpart (bead with the same index) in a
nearby capsomer through a Morse potential (Eq. (9)), which
drives lateral assembly of the subunits. Other pairs of beads
experience excluded volume interactions (Eq. (10)).

Our subunit dimensions and aspect ratio roughly match
those of BMV capsomers. The bead sizes within a subunit
set the cone angle α and correspondingly the preferred capsid
radius, i.e., the capsomer spontaneous curvature radius, Rcone.
In an ideal shell, the innermost bead of each capsomer is lo-
cated at a radial distance from the shell center Rcone, and the
outer capsomer bead is located at Rout = Rcone + h, where
h is the ‘height’ of a capsomer. The four interior beads are
uniformly distributed between the inner and outer beads, so
that the spacing between neighboring beads is h/5. The cone
angle α is then determined by the criteria that beads of the
same index in neighboring capsomers should be separated
by a distance equal to their diameter (the equilibrium dis-
tance of their interaction potential). This requirement deter-
mines the bead radius as a function of index and cone an-
gle as: req

n = (Rcone + nh/5) sinα/2. Specifying values
for h, one bead diameter, and α thus completely determines
the dimensions of the model capsomers. In our simulations
we fix h = 4 nm and the diameter of the outermost bead to
σcone = 2r5 = 7.7 nm, and we vary α to tune the spontaneous
curvature.

To model the native BMV capsid structure, we set the cone
angle α = 33.1◦, so that in bulk simulations we obtain spher-
ical shells consisting of 32 subunits and inner radius Rcone ≈
9.5nm, in good agreement with the native BMV capsid [79].
Because we consider only a single subunit geometry, which
represents both hexamer and pentamer capsomers, we find
that only 40% of the assembled shells have perfect icosahedral
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symmetry. Robust formation of T=3 capsids with icosahedral
symmetry was previously shown to require two capsomer di-
ameters (with ‘pentamer’ subunits being smaller than those
corresponding to hexamers) [67]. Moreover, the preferred
curvature of individual BMV capsomers could differ from
those observed in assembled capsids. Similarly, interactions
with a substrate (such as the functionalized nanorod surface)
could drive conformation changes that adjust the capsomer
spontaneous curvature. To address these possibilities, we per-
formed simulations over a range of cone angles α, correspond-
ing to spontaneous curvature radiiRcone = 4.0−21.0nm. The
inner radii of assembled capsids closely correspond to Rcone
throughout this range.

a

c
pentamerhexamer

d

b

FIG. 2. (a) Brome mosaic virus (BMV) capsid structure obtained
from cyoEM (PDB ID: 3J7M) [79], compared with a capsid assem-
bled from conical subunits in the absence of a nanoparticle. Each
conical subunit represents a capsomer, and both pentamers (five
neighbors, in purple) and hexamers (six neighbors, in orange) can
be identified, showing icosahedral organization consistent with T=3
symmetry [22, 80]. (b,c) The cone angle α (b) sets the capsid sponta-
neous curvature radius Rcone (c), defined as the radial position of the
capsomer bottom bead in the lowest energy capsid. (d) Capsomer
model for Rcone = 9.5nm. Each of four interior beads (indices
n = 1 . . . 4) interacts through a Morse potential of depth εcc with
its counterparts in neighboring capsomers (red). The bottom cap-
somer bead experiences attractive interactions of strength εnc with the
nanoparticle beads (blue). The equilibrium distance of the Morse po-
tential between nanoparticle and capsomer beads, rnc

eq , must be con-
sidered in the template curvature. The effective template radius is
then given by R′scyl = Rscyl + rnc

eq .

Nanoparticle template

The nanoparticle is represented as a rigid body formed from
many spherically symmetric pseudoatoms (or beads). In the
case of spherocylinders (Fig. 2a), a central cylindrical body
of length Lcyl and radius Rscyl is fused with two spherical
caps also with radius Rscyl. The total length of the sphero-
cylinder is then Lscyl = Lcyl + 2Rscyl. For studying spherical
nanoparticles, we set Lcyl = 0. For cylindrical nanoparti-
cles, we turn off the attractive interaction between the spher-
ical caps and capsomers. We randomly distribute beads on
the nanoparticle surface with a high and homogeneous density
(ρ=13 beads/nm2 regardless of the nanoparticle dimensions),
so that the capsomers interact with a roughly homogeneous
surface. In the experimental system, positive charges on the
inner surface of BMV capsomers are attracted to functional-
ized negative charge on the nanoparticle surface. We quali-
tatively represent this attractive interaction by implementing
a Morse potential between the bottom bead (n = 0) of each
capsomer and the nanoparticle surface beads. To account for
excluded volume between capsomers and the nanoparticle, the
outer three beads in each capsomer n = 3 . . . 5 experience a
repulsive Lennard-Jones potential with nanoparticle surface
beads. When considering the nanoparticle curvature, we must
account for the interaction distance between the nanoparticle
and capsomer beads, roughly given by the Morse potential
equilibrium distance req

cn = 1.0nm. Thus, we define an effec-
tive nanoparticle radius as R′scyl = Rscyl + 1.0.

Simulations

We performed simulations in HOOMD[81], which uses
GPUs to accelerate molecular dynamics simulations [82]. In
our simulations, all physical units are expressed relative to
the thermal energy kBT , mass m, and a reference length σ.
The maximum diameter of a subunit is σcone = 7.7σ and its
height (h, center-to-center distance between beads 0 and 5) is
h = 4σ. By comparison with the actual height and diameter
of a BMV capsomer h ≈ 5nm and d ≈ 8nm [79], we can map
the length scale of our simulations into that of real viruses by
setting σ ≈ 1nm. Accordingly, to facilitate comparison with
experiments, we express all distances in nanometers.

