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Flocking Transitions in Confluent Tissues†

Fabio Giavazzi,a‡ Matteo Paoluzzi,b‡ Marta Macchi,a Dapeng Bi,c Giorgio Scita,d,e M.
Lisa Manning,b Roberto Cerbino∗a and M. Cristina Marchetti∗b

Collective cell migration in dense tissues underlies important biological processes, such as embry-
onic development, wound healing and cancer invasion. While many aspects of single cell move-
ments are now well established, the mechanisms leading to displacements of cohesive cell groups
are still poorly understood. To elucidate the emergence of collective migration in mechanosensi-
tive cells, we examine a self-propelled Voronoi (SPV) model of confluent tissues with an orienta-
tional feedback that aligns a cell’s polarization with its local migration velocity. While shape and
motility are known to regulate a density-independent liquid-solid transition in tissues, we find that
aligning interactions facilitate collective motion and promote solidification, with transitions that can
be predicted by extending statistical physics tools such as effective temperature to this far-from-
equilibrium system. In addition to accounting for recent experimental observations obtained with
epithelial monolayers, our model predicts structural and dynamical signatures of flocking, which
may serve as gateway to a more quantitative characterization of collective motility.

1 Introduction
The main cause of mortality in cancer patients is the spreading of
primary cancer cells that generate metastatic foci through com-
plex and still poorly understood processes. The invasiveness of
metastatic cells is facilitated by their ability to adapt to the mi-
croenvironment and change their identity to invade healthy tis-
sues and proliferate1,2. Key to invasion is cell migration. Mi-
gratory phenotypes are intrinsically flexible and include both sin-
gle and collective cell motility modes3,4. For example, migrat-
ing cells can display both mesenchymal and epithelial pheno-
types or frequently interconvert between these two states in a
process commonly referred to as Epithelial-to-Mesenchymal Tran-
sition (EMT). Cells undergoing EMT detach from the surrounding
cells and become hyper-motile. This allows them to reach distal
sites, where they can seed metastatic foci by reverting their state
back to epithelial5.

EMT is not, however, the only process that may favor metastatic
dissemination. A complementary process that may help drive col-
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lective cell migration is cellular unjamming6,7. Recent exper-
iments suggest that cell motion in tissues may be understood
in terms of physical laws and parameters typically employed to
study the transition between amorphous solid and liquid states of
inert materials. Within this framework, epithelial cell monolayers
below confluence exhibit liquid-like dynamics. As the cell den-
sity is increased due to proliferation, cellular displacements are
progressively inhibited, and cells become increasingly caged by
their neighbors in a glassy or jammed state8,9 that shares many
similarities with molecular or colloidal glasses10.

Notably, the transition to a jammed, arrested state has been
proposed to ensure the proper development of elasticity in mature
epithelial tissues. Conversely, monolayer unjamming is needed
whenever a tissue must adapt to changes or perturbations of its
physiological homeostatic state. Decreasing density is not the
only way to cause unjamming. Recent experiments showed that
an increase of cell-cell adhesion due to mechanical compression7

or to perturbation of endocytic processes11 also leads to unjam-
ming. This gateway to collective motility can be termed Jamming-
to-Unjamming transition (JUT)12 and it may be exploited by tu-
mors for interstitial dissemination11. In contrast with EMT that
requires a partial of full rewiring of genetic programs and cell
identity, small changes in biomechanical parameters are predicted
to promote JUT and collective migration.

Particle-based models of motile cells are widely used to de-
scribe the dynamics of dense cell collectives13–16 and predict jam-
ming as a function of cell density17,18, but seem inadequate to
describe confluent cell layers where packing fraction is essen-
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tially always unity. Recent theoretical work has combined the
well-established Vertex Model, that describes a confluent epithe-
lial cell sheet as a disordered polygonal tiling of the plane and
has been used successfully to model the development of the fruit
fly embryo19, with ideas from active matter physics to develop
a Self-Propelled Voronoi (SPV) model of motile tissue. The SPV
model exhibits a JUT tuned by cell motility and cellular shape,
which in turn embodies the competition of contractility and cell-
cell adhesion 7,20–24. None of these models, however, accounts
for a striking set of experimental observations11, in which the
elevation of RAB5A, a master regulator of endocytosis, induces
large-scale directed migratory patterns, which resemble the onset
of flocking in other living systems25. Additionally, experiments
show that cells alter their polarization and direction of migration
due to interactions with surrounding cells26–28. This mechan-
ical feedback was incorporated in Ref.11 by extending the SPV
model to include a local interaction that tends to direct cell po-
larization. While this simple modification yields flocking phases
similar to those observed in the experiments11, suggesting that
the observed reawakening of motility requires a simultaneous in-
crease of cell-cell adhesion and coordination of cell polarization,
the properties of such flocking phases and the comparison with
flocking transitions in particle-based models have not yet been
explored.