Motivated by the experiments, we performed all sim-
ulations within the nanoparticle-directed assembly regime,
meaning that assembly only occurs on the nanoparticle sur-
face. To this end, we set the depth of the Morse potential
for interactions between capsomer beads to εcc = 2kBT . For
such weak interactions, nucleation of assembly in bulk was
not observed at the simulated capsomer concentration. We
set the well-depth of the Morse potential for the nanoparticle-
capsomer interaction to εnc = 0.3kBT , which gives an aver-
age interaction energy of 6.65kBT /capsomer (each capsomer
interacts with many nanoparticle pseudoatoms). This value
promotes adsorption of capsomers onto the nanoparticle sur-
face, resulting in a sufficiently high local capsomer concentra-
tion to drive assembly nucleation [76]. Our results are qualita-
tively unchanged for εnc ∈ [0.2, 0.5]kBT ; for smaller adsorp-
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tion energies the density of adsorbed capsomers is too low
to promote rapid assembly nucleation, whereas for higher εnc
capsomer adsorption becomes effectively irreversible, lead-
ing to malformed assemblies [83]. We found that achieving
a homogeneous absorption free energy on the nanorod sur-
face required slightly weakening the interaction between cap-
somers and nanoparticle surface beads on the spherical end-
caps, εnc, sph = 0.98εnc, cyl. This reflects coupling between
curvature and the finite size of the nanorod pseudoatoms.

Depending on the nanoparticle size, we considered two sys-
tem sizes: for small nanoparticles (Lcyl < 45.0) we initial-
ized 300 capsomers in a 130x130x130nm box, and for larger
nanoparticles (Lcyl ≥ 45.0) we used 500 capsomers in a
154x154x154nm box. For these system sizes the ratio of free
to adsorbed capsomers was always higher than 5:1, thus ensur-
ing results were not affected by depletion of free capsomers.
The simulated capsomer concentration corresponds to approx-
imately 220 µM. Our results were qualitatively insensitive to
varying capsomer concentration provided that we remained in
the nanoparticle-directed assembly regime.

We integrated the positions and orientations of capsomers
using the HOOMD Brownian dynamics algorithm for rigid
bodies for 1.5 × 107 timesteps, with a timestep duration of
∆t = 0.005. The nanoparticle position and orientation were
fixed. Based on the energy and visual inspection of parti-
cle morphologies, simulations have equilibrated (or at least
reached long-lived metastable minima) by 5× 106 timesteps.

III. CONTINUUM THEORY FOR A TRIANGULAR
LATTICE WITH SPONTANEOUS CURVATURE

A. Derivation of the continuum description

In this section we elucidate the effects of mean and Gaus-
sian curvature on assembly morphologies, by deriving a con-
tinuum approximation for the bending energy of a triangular
lattice of subunits on a surface with arbitrary curvature. Our
calculation is general, and extends calculations of bending en-
ergy for triangulated membrane models (e.g. Seung and Nel-
son [44] and Gompper and Kroll [45]) to lattices with spon-
taneous curvature and arbitrary template curvature. We will
see that allowing for spontaneous curvature makes the relevant
physics more transparent as well as increasing generality.

We consider a hexagonal lattice of subunits on a patch of
surface with principal curvatures c1 and c2. We assume that
particles maintain hexagonal close packing density at some
neutral surface located at a distance hns above the surface, and
that the long axis of each subunit points along the local surface
normal. For now we neglect the presence of disclinations in
the hexagonal lattice due to non-zero Gaussian curvature; we
will discuss their contribution below. To make the derivation
concrete, we assume the interaction potential used in our com-
putational model. However, the derivation is easily extendable
to other interaction forms and the results are generic.

We consider a reference state in which cref
1 = cref

2 =
1/Rcone, so that all pseudoatoms pairs are separated by their
equilibrium distance deq

n = 2req
n . We then calculate the

change in the interaction energy between a pair of subunits
(to quadratic order) as the curvatures vary:

U(c1, c2)− Uref =
1

2

4∑
n=1

kn (dn(c1, c2)− 2req
n )

2 (1)

with dn the distance between neighboring pairs of pseu-
doatoms with index n, and kn = ∂UMorse(d)

∂d2

∣∣∣
d=2req

n

.

Distances within the shell can be calculated using the met-
ric associated with the nanorod surface, but to make the role
of curvature transparent we calculate the deviation from the
reference state displacement between a pair of pseudoatoms
separated by lattice vector k̂ as:

dn − 2req
n ≈ σns(hn − hns)

(
cN(k̂)− 1

Rcone

)
. (2)

with σns the equilibrium separation distance at the neutral sur-
face, hn the height of pseudoatom n above the surface, and cN

the normal curvature along k̂:

cN(k̂) = c1 cos2(θ) + c2 sin2(θ). (3)

with θ the angle between k̂ and the principal direction associ-
ated with c1.

Substituting Eq. (2) into Eq. (1), summing over all parti-
cles and bonds, and using the hexagonal close-packing density
ρHCP = 2√

3σ2
ns

yields a result independent of θ:

Ubend = Aκ

[
1

2
(2H − c0)2 +

1

4
(c1 − c2)2

]
(4)

with A the template surface area, H = (c1 + c2)/2 the mean
curvature and c0 = 2/Rcone the shell spontaneous curvature.
The effective bending modulus is given by

κ =

√
3

2

4∑
n=1

kn (hn − hns)
2
. (5)

Eq. (4) can also be written as

Ubend = Aκ

[
1

2
(2H − c0)2 + (H2 −K)

]
, (6)

with K = c1c2 the Gaussian curvature. Eqs. 4 and 6 are the
central result of this section.

There are several points worth noting about this result.
Firstly, the energy, to quadratic order, is independent of lat-
tice orientation, as shown by Seung and Nelson [44]. How-
ever, note that the energy does become orientation-dependent
if higher order terms are considered in Eq. (1). Secondly, the
first term in Eq. (6) has the standard Helfrich form for devia-
tions between the mean and spontaneous curvatures [85], but
the second term (H2 − K) arises from curvature anisotropy
(c1 6= c2). When this term is accounted for, the bending mod-
ulus κ is seen to be independent of surface geometry; i.e., in
contrast to the suggestion in Ref. [45], the triangulated mem-
brane model does not have a different bending modulus value
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FIG. 3. (a) Phase diagram of the most frequent simulation outcomes as a function of the capsomer spontaneous curvature radius Rcone and
spherocylinder radius R′scyl, for a spherocylinder length of Lcyl = 40nm. On the right, we show a schematic for each class of assembly
outcome along with a representative example from the simulations. The outcomes are numbered the same as the corresponding parameters on
the phase diagram. The dashed line shows the threshold above which the continuum theory (Eq. (8)) predicts that assembly is more favorable
on the cylindrical shaft than on the spherical end caps. (b) Phase diagram of the most frequent outcomes as a function of the spherocylinder
length Lcyl and radius Rscyl, for constant Rcone = 9.5nm. Legend as in (a). On the right we show some typical simulation snapshots for
relevant spherocylinder aspect ratios. We performed 5-10 independent simulations at each parameter set. The distribution of outcomes for
representative parameter values is shown in the supplemental figure [84].

on a sphere and a cylinder. Thirdly, we see that the Gaus-
sian modulus is equal to the negative of the bending modulus,
κG = −κ, as found for lipid bilayers [86].

The contribution from the Gaussian curvature is constant if
particles are uniformly covered, since the integrated Gaussian
curvature is 4π regardless of the nanorod dimensions accord-
ing to the Gauss-Bonnet theorem [87]. However, this con-
tribution will change for particles which have vacancies on
portions of the surface with non-zero K, and thus affects the
relative favorability of assembling on the end caps or shaft.
More interestingly, the curvature mismatch term H2 − K is
zero on the spherical caps, but is nonzero on the cylindrical
shaft and does depend on Rscyl.

Finally, regions with non-zero Gaussian curvature (e.g. the
spherical caps) require disclinations in the hexagonal pack-
ing, which give rise to an additional energy Ud. This en-

ergy has been discussed at length for spherical packings (e.g.
[17–22, 25, 30, 33, 35–45]). For our small spherical caps we
can expect the total disclination energy to be proportional to
Ud ∼ 12·4εcc since there are 12 five-fold coordinated subunits
with 4 attractive pseudoatoms.

B. Implications of the continuum theory for assembly
morphologies

To assess the relative favorability of assembly on the cylin-
drical or spherical portions of the nanorod, we use Eq. (6) to
write the energy (per particle) due to bending and disclinations
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FIG. 4. Comparison of bending energy on cylindrical and spherical
surfaces. The difference in bending energy per particle predicted by
the continuum theory, ∆u = ucyl − usphere (Eq. (7)), is shown as a
function of R′scyl and Rcone for κ = 38.3kBT . The dashed line shows
the threshold above which assembly is favored on the cylinder over
the sphere (Eq. (8)).

for the two surface geometries as

usphere =
κ

ρHCP

1

2

(
2

R′scyl
− 2

Rcone

)2

+
Ud

4π(R′scyl)
2ρHCP

ucyl =
κ

ρHCP

1

2

(
1

R′scyl
− 2

Rcone

)2

+
1

4

(
1

R′scyl

)2


(7)

Comparing these expressions shows that there is a threshold
value of the curvature ratio γnr above which assembly on the
cylinder becomes more favorable than on a sphere:

γnr∗ = 8/ (5 + Ud/πρHCP) (8)

Finally, to apply these results to our model, we set the
pseudoatom height hn = nh/5, the neutral surface height
hns = h/2, cone angle α = 33.1◦, Morse strength εcc = 2,
and Morse potential width αn = 12/2req

n , resulting in κ =
−κG = 38.3kBT . To maintain the simplification of a har-
monic interaction, we are neglecting the excluded volume re-
pulsions from the Lennard-Jones potential (Eq. (10)), which
apply only when the pseudoatom displacement is less than the
equilibrium distance.

IV. RESULTS

All simulations resulted in extensive adsorption of cap-
somers onto the nanoparticle. To clearly illustrate the cap-
somer packing on the nanoparticle surface, in all figures we
render only the outermost attractive bead of each capsomer
(n = 4), and only show capsomers located within 5 nm of
a nanoparticle surface bead. We render capsomers with six
neighbors in orange, and capsomers with 5 or fewer neigh-
bors in purple. We compute the coordination number of each
capsomer from the number of neighbors within a distance

1.25req
4 , where req

4 is the equilibrium distance between the out-
ermost attractive beads in neighboring capsomers. Due to this
threshold-based definition, we never observe capsomers with
7 or more neighbors. Consistent with Luque et al. [71], we
observe hexagonal packing of capsomers on the cylindrical
portion of complete particles and 5-fold defects on the spher-
ical caps.