Here we characterize the full phase diagram of the SPV model
with alignment interactions and examine the structural and dy-
namical properties of the various phases.

We obtain a number of significant results. First, the flocking
transition, known to be first order in particle models where the in-
teraction range is defined through a metric criterion, where each
agent interacts only with agents within a prescribed range29, ap-
pears to be continuous here in both the liquid and the solid. This
is consistent with results from Vicsek models which display a con-
tinuous transition when agents align with their topological neigh-
bors defined as those belonging to the first shell of a Voronoi tes-
sellation, instead of metric ones 30. Given interactions in the
SPV are controlled by topology and not by metric distance,this
finding suggests the possibility that a continuous transition may
be a generic property of systems with metric-free interactions.
Secondly, we examine the interplay of alignment and structural
properties in both solid and liquid states and show that align-
ment promotes solidification by suppressing fluctuations trans-
verse to the direction of mean motion. Flocking glassy and crys-
talline states have been reported before in particle models31,32

and in continuum theories33, but alignment was suggested to
drive fluidification in particulate systems32. Extending tools from
statistical physics to these far-from-equilibrium systems, we also
develop a generalized expression for the effective temperature
and caging timescale to self-propelled systems that helps us un-
derstand how alignment interactions drive solidification in con-
fluent models. Finally, the flocking states are characterized by
strongly anisotropic fluctuations. In the fluid such anisotropy is
evident in both structural and dynamical properties that reveal
a behavior similar to that of 2D smectics, as recently suggested
for incompressible particulate flocking fluids 34. Collective rear-
rangements observed as the solid is approached from the fluid

(a) (b) 

(c) (d) 

Fig. 1 Four distinct dynamical phases. Strong alignment interaction yield
solid-like (a) and liquid-like (b) flocking states. For weak polar coupling
between cells the system is either in a stationary solid (c) or stationary
liquid (d) phase. The heat map represents the cosine of the angle of the
instantaneous velocity field with respect the horizontal axis: a uniform
color indicates coherent migration in a given direction.

side are strongly anisotropic and take the form of correlated cell
streaming. This morphology provides a distinct signature of of
the collective dynamics of flocking liquids that could be probed in
future experiments.

2 Model
The SPV model describes a confluent monolayer as a network of
polygons covering the plane20–22. Each cell is characterized by its
position ri and cell shape as determined by the Voronoi tessella-
tion of all cell positions (Fig. 2). As in the vertex model35, cell-cell
interactions are determined by an effective tissue energy19,35–39,

E ≡ ∑
i

[
KA(Ai−A0)

2 +KP(Pi−P0)
2
]
, (1)

with Ai and Pi the cross-sectional area and the perimeter of the
i-th cell, and KA and KP area and perimeter stiffnesses. The first
term, quadratic in the fluctuations of the cell area around the
target value A0, arises from the constraint of incompressibility in
three dimensions and encodes bulk elasticity. The second term,
quadratic in the deviation of cell perimeter from the target value
P0, represents the competition between active contractility in the
actomyosin cortex and cell-cell adhesion, resulting in an effec-
tive boundary tension proportional to P0. We consider N cells in
a square box of area L2 with periodic boundary conditions. In
the following, we set both the average cell area Ā = L2/N and
the target area A0 equal to one, Ā = A0 = 1, though changing Ā
in a periodic system has no effect on the cell dynamics40. The
system is initialized with random initial positions for the N cells.
The configurational energy in Eq. 1 has been extensively used in
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Fig. 2 Schematic representation of the model. (a) Each cell is a polygon
obtained by the Voronoi tessellation of initially random cell positions ri,
characterized by the area Ai and the perimeter Pi of the polygon. The
cell experiences a force Fi = −∇E due to its neighbors and an internal
propulsive force fs

i along the direction ni of its polarization (Eq. 2). (b)
An active orientation mechanism reorients each cell’s propulsive force
towards its migration velocity over a characteristic response time τ = J−1

(Eq. 3).

the past to model biological tissues, but only recently it has been
shown that this simple model exhibits a rigidity transition that
takes place at constant density and it is controlled by a single non-
dimensional parameter, the target shape index p0 ≡ P0/

√
A0

21. In
our model, we assume that cell proliferation is negligible on the
time scales of interest, as experimentally shown in11.