To understand how assembly morphologies depend on mis-
matches in curvature, we consider results in terms of the ratio
between the capsomer spontaneous curvature radius and the
nanoparticle radius, γnr ≡ Rcone/R

′
scyl. The mean curvature,

defined as H = 1
2 (c1 + c2) with c1 and c2 the principle cur-

vatures, differs for the spherical endcaps and the cylindrical
shaft. The ratio of mean curvatures on endcap and shaft is
thus 1/γnr and 2/γnr respectively. Also note that the curvature
anisotropy term in Eq. (6), (H2 −K), is zero on the endcap
but equal to 1/(2R′scyl)

2 on the cylinder.

A. Spherocylinders: simulation outcomes

We first studied the assembly of conical capsomers around
spherocylindrical nanoparticles of different length and radius.
We focused on nanoparticles of similar dimensions to those
studied in experiments, Rscyl ∼ 5− 15 nm and Lcyl = 5− 45
nm. Because the BMV capsid protein spontaneous curvature
is not known for certain, and to understand the effect of vary-
ing γnr, we explored capsomer spontaneous curvature radii in
the range Rcone = 5− 21nm.

Within the simulated range of nanoparticle dimensions, we
identify six classes of assembly outcomes (Fig. 3): incomplete
III, with capsomers assembled into three isolated clusters;
partial III, three partially connected domains; incomplete II,
two isolated clusters; partial II, two partially connected clus-
ters; complete capsids with capsomers homogeneously cover-
ing the entire nanoparticle surface; and incomplete, in which
capsomers do not homogeneously cover the surface. We ob-
serve incomplete morphologies for very low radii of curvature
(typically ≤ 5nm), suggesting that assembly is frustrated by
the high substrate curvature.

Fig. 3a shows the most frequent morphology as a function
of capsomer and nanoparticle radius, for fixed spherocylinder
length Lcyl = 40nm. The phase diagram can be divided into
two main regions: complete particles for Rcone & 8/5R′scyl
(i.e. γnr & 8/5) and incomplete particles otherwise. Among
incomplete particles, for 1.2 < γnr < 1.5 we observe incom-
plete II particles, and for γnr < 1.2 only incomplete III parti-
cles. If we consider a cut of constant spherocylinder dimen-
sions (e.g. R′scyl=10nm), as we increase Rcone the size of the
capsomer domains increases and therefore the number of iso-
lated domains that grow on the nanoparticle decreases. In this
sequence, morphologies gradually change from incomplete III
particles, to incomplete II and eventually complete particles,
as shown in the snapshots of Fig. 3a. For parameter sets away
from outcome transition boundaries, independent trajectories
result in the same outcome class. However, for parameter sets
near transition boundaries we observe up to three distinct out-
comes at a given parameter set. The supplemental figure [84]
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shows the distribution of outcomes for representative parame-
ter sets.

These results suggest that shell bending energy due to cur-
vature mismatch and anisotropy is the key factor determin-
ing the presence and number of defects. In particular, the
dashed line in Fig. 3a shows the threshold curvature ratio
γnr∗ = 8/5 predicted by Eq. (8) (neglecting the contribution
from disclinations, i.e. Ud = 0), above which assembly on
the cylinder is more favorable than on the spherical endcaps.
We see this matches the boundary between complete and in-
complete particles reasonably well. Moreover, Fig. 4 plots
the difference between bending energy on the cylinder and
sphere, ∆u = ucyl− usphere (Eq. (7)), and we see that the con-
tours roughly track the boundaries between different assembly
morphologies. We discuss in section IV B 2 how the circular
‘ring’ defects can be understood in terms of the bending en-
ergy. However, in addition to these equilibrium effects, we
observed instances in which kinetics played a role in defect
generation. In a few trajectories, clusters independently nu-
cleated on both end caps, after which their growth edges met
with incompatible orientations.

Fig. 3b shows the most frequent morphology as a function
of spherocylinder radius and length, for fixed capsomer radius
Rcone = 9.5nm. In this case, the nanoparticle length deter-
mines the number of capsomer domains assembled. For small
Lcyl, capsomers homogeneously assemble around the whole
surface even for small Rcone. As we increase the nanopar-
ticle length, two and eventually three domains are observed.
The figure shows a slight coupling between radius and length;
e.g. for the same Lcyl we observe incomplete II particles for
R′scyl = 8.5nm and incomplete III for R′scyl ≥ 10nm. The case
of highest curvatureR′scyl = 6nm exhibits a different behavior,
with many vacancies and a low assembly yield for the shortest
spherocylinders, presumably due to the high curvature of the
template. However, as we increase the spherocylinder length
we obtain complete particles. These results can be understood
in terms of the relationship between the typical shell domain
width and γnr discussed in section IV B 2.

B. Assembly around templates with uniform curvature

To understand how the interplay between the cylindrical
and spherical portions of the nanoparticle effects assembly
morphology, we performed independent sets of simulations in
which assembly occured on spherical or cylindrical templates.

1. Spherical nanoparticles

We first consider capsomer assembly around a perfectly
spherical nanoparticle, with a radius consistent with the T=3
capsid obtained in bulk, R′s = 9.5nm. We explore a range of
capsomer curvature radii, 5.0 ≤ Rcone ≤ 15.5nm, so that the
ratio of preferred capsid size to nanoparticle size varies from
0.5 . γnr . 1.75. Representative assembly outcomes are
shown in Fig. 5a for cases in which the spontaneous curvature
radius is smaller than, equal to, or larger than the nanoparticle
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FIG. 5. (a) Representative examples of capsomers assembled around
spherical nanoparticles with radius R′s = 9.5. From left to right,
Rcone = 5.0, 9.5 and 15.5nm. The line over each capsid approxi-
mately shows its preferred curvature. Below each snapshot we show
a schematic of the relative size between the nanoparticle (yellow) and
the protein capsid in bulk (purple). (b) Energy per capsomer assem-
bled around spherical nanoparticles as a function of γnr ≡ Rcone/R

′
s.

In the simulations for (b), we kept the capsomer radius constant
Rcone = 13.0nm and changed the nanoparticle size. (c) Continuum
result for bending energy / capsomer on a spherical surface, usphere

(Eq. (7), as a function of curvature ratio for indicated values of the
spontaneous curvature radius Rcone.

size. For γnr ≈ 1 we obtain complete particles which consist
of 32 capsomers, although icosahedral symmetry is observed
in a lower proportion (20%) of simulations than in bulk (40%).
As the preferred curvature radius deviates from the template
size, assembled particles exhibit vacancies and defects. For
γnr > 1 capsomers tend to form larger shells, leading to the
formation of two large, flat caps whose assembly eventually
stalls when the capsomers in the cap can no longer reach the
nanoparticle surface. For smaller radii, γnr < 1, the capsomer
curvature does not allow a well-formed assemblage to cover
the entire nanoparticle surface, and instead we usually observe
two small caps.

In both limits (γnr > 1 and γnr < 1) the incompatibility
between capsid and template curvature eventually frustrates
assembly, leading to a gap between two caps. However, Yu
et al. [53] showed that cylindrical rods assembling on spher-
ical nanoparticles form ordered faceted particles. It is con-
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FIG. 6. Average normalized width of clusters (in the cylinder axis
direction) formed by capsomers assembled around cylinders, for in-
creasing γnr ≡ Rcone/R

′
scyl and constant Lcyl = 75nm.

ceivable that the same result would be recovered in the limit
γnr → ∞. In general we expect that the existence of gaps
and the number of faces could depend on the degree of curva-
ture mismatch and whether capsomer-capsomer interactions
are sufficiently strong to drive assembly once a cap separates
from the nanoparticle surface (recall that these simulations are
performed in the limit of weak capsomer-capsomer interac-
tions).

To quantitatively describe how the ‘quality’ of assembly de-
pends on the curvature mismatch, we show the average energy
per capsomer in Fig. 5b. For this calculation we fixed the cap-
somer spontaneous curvature radius at Rcone = 13nm, and
then varied the nanoparticle in the range Rs ∈ [9.0, 16.0]. In
this parameter regime all assembled capsids were defect-free,
simplifying the interpretation of the capsomer energy. The
simulation results are qualitatively consistent with the con-
tinuum theory (Eq. (6), Fig. 5c) — the energy is minimized
at γnr ≈ 1, when the capsomer and nanoparticle curvatures
match, and increases as the capsomer curvature radius devi-
ates from the template size.

2. Cylindrical nanoparticles

To investigate assembly on the cylindrical portion of the
nanoparticle, we performed simulations with long nanoparti-
cles (Lcyl = 75nm), with attractions turned off between cap-
somers and the surface beads in the spherical caps. Thus as-
sembly morphologies near the middle of the cylindrical re-
gion were essentially independent of end effects. As shown
in Fig. 6, we observe well-formed hexagonal lattices that uni-
formly cover the cylindrical surface for γnr & 1.4, with opti-
mal assembly for γnr ≈ 1.5. This is roughly consistent with
the behavior predicted by Eq. (6) as shown below.

For smaller capsomer curvature radii, we observe cap-
somers assembled into ‘bands’ separated by gaps, with the
width of the bands depending on γnr. Capsomers at the edge

of a band tilt along the cylinder axis, effectively allowing
for shell curvature along the cylinder axis. To quantify the
band width, we define w as as the maximum distance along
the cylinder axis direction ẑ between two beads belonging
to the same cluster, wl = (max(zi)−min zi) /σcone for all
capsomer beads i in a given cluster l. Here we have normal-
ized the band with by the diameter of the outer capsomer bead
σcone = 7.7, so that the normalized band width roughly equals
the number of capsomers per cluster in the axial direction. The
normalized cylinder length is then Lcyl/σcone = 9.7.

Fig. 6 shows the average band width as a function of γnr,
along with representative assembly outcomes. For a low cur-
vature ratio γnr ≈ 0.4 − 0.5, capsomers assemble poorly on
the cylinder, forming very narrow bands consisting of just 1-2
capsomers. Bands become thicker with increasing γnr, until
w ≈ 5 for γnr ≈ 1.3 meaning that only two domains fit on
the cylinder. The system then gradually transitions to a com-
plete hexagonal lattice for γnr & 1.4. Due to the finite length
of our nanoparticle, we cannot determine whether the band
width remains finite (but larger than the cylinder length), or
if capsomers could assemble infinite domains with hexago-
nal packing. However, the energy calculations discussed next
suggest that assembly is minimally frustrated for γnr ≈ 1.5,
suggesting that the band width would be infinite (except for
defects arising due to entropy in this effectively 1D geome-
try).

The increasing band width as a function of γnr can be qual-
itatively understood from (Eq. (4)). For small γnr both the
mean curvature and curvature anisotropy terms are unfavor-
able because the principle curvature is zero along the cylinder
axis. Tilting of capsomers near the edge of a band allows for
nonzero curvature along this direction, with higher curvature
for smaller bands. In particular, the typical band width for
small γnr is comparable to Rcone.