Each cell is additionally endowed with motility described by a
self-propulsive force fs

i = f 0ni of fixed magnitude f0 = v0/µ, with
v0 the cell motility and µ a mobility, pointing along the direction
ni = (cosθi,sinθi) of cell polarization and θi is the polarization
angle. Assuming overdamped dynamics, the equation of motion
of cell i is

∂tri = µ

(
fs

i +Fi

)
, (2)

with Fi = −∇ri E the force arising from the tissue energy. Many
cell types are known to sense mechanical and biochemical stim-
uli from neighboring cells and actively respond by adjusting their
polarization41. Following earlier work 31,42, we model these in-
teractions as an active feedback mechanism at the single cell level
that tends to align each cell’s polarization with its migration ve-
locity, which is in turn controlled by interactions with other cells.
The polarization dynamics is then governed by the equation

∂tθi = −J sin(θi−φi)+ηi , (3)

where φi is the direction of the cell velocity, ∂tri = vi =

vi (cosφi,sinφi), and ηi a white noise, i. e., 〈ηi(t)〉 = 0 and
〈ηi(t)η j(s)〉 = 2Drδi jδ (t− s). The angular dynamics is controlled
by the interplay of rotational diffusion at rate Dr and alignment
at rate J, whose inverse τ = J−1 is the response time required by
the cell reorient its polarization in the direction of the resultant
force exerted by its neighbors.

In the following, we use
√

A0 as the unit length and (µKAA0)
−1

as the unit time22. Additionally, we set KP/(KAA0) = 1,

f0/(KAA
3
2
0 ) = 1, Dr/(µKAA0) = 0.5. The free parameters are thus

the (dimensionless) alignment rate J and the target shape index
p0. For J = 0 and v0 = 0 our model is related to the vertex model
in Ref.21, while for J = 0 and finite v0 we obtain the SPV model
of Ref.22.

To study the solid-liquid transition, we use the mean-square-
displacement MSD(t) = N−1〈∑i[r′i(t + t0)− r′i(t0)]

2〉 evaluated in
the reference frame of the center of mass rCM = N−1

∑i ri, with
r′i = ri− rCM . Here and in the following, the brackets 〈. . .〉 de-
note a time average (see ESI for further details). The normal-
ized self-diffusivity Dsel f ≡ limt→∞

MSD(t)
4tD0

is a dynamical order pa-
rameter for the onset of rigidity, which can also be identified
via a structural order parameter given by the cellular shape in-
dex22, q = N−1〈∑iPi/

√
Ai〉. The transition line Dsel f ≤ 10−3 cor-

responds to q = 3.813. When v0 = 0, the rigidity transition occurs
for p0 = p∗0 = 3.8121. This model also has an additional tran-
sition at p0 ∼ 4.2, which is very close to the shape index for a
Voronoi-tesselated uniform point pattern (p0 = 4.186), suggest-
ing that above this value cells are effectively non-interacting and
behave like a gas.

We quantify the emergence of flocking by using the Vicsek order
parameter ϕ ≡ N−1 〈|(∑i vi/|vi|) |〉, where the angular brackets in-
dicate the average over trajectories. This quantity vanishes when
cells are moving in random directions and attains a value of 1
when all cells coordinate their motion. The susceptibility χϕ =

〈(ϕ(t)−〈ϕ〉)2〉 exhibits a maximum at the flocking transition,
which we use to separate flocking from non-flocking states. In
the following, we study the phase diagram of a system composed
by N = 400 cells. In estimating finite size effects on the flocking
transition, we considered systems of N = 100,400,1600,3200 cells.
Dynamical heterogeneities are investigated in larger systems of
N = 4900 cells.

3 Results

3.1 Alignment promotes a continuous flocking transition in
epithelial tissues

As shown in Fig. 1, we find four distinct phases by varying the
alignment rate J and the target shape index p0: (a) a stationary
solid with vanishing Dsel f , corresponding to the absence of cellu-
lar rearrangements, and ϕ = 0; (b) a stationary liquid with finite
Dsel f and vanishing mean motion (ϕ = 0); (c) a novel flocking liq-
uid where cells flow collectively (De f f and ϕ are both finite); and
(d) a flocking solid where the tissue migrates as a unit (ϕ finite),
while maintaining its rigidity. A phase diagram for the system is
shown in Fig. 3-a. The solid/liquid transition (red circles) has
been determined by examining the MSD that evolves from diffu-
sive to saturated with increasing p0 (Fig. 3(b)), resulting in the
vanishing of the long time diffusivity Dsel f (see Fig. S3). The line
separating the non-flocking from the flocking phases (green cir-
cles) corresponds to the peak in the susceptibility shown in panel
(c). The dashed blue line and the black squares are theoretical
estimates described below. In contrast with particulate Vicsek
models with metric interactions43, the onset of collective directed
motion in our Voronoi model appears to be a continuous phase
transition. Strong evidence for this is provided by a finite-size
scaling analysis of both flocking transitions (see Fig. 3(c)) that re-
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Fig. 3 Phase diagram. (a) Different phases in the (p0,J) plane. The
solid/liquid transition line (red circles) is obtained from the vanishing of
De f f and the flocking transition line (green circles) corresponds to the
peak in the susceptibility χϕ . The dashed blue curve is the theoretical
prediction Jc(v0, p0) given in (4). The black squares (the dashed line is
a guide to the eye) are the estimate for J f lock(p0) in terms of the numer-
ically calculated cage lifetime τcage at J = 0. The vertical dashed black
line marks the transition to a gas-like state, observed for p0 & 4.2, where
flocking cannot occur. (b) The mean square displacement for J = 2.0
for a range of p0 ∈ [3.4,4] across the liquid/solid transition (curves from
red to violet). (c) The susceptibility χϕ for p0 = 3.1 (blue symbols, solid)
and p0 = 3.7 (red symbols, liquid) and sizes N = 100,400,1600,3200, dia-
monds, squares, circles, and triangles, respectively.

veals a power-law scaling of the susceptibility peak χmax
ϕ (L)∼ Lb,

with L =
√

N the linear size of the system and b = 1.0± 0.1 (see
SI).

3.2 Flocking promotes solidification
Inspection of the phase boundary separating in Fig. 3 the flocking
liquid from the flocking solid reveals that alignment promotes so-
lidification. This can be understood via a simple argument that
also provides an estimate for the liquid-solid transition line in the
flocking region, pc(v0,J). Briefly, as suggested in Ref.22, fluidi-
fication can be understood qualitatively in terms of an “effective
temperature” that allows cells to rearrange by overcoming the en-
ergy barriers associated with T1 transitions. When cell alignment
is faster than rotational diffusion (i.e., J � Dr) cells can move
coherently without being disrupted by noise, which results in a
lower effective temperature, and therefore promotes solidifica-
tion.

To flesh out this argument we first recall that in Ref.21 it was
shown that in a static vertex model described by the tissue energy
of Eq. 1, with v0 = 0, the transition from solid to liquid is asso-
ciated with the vanishing of the mean energy barriers ∆E for T1

transitions and that these barriers scale as ∆E ∝ p∗0− p0 when the
target shape index p0 approaches its critical value p∗0 = 3.813 from
the solid side. Following22, we assume that in the SPV model
the effect of cell motility can be accounted for through a single
particle effective temperature Te f f controlled by the fluctuations
in cells positions that allow each cell to locally explore its energy
landscape. We stress that this effective temperature does not have
a thermodynamic interpretation, but is simply a useful measure
of the role of activity at the single particle level. In the absence of
cell-cell alignment (J = 0) this argument was used in22 to obtain
an excellent fit to the liquid-solid transition line at finite v0 using
Te f f = cv2

0, with c a dimensionful fitting parameter. Here we make
the argument more precise and generalize it to finite J.

In the gas phase, where both interactions and alignment can
be neglected, an exact calculation of the mean-square displace-
ment of a single cell yields the identification kBT g

e f f = v2
0/µDr

44.
In the solid, the cells are caged by their neighbors. Consider-
ing first J = 0, caging can be modeled by assuming that each cell
is tethered to a spring of force constant k. An exact calculation
of the mean square displacement of a tethered motile cell in the
presence of orientational noise (see SI) yields limt→∞ MSD(t) =
v2

0/[µk(µk+Dr)]. Comparison with the corresponding result for a
Brownian particle tethered to a spring, limt→∞〈[∆r(t)]2〉th = kBT/k
suggests the identification of an effective temperature kBT s

e f f =

v2
0/[µ(µk+Dr)]

45. By assuming that the transition is controlled
by the balance of the energy barrier and this effective thermal en-
ergy, ∆E ∼ p∗0− pc(v0,J = 0)∼ T s

e f f , we obtain a critical line for the
solid-liquid transition pc(v0,J = 0) = p∗0− v2

0/[µ(µk+Dr)], consis-
tent with the result of22. As discussed in22 this argument works
best at large Dr, where the effect of rotational noise resembles
that of thermal fluctuations.

A similar argument accounts for the role of alignment. For
J � Dr = 0.5, the alignment interaction is ineffective and does
affect the location of the solid-liquid transition. For large J, how-
ever, the system is in a solid flocking state, characterized by a
finite mean velocity ~v = v̄(cos φ̄ ,sin φ̄). We consider again a single
cell tethered to a spring of force constant k to describe caging by
neighbors, but also moving at mean velocity~v. Fluctuations about
this ordered state are mainly transverse to the direction of mean
motion. Treating such fluctuations as small, the mean square dis-
placement of such a solid flocking cell is given by (see ESI for de-
tails) limt→∞ MSD(t) = v2

0Dr/[µkJ(µk+J(1−v0/v̄)]. Assuming v̄∼
v0, the corresponding effective temperature is T f

e f f = v2
0Dr/(µ

2kJ).
Equating again this thermal energy to the energy barriers for T 1
transition, we obtain an estimate for the transition line between
solid and liquid flocks as pc(v0,J� Dr)∼ p∗0− v2