We note that the bands in our simulations superficially re-
semble bands observed in the context of spherical colloids
assembling around spherical nanoparticles in recent experi-
ments [33] and simulations [68]. However, the physics driv-
ing band formation differs. The bands in our system arise due
to curvature anisotropy and a mismatch between the extrinsic
(mean) curvatures of the capsomer and template. In contrast,
the spherical surfaces in Refs. [33, 68] have isotropic curva-
ture, and the spherical colloids undergoing assembly have no
spontaneous curvature. Bands arise because isotropic growth
of a crystal with hexagonal order becomes frustrated by the
intrinsic (Gaussian) curvature of the spherical surface.

To evaluate assembly quality, Fig.7a shows the average en-
ergy per capsomer for fixed Rcone = 13.0 and cylinder radius
Rscyl = 7.5 − 15.0nm. We observe a minimum at γnr = 1.5,
when capsomers form highly ordered hexagonal lattices. As
the curvature ratio increases beyond γnr = 1.5, the energy in-
creases and both visual inspection of simulation snapshots and
analysis of the mean square deviations of capsomer-capsomer
distances confirmed that the packings become less ordered
(e.g. see Fig.7b for γnr = 2.05). This result is qualitatively
consistent with the continuum theory. Minimization of the
energy per particle on a cylinder (ucyl, Eq. (7)) as a func-
tion of R′scyl, at fixed Rcone, gives an optimal cylinder radius
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R′scyl = 3/4Rcone corresponding to γnr = 4/3. This is qualita-
tively consistent with the minimum in Fig.7a, as is the varia-
tion of ucyl with γnr (Fig.7c). This result highlights the impor-
tance of the curvature anisotropy; analysis of mean curvature
mismatch only would predict optimal assembly on a cylindri-
cal surface for γnr = 2.0. Note however that if one variesRcone
at fixed R′scyl the energy per particle is optimal for γnr = 2.0,
since the curvature anisotropy term is independent of Rcone.
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FIG. 7. (a) Energy per capsomer assembled around cylindrical
nanoparticles, for different capsomer/cylinder curvature ratios γnr.
The insets show examples of ordered hexagonal packing at γnr = 1.5
and irregular hexagonal packing at γnr = 2.0. In these simulations
the attractive interaction between capsomers and the spherical caps
is turned off. Parameter values are Lcyl = 45.0, Rcone = 13.0 and
Rscyl = 7.5−15.0nm. (b) Typical example of assembly morphology
around a cylinder for γnr = 2.05. (c) Continuum result for bending
energy / capsomer on a cylindrical surface, ucyl (Eq. (7), as a function
of curvature ratio for indicated values of the spontaneous curvature
radius.

C. Chirality

AFM imaging showed that capsid proteins form hexago-
nal lattices on the cylindrical region of the nanorod [1]. The
particle lattice orientations relative to the nanorod were quan-
tified by determining θ as the smallest angle between any of
the lattice vectors and the long axis (Fig. 8). Following the
nomenclature of Luque et al. [70, 71], there are two achiral
geometries denoted as “ring” (θ = 0◦) or “zigzag” (θ = 30◦),
while angles between 0◦ < θ < 30◦ correspond to chiral (or
“skew”) configurations. The experimental particles exhibit the
complete range of angles, but favor the “zigzag” configura-
tion.

Our simulation trajectories also result in a range of chiral
angles (Fig. 8), with the preferred angle depending on γnr.
We calculate the chiral angle θ as the minimum angle formed

by the nanoparticle axis and any of the three orientation vec-
tors of the hexagonal lattice (see Fig. 8), averaged over all the
beads adsorbed onto the cylindrical face with 6 neighbors. We
computed the angle distribution from 105 independent simu-
lations at each of three parameter sets corresponding to dif-
ferent curvature ratios (see Fig. 8). For γnr = 1.21, adsorbed
capsomers tend to form bands in which the hexagonal lattice
is perpendicular to the cylinder axis (e.g. see several examples
in Fig. 6). The angle distribution in Fig. 8a then exhibits a
peak at θ ∼ 30◦. For γnr = 1.45, we observed complete par-
ticles in which the hexagonal lattice aligns with the axis, and
the angle distribution in Fig. 8b shows a clear preference for
ring particles, with only a few chiral particles and generally of
angle < 15◦. As described in Section IV B 2, this regime cor-
responds to optimal hexagonal packing. For γnr = 2.05, we
observe formation of both chiral and zigzag particles with dis-
ordered hexagonal packing (Fig. 8c); there is no identifiable
pattern in the angle distribution.

The chiral angle distribution in simulations is most consis-
tent with that observed in the experiments for γnr = 1.21 [1],
implying a capsomer preferred curvature more closely match-
ing the spherical end cap rather than the cylindrical region of
the nanorod. A key difference in this regime is that the simula-
tion model cannot capture the ability of the experimental cap-
somers to form complete particles in this regime. This differ-
ence may arise because the simulations only consider one sub-
unit geometry while the BMV proteins form both pentameric
and hexameric capsomers with different preferred curvatures.