0Dr/(µ
2kJ). This

yields the transition from flocking solid to flocking liquid as

Jc(v0, p0)∼
v2

0Dr

µ2k
1

p∗0− p0
, (4)

which provides a good fit to the data with k = 0.85±0.03 (dashed
blue line in Fig. 3).
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Fig. 4 Identifying the caging timescale in the absence of alignment. (a)
The neighbors mean-square separation MSSnn(t) as a function of the the
time increment t becomes constant as p0 is decreased across the liquid-
solid transition, showing the onset of caging. (b) The inverse cage lifetime
τ−1

cage at J = 0 as a function of p0 calculated as described in the text. The
vertical line denotes the critical value p∗0 of the J = 0 rigidity transition,
while the horizontal dotted line is the asymptotic value τ

−1
f ree attained by

τ−1
cage in the gas phase.

3.3 Flocking requires slow structural rearrangements

The line separating the stationary (non-flocking) liquid phase
from the flocking liquid phase (represented in Fig. 3 as green con-
nected dots) can be estimated by equating the time scale τ = J−1,
with which a cell aligns its polarization along the migration di-
rection, with τcage, the lifetime of the local cages. Deep in the
solid, τcage is infinite and structural rearrangements are controlled
solely by the time scale τr for rotational diffusion. Cells will align
with their neighbors provided that τ < τr, giving a critical value
J f lock(p0 � p∗0) = Dr for the onset of flocking in the solid, inde-
pendent of p0 and in agreement with Fig. 3. As the solid-liquid
transition is approached, τcage becomes finite. When J = 0, τcage

can be estimated as the time over which the mean-square sepa-
ration of two cells i and j that are in contact at t = t0, defined
as MSSnn(t) = 〈[ri(t + t0)− r j(t + t0)]2〉, remains constant (see ESI
for details). The neighbors mean-square separation is shown in
Fig. 4(a) for J = 0 and several values of p0 spanning the liquid-
solid transition. In the solid, MSS(t) is constant at all times. Upon
melting, i.e., for p0 > pc

0(v0,J), MSSnn(t) shows an initial plateau
and then starts to grow. The resulting inverse lifetime of the cage
is shown in Fig. 4(b) as a function of p0. The lifetime τcage reaches
a constant value for p0 & 4.2, where q' 4.19. As discussed earlier,
this is the shape index for a random point pattern, and so the cells
no longer interact. In this gas regime MSSnn still shows an initial
plateau at short time that corresponds to the time τ f ree = a/v0

taken by a cell of motility v0 to travel freely a distance of the
order of its size a ∼

√
A0. We then define the true cage life-

time τ∗cage by correcting the lifetime calculated from the MSSnn

as τ∗cage = τcage− τ f ree.
In the liquid, structural rearrangements can occur via both the

relaxation of the local cage on time scale τ∗cage and noisy reorien-
tation on time scales τr. Neighbor exchanges are controlled by the
faster of the two processes. Flocking will only occur if the align-
ment rate J is faster than the total rate 1/τ∗cage +1/τr for neighbor
exchanges, giving an estimate for the flocking transition in the
liquid as J f lock(p0) = 1/τ∗cage +Dr. This prediction yields the black
squares in Fig. 3 in good agreement with the phase boundary
shown in green. Finally, we note that the existence of a gas phase
also explains the observed vertical asymptote in J f lock(p0): if cells

are not interacting they cannot align their polarization vectors,
no matter how rapidly the mutual alignment occurs.

3.4 Flocking impacts on structure and dynamics of the
monolayer

When observed in a co-moving frame of reference, the flocking
tissue reveals strong dynamical and structural anisotropies that
provide distinct testable signatures of directed collective motion.
In what follows we will focus on the properties of flocking liquid
state, where these effects are particularly evident. However, the
impact of self-propulsion and alignment on the elastic properties
and the vibrational spectrum of the solid represents an intriguing
open issue that deserves a more detailed investigation in future
work.

3.4.1 Structure

The flocking liquid exhibits an anisotropic structure akin to that of
two-dimensional smectics, with rows of cells marching along the
direction of mean motion. This is evident in the radial distribu-
tion function g(r) calculated in a moving frame aligned with the
instantaneous flocking direction (see ESI for details) that shows
strong anisotropy with pronounced peaks along the flocking di-
rection (Fig. 5a). Individual cell morphology and orientation are
also significantly affected by alignment. In the flocking liquid in-
dividual cells are elongated in the direction perpendicular to that
of mean motion. This squashing of flocking cells is quantified by
measuring the nematic-like parameter P = 2

〈
cos2(θ̃)

〉
−1, where

θ̃ is the angle between the instantaneous flocking direction and
the cell’s major axis (see ESI for details). In the stationary liquid
P fluctuates around zero, while in the flocking liquid it becomes
negative, as shown in Fig. 5b. Such orientational order of cell
shape is unique to the flocking state and was not observed in
models without alignment21.

3.4.2 Dynamics

The structural anisotropy of the flocking liquid is accompanied
by anisotropy in the dynamics. This is evident in the difference
between the MSD along (MSD‖(t)) and perpendicular (MSD⊥) to
the flocking direction (SI, Figs. S4 and supplementary movies
M1w, M2w, M3w and M4w). We find that at any given time
MSD⊥(t) is systematically larger MSD‖(t).This difference can be
used to quantify the transition to the flocking state, as shown in
Fig. S5. Additionally, in the flocking liquid we observe transverse
superdiffusive behavior, as observed previously in particle models
46. Finally, the anisotropic nature of the flocking state also affects
the onset of jamming, as evident in the morphology of dynami-
cal heterogeneities shown in Fig. 5 b. For J = 0 (Fig. 5c), the
collective rearrangements observed when the jammed state is ap-
proached form the liquid side are isotropic swirls, while for J = 2
they become and anisotropic, taking the shape of local flocks (Fig.
5d). We stress that all the displacements are computed in the
center of mass frame, hence the local flocks are not due to mean
motion, but to heterogeneities in the local collective dynamics.

These effects can be quantified by studying the spatial correla-
tion of cell displacements, which become significantly more long-
ranged along the direction of mean motion compared to the per-
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(a) (c) (d) (b) 

Fig. 5 Structural and dynamical anisotropy of the flocking liquid. (a) Radial distribution function g(r‖,r⊥) for a flocking liquid (p0 = 3.5, J = 2), evaluated
along (g(0,r⊥), red solid line) and perpendicular (g(r‖,0), blue dotted line) the direction of flocking. The inset shows an intensity plot of the 2D g(r),
with the horizontal axis chosen along the flocking direction. (b) Order parameter P (blue squares) as a function of J for p0 = 3.7. In the non-flocking
state P = 0, while at the flocking transition, identified by the peak in the susceptibility χ (orange triangles), P becomes negative, indicating a tendency
of the cells to elongate in the direction normal to that of mean motion. Inset: representative snapshot of a flocking liquid (J = 2, p0 = 3.7); the small
arrows indicate the orientation of the principal axis of each cell and the large arrow is in the direction of flocking. (c,d) Maps of the displacements ∆ri
averaged over a time τα = 102 for (b) J = 0 and (c) J = 2 in a system of 4900 cells. Ellipses are guides to the eye for highlighting the anisotropy of the
collective rearrangements in the flocking state. The red arrow indicates the average migration direction. (e,f) Spatial correlations C(x‖,0) (red triangles)
and C(0,x⊥) (blue circles) along axes longitudinal (x‖) and perpendicular (x⊥) to the direction of mean motion of a given sample for J = 0 (e) and J = 2
(f), averaged over 102 samples (see ESI for details).

pendicular direction as J increases (SI Fig S2). We can also quan-
tify the timescale associated with correlated motion by analyzing
the angular trajectories, which exhibit signatures of dynamical
heterogeneities with a characteristic timescale of about t ∼ 10 (SI
text and Fig S7). Since the time scale of angular relaxation is
an order of magnitude smaller than that of structural relaxation,
flocking excitations dominate the displacement statistics.

4 Conclusions

In this work, we describe a minimal model for collective migra-
tion in biological tissues. Our model treats a confluent cell mono-
layer as a Voronoi tessellation of the plane and encodes mechani-
cal properties of the cells, such as intracellular adhesion, cortical
tension, and motility. Motivated by experiments at both the tissue
and cellular scales, we introduce a polar interaction mechanism
similar to the one leading to flocking in other active matter sys-
tems25,42,43 that captures the feedback between local dynamics
and cell polarization. By tuning the strength of the polar interac-
tion and the preferred perimeter of the cells, we find a rich phase
diagram with four phases. At low polar interaction strengths,
we find standard liquid and amorphous solid phases. Increasing
polarization alignment leads to the emergence of an amorphous
flocking solid, and a flocking liquid phase, both exhibiting col-
lective directed motion or migration. We are able to understand
and predict the location of these transitions by extending ideas
from statistical physics, such as effective temperature and caging
timescales, to self-propelled agents.