To test whether the chiral angle is sensitive to kinetic ef-
fects (i.e. whether growth starts from the hemispherical caps
or on the cylinder) we performed a set of 60 simulations for
each chiral angle in which capsomers only interacted with
the cylindrical surface. These simulations resulted in very
similar angle distributions, suggesting the chiral angle pri-
marily arises from energetic rather than kinetic effects. This
result can be explained at least in part by the coupling be-
tween anisotropic curvature on the cylinder surface and the
discrete nature of the capsomer lattice. As noted in sec-
tion III the bending energy is independent of lattice orien-
tation to quadratic order, but becomes orientation-dependent
when nonlinearities are included. We have not performed a
detailed analysis of the continuum theory at higher order, but
the simulation results can be qualitatively understood as fol-
lows. As shown in Fig. 8d, the three lattice vectors ŝi define
three curves si on the cylinder, with different curvature radii
Rsi . The anisotropy in the curvatures of the three lattice di-
rections strongly depends on the lattice orientation. Zigzag
configurations allow a direction with the smallest curvature
radius (for θ⊥ = 90◦, R⊥ = Rscyl), while ring particles
have the highest radius of curvature (for θ‖ = 0◦, R‖ = ∞).
For preferred capsomer curvature radii matched to the spher-
ical end cap (γnr ≈ 1), capsomers avoid the flat axis direc-
tion and preferentially orient perpendicular to the axis, re-
sulting in a curvature radius along the perpendicular contour
R⊥ = Rcyl ∼ Rcone. For γnr ∼ 1.5, ring orientations allow for
the curvature along two directions to nearly match that of the
capsomer (for θs = 30◦, R30◦ = Rscyl/3 ∼ Rcone), although
one lattice vector must then orient along the unfavorable flat
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FIG. 8. Chirality of the hexagonal lattice assembled on spherocylin-
ders with Lcyl = 45nm and R′scyl = 9nm, and variable Rcone. (a) An-
gle distribution for γnr = 1.21. The inset shows how the chiral angle
θ is defined. (b) Angle distribution for γnr = 1.45. (c) Angle distri-
bution for γnr = 2.05. (d) From left to right, representative examples
of particles with hexagonal lattice orientations that are approximately
ring, chiral, and approximately zigzag. (e) Schematic of the hexag-
onal lattice orientation. Each capsomer interacts with six neighbors,
with interaction directions given by the vectors ŝi. Capsomers expe-
rience three different interaction directions, each one along a differ-
ent curve s on the cylinder, with curvature radius Rs (for simplicity
only one is shown). In zigzag particles, the perpendicular orientation
presents the minimum curvature radius R⊥ = Rscyl. Ring particles
experience the lowest curvature radius, R‖ =∞.

D. Nucleation & kinetics

Although we have focused on long-time assembly mor-
phologies thus far, the simulations also allow studying assem-
bly dynamics. Figs. 9a,b shows the evolution of the number
of capsomers adsorbed onto the cylindrical and spherical re-
gions of the nanoparticle as a function of time for high and
low curvature ratios. Note that the first adsorbed capsomers
are typically isolated and randomly distributed, and hence the
adsorption probability is equal for the cylindrical and spheri-
cal regions until nucleation occurs. Fig. 9c shows the density
of adsorbed capsomers on each region at t = 6 × 105 as a
function of γnr.

Recall that the continuum theory predicts a threshold
γnr∗ ≈ 8/5 above which there is a transition from prefer-
ential assembly on spherical surfaces to cylindrical surfaces.
The dependence of the relative driving force for assembly on

either surface can be estimated from the dependence of curva-
ture energies for each geometry shown in Fig. 9d. The simu-
lation trajectories are strongly consistent with the continuum
predictions. For low γnr nucleation preferentially occurs on
end caps, whereas nucleation occurs in the cylindrical region
for high γnr. The crossover between these regimes, where nu-
cleation occurs uniformly throughout the nanorod, occurs at
γnr∗ (within error). Moreover, the adsorbed density is corre-
lated to the bending energy, with a maximum in the density on
the spherical region at γnr = 1 corresponding to the minimum
in usphere.

Consistent with these results, experimental evidence in
Zeng et al. [1] suggests both that the preferred capsomer cur-
vature is consistent with the spherical end-caps (i.e. γnr ≈ 1)
and that experimental trajectories initiate at the end-caps.

x 1050 2 4 6

0.002

0.01

0.004

0.006

0.008

0.012
0.014

0.014

0.009

0.01

0.011

0.012

0.013

0.5

0

time

1 1.5 2 2.5
0

30

40

20

10

0.5 1 1.5 2 2.5

sphere
cylinder

sphere
cylinder

x 1050 2 4 6

0.002

0.01

0.004

0.006

0.008

0.012
0.014

0

time

sphere
cylinder

a b

c d

nucleation

nucleation

FIG. 9. Comparison of assembly kinetics on spherical and cylindri-
cal surfaces. (a), (b) Density of adsorbed capsomers on spherical (◦
symbols) and cylindrical (� symbols) nanoparticles as a function of
time for curvature ratios below and above the threshold: (a) γnr = 0.8
and (b) γnr = 2.3. The black dashed line in each plot indicates the
time point at which nucleation occurred. The image above each plot
is a snapshot from a representative trajectory at (a) t = 4.5×104 and
(b) t = 3×103. Each curve represents the average over ten indepen-
dent simulations. (c) The average density of adsorbed capsomers on
cylindrical and spherical nanoparticles as a function of γnr. (d) The
bending energy per capsomer on spherical and cylindrical surfaces
calculated from continuum theory (Eq. (7)) as a function of curvature
ratio. In all cases the spherocylinder radius is fixed at R′scyl = 9.5nm
and Rcone is varied. In the simulations Lcyl = 40.0nm.

V. DISCUSSION & CONCLUSIONS

We have studied a phenomenological computational model
motivated by experiments in which capsid proteins from an
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icosahedral virus assemble around spherocylindrical nanorods
[1]. By varying a single parameter, the ratio of the preferred
curvature of the subunits to the template curvature, the sim-
ulations reproduce most of the experimentally observed as-
sembly outcomes. These results highlight the importance of
the coupling between the curvatures of subunits and substrate,
demonstrating that particle asymmetry adds an important con-
trol parameter for assembly confined on curved surfaces. Our
subunit model is sufficiently general that it also could be real-
ized experimentally by synthesizing conical-shaped colloidal
particles.