Remarkably, our phase diagram captures the JUT observed in
recent experiments on epithelial monolayers, where overexpres-
sion of the endocytic protein RAB5A triggers the onset of directed
collective motion in an otherwise quiescent monolayer and pro-
motes local fluidization11. Cell migration patterns in this state are
compatible with the flocking liquid state predicted by our model
in the regime where both the polar interaction strength and the

target perimeter p0 are large.
A more quantitative comparison between the experiments and

our model is made difficult by the challenges posed by the quan-
tification of cell polarization in multicellular sheets. As of today,
there are no direct measures of how a cell’s polarization changes
in response to changes in its local environment. An exciting direc-
tion for future work is the study of subcellular structures or inter-
cellular markers for cell polarization in multicelluar monolayers
to correlate those with cell shapes and interfacial tensions and test
the hypothesis that cells polarize according to mechanical forces
generated by neighboring cells. If so, it may even be possible
to extract the time constant J−1 associated with this alignment.
Moreover, our model predicts that the onset of directed migration
impacts on the structural organization of the monolayer, leading
to anisotropic positional fluctuations and rearrangements and in-
ducing the alignment of the elongated cells perpendicularly to
the migration direction. These predictions could be more likely
directly tested experimentally, which offers an exciting opportu-
nity for future studies addressing the interplay between collective
motion and structural properties in confluent tissues47.

Conflicts of interest
There are no conflicts of interest to declare.

Acknowledgements
We thank M. Merkel for developing the code used in some of the
simulations. We acknowledge support from: the Simons Founda-
tion Targeted Grant in the Mathematical Modeling of Living Sys-
tems 342354 (MP and MCM); Simons Foundation grants 446222
and 454947 (MLM); the Syracuse Soft Matter Program (DB,
MP, MLM and MCM); the National Science Foundation DMR-
1609208 (MCM) and DMR-1352184 (MLM); the National Insti-
tute of Health R01GM117598-02 (MLM); the Italian Ministry of
University and Scientific Research (MIUR) Project RBFR125H0M
(FG, MM and RC); Regione Lombardia and CARIPLO foundation

6 | 1–8

Page 6 of 10Soft Matter



- Project 2016-0998 (FG, MM and RC). Computing infrastructure
support was provided by NSF ACI-1541396.

References
1 N. Marjanovic, R. Weinberg and C. Chaffer, Clinical chemistry,

2013, 59, 168.
2 M. Nieto, Science, 2013, 342, 1234850.
3 A. G. Clark and D. M. Vignjevic, Current Opinion in Cell Biol-

ogy, 2015, 36, 13–22.
4 A. Haeger, K. Wolf, M. Zegers and P. Friedl, Trends Cell Biology,

2015, 25 (9), 556–66.
5 E. Thompson, D. Newgreen and D. Tarin, Cancer Research,

2015, 65 (14), 5991–5.
6 M. Sadati, N. T. Qazvini, R. Krishnan, C. P. CY and J. Fred-

berg, Differentiation, 2013, 86(3), 121–125.
7 J.-A. Park, J. H. Kim, D. Bi, J. A. Mitchel, N. T. Qazvini, K. Tan-

tisira, C. Y. Park, M. McGill, S.-H. Kim, B. Gweon, R. S. J. Ja-
cob Notbohm, S. Burger, S. H. Randell, A. T. Kho, D. T. Tambe,
C. Hardin, S. A. Shore, E. Israel, D. A. Weitz, D. J. Tschumper-
lin, E. P. Henske, S. T. Weiss, M. L. Manning, J. P. Butler, J. M.
Drazen and J. J. Fredberg, Nature Materials, 2015, 14, 1040–
1048.

8 T. E. Angelini, E. Hannezo, X. Trepat, M. Marquez, J. J. Fred-
berg and D. A. Weitz, Proceedings of the National Academy of
Sciences, 2011, 108, 4714–4719.

9 A. Puliafito, L. Hufnagel, P. Neveu, S. Streichan, A. Sigal,
D. K. Fygenson and B. I. Shraiman, Proceedings of the National
Academy of Sciences, 2012, 109, 739–744.

10 L. Berthier and G. Biroli, Rev. Mod. Phys., 2011, 83, 587–645.
11 C. Malinverno, S. Corallino, F. Giavazzi, M. Bergert, Q. Li,

M. Leoni, A. Disanza, E. Frittoli, A. Oldani, E. Mar-
tini, T. Lendenmann, G. Deflorian, G. V. Beznoussenko,
D. Poulikakos, K. H. Ong, M. Uroz, X. Trepat, D. Parazzoli,
P. Maiuri, W. Yu, A. Ferrari, R. Cerbino and G. Scita, Nature
Materials, 2017, 16, 587–596.

12 J.-A. Park, L. Atia, J. A. Mitchel, J. J. Fredberg and J. P. Butler,
Journal of Cell Science, 2016, 129, 3375–3383.

13 M. C. Marchetti, Y. Fily, S. Henkes, A. Patch and D. Yllanes,
Current Opinion in Colloid & Interface Science, 2016, 21, 34–
43.

14 E. Méhes and T. Vicses, Intgrative Biology, 2014, 6, 831–854.
15 B. Smeets, R. Alert, J. Pesek, I. Pagonabarraga, H. Ramon and

R. Vincent, Proceedings of the National Academy of Sciences,
2016, 113, 14621–14626.

16 M. Basan, J. Elgeti, E. Hannezo, W.-J. Rappel and H. Levine,
Proceedings of the National Academy of Sciences, 2013, 110,
2452–2459.

17 Y. Fily, S. Henkes and M. C. Marchetti, Soft Matter, 2014, 10,
2132–2140.

18 L. Berthier, Phys. Rev. Lett., 2014, 112, 220602.
19 R. Farhadifar, J.-C. Röper, B. Aigouy, S. Eaton and F. Jülicher,

Current Biology, 2007, 24, 2095.
20 D. Bi, J. Lopez, J. Schwarz and M. L. Manning, Soft Matter,

2014, 10, 18885–1890.

21 D. Bi, J. H. Lopez, J. M. Schwarz and M. L. Manning, Nature
Phyics, 2015, 11, 1074.

22 D. Bi, X. Yang, M. C. Marchetti and M. L. Manning, Phys. Rev.
X, 2016, 6, 021011.

23 A. Loza, S. Koride, G. Schimizzi, B. L. andSX Sun and G. Long-
more, Molecular Biology of the Cell, 2016, 27(22), 3459.

24 D. L. Barton, S. Henkes, C. J. Weijer and R. Sknepnek,
arXiv:1612.05960, 2016.

25 T. Vicsek and A. Zafeiris, Physics Reports, 2012, 517, 71 – 140.
26 C. Carmona-Fontaine, H. Matthews, S. Kuriyama, M. Moreno,

G. Dunn, M. Parsons, C. Stern and R. Mayor, Nature, 2008,
456, 957.

27 R. J. Petrie, A. D. Doyle and K. M. Yamada, Nature Reviews
Molecular Cell Biology, 2009, 10, 538.

28 P. Friedl and R. Mayor, Cold Spring Harbor perspectives in bi-
ology, 2017, 9 (4), a029199.

29 H. Chaté, F. Ginelli, G. Grégoire and F. Raynaud, Phys. Rev. E,
2008, 77, 046113.

30 F. Ginelli and H. Chaté, Phys. Rev. Lett., 2010, 105, 168103.
31 S. Henkes, Y. Fily and M. C. Marchetti, Phys. Rev. E, 2011, 84,

040301.
32 Y. Tu, Physica A: Statistical Mechanics and its Applications,

2000, 281, 30 – 40.
33 A. M. Menzel and H. Löwen, Phys. Rev. Lett., 2013, 110,

055702.
34 L. Chen, C. F. Lee and J. Toner, Nature communications, 2016,

7, year.
35 H. Honda, Journal of theoretical biology, 1978, 72(3), 523–

43.
36 D. Staple, R. Farhadifar, J. Röper, B. Aigouy, S. Eaton and

F. Jülicher, European Physical Journal E: Soft Matter, 2010,
33(2), 117–27.

37 . Nagai and H. Honda, Philos. Mag. B, 2001, 81, 669.
38 L. Hufnagel, A. A. Teleman, H. Rouault, S. M. Cohen and B. I.

Shraiman, Proceedings of the National Academy of Sciences,
2007, 104, 3835–3840.

39 G. Wang, M. L. Manning and J. D. Amack, Developmental bi-
ology, 2012, 370, 52–62.

40 X. Yang, D. Bi, M. Czajkowski, M. Merkel, M. L. Manning and
M. C. Marchetti, arXiv:1704.05951, 2017.

41 B. Stramer and R. Mayor, Nature Reviews Molecular Cell Biol-
ogy, 2016, 18, 43.

42 B. Szabó, G. J. Szöllösi, B. Gönci, Z. Jurányi, D. Selmeczi and
T. Vicsek, Phys. Rev. E, 2006, 74, 061908.

43 T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet,
Phys. Rev. Lett., 1995, 75, 1226–1229.

44 Y. Fily and M. C. Marchetti, Phys. Rev. Lett., 2012, 108,
235702.

45 C. Maggi, M. Paoluzzi, N. Pellicciotta, A. Lepore, L. Angelani
and R. Di Leonardo, Phys. Rev. Lett., 2014, 113, 238303.

46 Y. Tu, J. Toner and M. Ulm, Phys. Rev. Lett., 1998, 80, 4819–
4822.

47 F. Giavazzi, C. Malinverno, S. Corallino, F. Ginelli, G. Scita
and R. Cerbino, Journal of Physics D: Applied Physics, 2017,

1–8 | 7

Page 7 of 10 Soft Matter



50, 384003.

8 | 1–8

Page 8 of 10Soft Matter



Cell-cell aligning interactions promote collective directed migration and

impact on structure and dynamics of dense tissues.
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