It is well known that packing of particles with a circular
cross-section on a spherical surface is frustrated due to the
incompatibility of hexagonal order on surfaces with Gaus-
sian (intrinsic) curvature. Here, we see that the assembly of
anisotropic particles on a curved surface results in an addi-
tional forms of geometric frustration: when there is a mis-
match between the preferred extrinsic (mean) curvature of
the particles and the template, or a mismatch between cur-
vature anisotropy of the particles and template. It was previ-
ously shown that a mismatch in mean curvatures of subunits
and substrate on a spherical surface leads to line defects and
faceting [53]. Here, we see a similar behavior on a cylindrical
surface, with bands separated by line defects when the cap-
somer spontaneous curvature is sufficiently large in compari-
son to that of the cylindrical region of the nanorod. In contrast
to a spherical surface, curvature is anisotropic on a cylinder,
and our simulations show that this anisotropy can provide an
additional control parameter, allowing tuning of the preferred
lattice orientation on the cylinder. Thus, the class of systems
described by our simple computational model could allow for
designing a rich variety of particle geometries.

The simulation results suggest that measuring the width
w of bands between defects could provide an estimate of
the spontaneous curvature radius of the adsorbed particles
(w ∼ 2Rcone), a parameter which is in general difficult to
measure in bulk experiments. However, the simulations also
suggest a coupling between domain width and cylinder radius,
and thick cylinders may lead to underestimation of Rcone.

Finally, while the minimal model used in this work seems
to capture the key physical principles dictating the assembly
of anisotropic particles on curved surfaces, the model also has
limitations relative to the motivating experimental system [1].
In particular, while the model reproduces the experimentally
observed morphologies, different values of the subunit spon-
taneous curvature are required to match the experimental ob-
servation that complete particles can form on both short and
long nanorods. We speculate that this discrepancy arises be-
cause, for simplicity, the model considers only a single sub-
unit geometry, whereas BMV proteins adopt different ‘quasi-
equivalent’ conformations allowing them to form pentameric
or hexameric capsomers. It is likely that hexameric capsomers
have a larger preferred curvature radius than pentamers, which
would allow them to more readily assemble on the cylindrical
region of the nanorod. However, comparison of several re-
sults between the simulations and experiments still suggests
that the subunits have a spontaneous curvature which more
closely matches the spherical end caps than the cylinder. In

particular, the distribution of chiral angles and the fact that
trajectories initiate on end-caps in this regime are both consis-
tent with experimental observations [1].

VI. APPENDIX

Our model is defined by pairwise potentials describing
capsomer-capsomer and capsomer-nanoparticle interactions.
The capsomer-capsomer potential, Ucc, consists of two terms,
Ucc = U att

cc + U ex
cc . The attractive interaction between the four

interior pseudoatoms of the capsomers, n = 1 . . . 4 is modeled
by a Morse potential. Beads are attracted only to their coun-
terparts (with the same index n) on neighboring capsomers,
and the equilibrium distance of the potential depends on the
bead radius, req

n :

U att
cc =

∑
i,j<i

4∑
n=1

εcc

(
e−2αn(rij,n−2req

n ) − 2e−αn(rij,n−2req
n )
)
(9)

with i and j indexing capsomers, n indexing beads within a
capsomer, rij,n the distance between the pair of beads with
index n in capsomers i and j, and εcc = 2kBT . The potential
width parameter is αn = (12.0/2req

n ), and the cutoff radius is
set to rcut

n = 2req
n + 1.5. The Morse potential is used for these

interactions largely for historical reasons, although in princi-
ple it offers the advantage over a Lennard-Jones interaction
of allowing independent control over the pseudoatom size and
the width of the potential well.

All pairs of capsomer pseudoatoms that are not on the same
subunit and do not mutually attract (Eq. (9)) have excluded
volume interactions represented by a WCA potential [88]

U ex
cc =

∑
i,j<i

∑
n6=m

4εex

[(
σnm
rij,nm

)12

−
(
σnm
rij,nm

)6
]

(10)

with rij,nm the distance between bead n in capsomer i and
bead m in capsomer j, εex = 1.0, and the cutoff distances
rcut
nm = σnm = req

n + req
m.

The interaction potential between the nanoparticle and cap-
somers, Unc, can be also split into contributions from attrac-
tions and excluded volume. The bottom bead of each cap-
somer experiences an attractive interaction with nanoparticle
beads, described by a Morse potential:

U att
nc (r) =

Nnr∑
i=1

Ncone∑
j=1

εnc(e
−2αnc(rij,0−2req

nc) − 2e−αnc(rij,0−2req
nc))

(11)

with the sum running over all Nnr nanorod beads and the
bottom beads of all Ncone capsomers, rij,0 the distance be-
tween nanorod pseudoatom i and the bottom bead of cap-
somer j, req

nc = 0.5, and the interaction width parameter set
to αnc = 3.0. The well-depth parameters are set to εnc =
0.3kBT for beads on the cylindrical portion of the NR, and
εnc = 0.294kBT for beads on the spherical endcap to ensure a
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uniform driving force for subunit adsorption everywhere (see
section II). In addition, all nanoparticle beads interact through
excluded volume with the three outermost capsomer beads:

U ex
nc =

Nnr∑
i=1

Ncone∑
j=1

5∑
n=3

4εex

[(
σnr
n

rij,n

)12

−
(
σnr
n

rij,n

)6
]

(12)

with rij,n the distance between nanorod pseudoatom i and
bead n of capsomer j, εex = 1.0 and cutoff radius rcut

n =
σnr
n = req

nc + req
n .
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